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Time-dependent	Schrodinger	Equation	

•  Time-evolution	of	a	quantum	state	is	fully	
described	by	the	Schrodinger	equation:	

•  Solving	the	energy	eigenstates																				gives	
the	ideal	“basis”	to	describe	time-evolution:	
		
	
	
This	is	necessary	for	analytical	solutions.	

i! ∂
∂t

Ψ(t) = Ĥ Ψ(t)

Ĥ φn = En φn

Ψ(t) = cn (0)e
−
iEnt
! φn

n
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Time-evolution	of	Wave	Functions	
•  Time-evolution	in	the	energy	eigenbasis:	
		
	
	
Easy	to	solve	when	the	energy	eigenstates	are	
known	ç	not	an	easy	task	

•  Wave	functions	are	“COMPLEX”	
•  Each	eigenstate	oscillates	in	a	different	frequency	
•  Interferences	between	different	oscillating	waves	
constitutes	the	full	quantum	dynamics	
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Time-dependent	Schrodinger	Equation	

•  Actually,	any	orthonormal	basis	sets	are	equally	
valid	for	solving	the	Schrodinger	equation	

•  Numerically	solve	the	Schrodinger	equation:	
1.  Find	a	numerically	convenient	&	efficient	basis	
2.  Construct	the	Hamiltonian	matrix	and	the	initial	

wavefunction	ket	(column	vector)	in	the	basis	
3.  Find	eigenvalues	&	eigenvectors	of	the	Hamiltonian	

to	solve	the	time-independent	problem	
4.  Propagate	the	wavefunction	step	by	step	in	time	

using	an	efficient	&	robust	algorithm		



Poorman’s	Discrete	Variable	Representation	

•  The	simplest	basis	choice	is	to	use	discrete	
grid	points	in	space	

•  Wavefunction	then	represents	by		a	vector	of	
“point	values”	
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Poorman’s	Discrete	Variable	Representation	

•  Hamiltonian:		
•  The	potential	operator	is	diagonal	in	position	
and	easy	to	construct	in	the	discrete	basis	

V̂ =

V (x1) 0 0 0 !

0 V (x2 ) 0 0 !

0 0 V (x3) 0 !

0 0 0 V (x4 ) !
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•  The	kinetic	energy	operator:		

Poorman’s	Discrete	Variable	Representation	
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Time	Propagation	
•  Schrodinger	equation:	

•  Iteration	with	a	small	time	step	δt:	

•  Normally,	an	algorithm	that	includes	higher-order	
contributions	(e.g.	δt2)	is	used	to	ensure	efficiency	
and	accuracy.	For	example,	the	Crank-Nicolson	
method	provided	significant	improvement	in	
accuracy.	

i! ∂
∂t

Ψ(t) = Ĥ Ψ(t)

Ψ(t +δt) ≈ Ψ(t) − iδt
!
Ĥ Ψ(t)



Matlab	Examples	

Matlab: http://www.mathworks.com/ 



Discrete	Variable	Representation	
•  dvr_eigen.m	
•  Poorman’s	DVR:	801	

points	from	x=-4	to	x=4	
•  Kinetic	Op:	

T(n,n)=2*k	
T(n,n+1)=T(n+1,n)=-k	

•  Potential	Op:	
V(x)	on	the	diagonal	

•  DVR	eigenstates	yields	
wavefunctions	directly	
–  Harmonic	
–  Quartic	double	well	
–  Biased	quartic	double	well	
–  Any	bound	potential!!	

