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Time-dependent Schrodinger Equation

* Time-evolution of a quantum state is fully
described by the Schrodinger equation:
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* Solving the energy eigenstates 7|y,)=E,|¢,) gives
the ideal “basis” to describe time-evolution:
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Time-evolution of Wave Functions

Time-evolution in the energy eigenbasis:
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Easy to solve when the energy eigenstates are
known € not an easy task

Wave functions are “COMPLEX”
Each eigenstate oscillates in a different frequency

Interferences between different oscillating waves
constitutes the full quantum dynamics



Time-dependent Schrodinger Equation

e Actually, any orthonormal basis sets are equally
valid for solving the Schrodinger equation

* Numerically solve the Schrodinger equation:
1. Find a numerically convenient & efficient basis

2. Construct the Hamiltonian matrix and the initial
wavefunction ket (column vector) in the basis

3. Find eigenvalues & eigenvectors of the Hamiltonian
to solve the time-independent problem

4. Propagate the wavefunction step by step in time
using an efficient & robust algorithm



Poorman’ s Discrete Variable Representation

* The simplest basis choice is to use discrete
grid points in space
 Wavefunction then represents by a vector of

“point values” ( W(x) )
‘I’(x)w s W(x,)
v X “P>= W(x,)
OallliN W(,)




Poorman’ s Discrete Variable Representation

e Hamiltonian: H=T+V
* The potential operator is diagonal in position
and easy to construct in the discrete basis

)

(vx) 0 0 0
0 V(x,) O 0
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0 0 0 V(x,)
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Poorman’ s Discrete Variable Representation
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Time Propagation

e Schrodinger equation:

ih%“l’(t)> - H

W(1))
e Jteration with a small time step 6t:

W(s+ 5r)> ~ \W(z)> - % H ‘P(t)>

 Normally, an algorithm that includes higher-order
contributions (e.g. 6t?) is used to ensure efficiency
and accuracy. For example, the Crank-Nicolson
method provided significant improvement in
accuracy.
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Matlab: http://www.mathworks.com/

Matlab Examples




Discrete Variable Representation

dvr_eigen.m T=zeros(Nx);
Poorman’s DVR: 801 for idxi = 1:(Nx-1)
points from x=-4 to x=4 Tlidhd, idxi)=2%k;
Kinetic Ob: T(idxi,idxi+1)=-1*k;
T(n n)=2*pk T(idxi+1,idxi)=-1*k;
T(n,n+1)=T(n+1,n)=-k enad

. T(Nx,Nx)=2%*k;
Potential Op:

V(x) on the diagonal

DVR eigenstates yields
wavefunctions directly

V=diag(potential(xvec));

% Hamiltonian

— Harmonic H=T+V:
— Quartic double well
— Biased quartic double well o eigen values and vectors

— Any bound potential!! [U, E] = eig(H);



Dynamics via DVR

e Poorman’ s DVR +
Crank-Nicolson

* Additional tricks: focus
on low energy
eigenstates

* Gaussian wavepacket
dynamics
— Harmonic potential

— Quartic double well
potential

— Biased quartic potential

% eigen values and vectors
[U, E] = eig(H);

% num of eigenstates to use
Nred=50

% truncated Hamiltonian (diag form)
Hred=E(1:Nred,1:Nred);

% eigenvectors, used for basis change
Ured=U(:,1:Nred);

% transform Psi_0 to the eigenspace
Psi_Ored=Ured' * Psi_O;



Gaussian Wavepacket Dynamics via DVR

Gaussian wavepacket: superposition of
eigenstates, normally non-stationary

Ground state? (dvr_propagatel.m)

Low energy Gaussian wavepacket in a harmonic
potential (dvr_propagate2.m)

— Oscillations in position and width (p)
— Center of the wavepacket behaves classically

Displaced ground-state Gaussian (dvr_propagate3.m)
— Minimum uncertainty wavepacket
— Width & shape invariant: coherent state



Gaussian Wavepacket Dynamics via DVR

* High energy Gaussian wavepacket in a
harmonic potential (dvr_propagate4.m)

— Superposition of many more eigenstates because
of energetic accessibility

— More complex dynamics due to interferences of
modes with a broad distribution of frequencies

— Recurrences occur due to symmetry
e Quartic double well (dvr_propagate[5,6].m)

— Low energy: tunneling
— High energy: scattering



Limitations of DVR+CN

Infeasible for treating high dimensional
systems: N=(Nx)?

Unfit for extensive systems & highly excited
states

Difficult & computationally expensive for
accurate long time dynamics

Inefficient for systems exhibiting separation of
temporal or spatial scales

Inefficient for calculating rates, yields,... etc.



INTRODUGTIONTOR

lllIIII IENIIIIBS

SANIMESDERENDENTES
RERSBEGIIVERSS

.

V\IL’ (,'

David ). Tannor




Internet Resources

Matlab scripts shown today already on CEIBA

Java Applet demo of 1D QM systemes:
nttp://www.falstad.com/gm1d

Java Applet demo of 2D QM systemes:
nttp://www.falstad.com/gm2dbox

PhET Simulations of Quantum Phenomena:
nttp://phet.colorado.edu/simulations/
index.php?cat=Quantum_Phenomena




Remarks

* |ntuitions from classical mechanics still explains
many quantum phenomena, however,
adjustments are required for superpositions &
interferences (coherence), tunneling,
measurement... etc.

* Energy eigenstates form the basis for describing
time evolution of quantum states

* Solutions to the time-independent Schrodinger
equation are fundamental to understand
gquantum phenomena in physics & chemistry






Scheme for Time Propagation

tls prog exactdiag.m: * Implementations

exact propagator through « stability, accuracy, &
diagonalizing H efficiency

tls_prog euler.m: Euler — Size of each time step
method — Accuracy at longer times
tls_prog cranknicolson.m: — Efficiency of the
Crank-Nicolson scheme algorithm

* By the way, TLS
dynamics: fix energy

TLS dynamics as an
gap, vary J

example