T=zeros(Nx);	
for	idxi	=	1:(Nx-1)	
				T(idxi,idxi)=2*k;	
				T(idxi,idxi+1)=-1*k;	
				T(idxi+1,idxi)=-1*k;	
end	
T(Nx,Nx)=2*k;	
		
V=diag(potential(xvec));	
			
%	Hamiltonian	
H=T+V;	
	
%	eigen	values	and	vectors	
[U,	E]	=	eig(H);	
	



Dynamics	via	DVR	

•  Poorman’s	DVR	+	
Crank-Nicolson	

•  Additional	tricks:	focus	
on	low	energy	
eigenstates	

•  Gaussian	wavepacket	
dynamics	
–  Harmonic	potential	
–  Quartic	double	well	
potential	

–  Biased	quartic	potential	

%	eigen	values	and	vectors	
[U,	E]	=	eig(H);	
	
%	num	of	eigenstates	to	use	
Nred=50	
		
	%	truncated	Hamiltonian	(diag	form)	
Hred=E(1:Nred,1:Nred);	
	
%	eigenvectors,	used	for	basis	change	
Ured=U(:,1:Nred);	
		
%	transform	Psi_0	to	the	eigenspace	
Psi_0red=Ured'	*	Psi_0;		
	
	
	



Gaussian	Wavepacket	Dynamics	via	DVR	

•  Gaussian	wavepacket:	superposition	of	
eigenstates,	normally	non-stationary	

•  Ground	state?	(dvr_propagate1.m)	

•  Low	energy	Gaussian	wavepacket	in	a	harmonic	
potential	(dvr_propagate2.m)	

– Oscillations	in	position	and	width	(p)	
– Center	of	the	wavepacket	behaves	classically	

•  Displaced	ground-state	Gaussian	(dvr_propagate3.m)	

– Minimum	uncertainty	wavepacket	
– Width	&	shape	invariant:	coherent	state	



Gaussian	Wavepacket	Dynamics	via	DVR	

•  High	energy	Gaussian	wavepacket	in	a	
harmonic	potential	(dvr_propagate4.m)	

– Superposition	of	many	more	eigenstates	because	
of	energetic	accessibility	

– More	complex	dynamics	due	to	interferences	of	
modes	with	a	broad	distribution	of	frequencies	

– Recurrences	occur	due	to	symmetry	

•  Quartic	double	well	(dvr_propagate[5,6].m)	
– Low	energy:	tunneling	
– High	energy:	scattering	



Limitations	of	DVR+CN	

•  Infeasible	for	treating	high	dimensional	
systems:	N=(Nx)d	

•  Unfit	for	extensive	systems	&	highly	excited	
states	

•  Difficult	&	computationally	expensive	for	
accurate	long	time	dynamics	

•  Inefficient	for	systems	exhibiting	separation	of	
temporal	or	spatial	scales	

•  Inefficient	for	calculating	rates,	yields,…	etc.	





Internet	Resources	

•  Matlab	scripts	shown	today	already	on	CEIBA	
•  Java	Applet	demo	of	1D	QM	systems:	
http://www.falstad.com/qm1d	

•  Java	Applet	demo	of	2D	QM	systems:	
http://www.falstad.com/qm2dbox	

•  PhET	Simulations	of	Quantum	Phenomena:	
http://phet.colorado.edu/simulations/
index.php?cat=Quantum_Phenomena	



Remarks	
•  Intuitions	from	classical	mechanics	still	explains	
many	quantum	phenomena,	however,	
adjustments	are	required	for	superpositions	&	
interferences	(coherence),	tunneling,	
measurement…	etc.	

•  Energy	eigenstates	form	the	basis	for	describing	
time	evolution	of	quantum	states	

•  Solutions	to	the	time-independent	Schrodinger	
equation	are	fundamental	to	understand	
quantum	phenomena	in	physics	&	chemistry	





Scheme	for	Time	Propagation	

•  tls_prog_exactdiag.m:	
exact	propagator	through	
diagonalizing	H	

•  tls_prog_euler.m:	Euler	
method	

•  tls_prog_cranknicolson.m:	
Crank-Nicolson	scheme	

•  TLS	dynamics	as	an	
example	

•  Implementations	
•  Stability,	accuracy,	&	
efficiency	
–  Size	of	each	time	step	
–  Accuracy	at	longer	times	
–  Efficiency	of	the	
algorithm	

•  By	the	way,	TLS	
dynamics:	fix	energy	
gap,	vary	J	


