
Lecture 11

Quantum rigid rotor

Study Goal of This Lecture

• Classical rigid rotpr

• Angular momentum

• Quantum rigid rotor:

Schrödinger equation, spherical coordinate and eigenfunctions

11.1 Classical Rigid Rotor

So far we have restricted ourself to 1-D problem. Now we are ready to go on

to treat more complex problems in 3-D and beyond. Before we solve the hydrogen

atom problem, we must understood quantum rotation first.

Consider a particle rotates around a fixed axis, the radius is fixed and we called

this kind of system a rigid rotor. The system should be described by the angular

momentum

~L = ~r × ~p, (11.1)

and the kinetic energy is

T̂ =
1

2
mω2 =

~L2

2I
, where I is moment of inertia. (11.2)

Again, for many particle system, the rotation can be seperated from the center-of-

mass motion and described in reduced coordinate.
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For example, a rigid diatomic molecule:

Figure 11.1: Transform to the reduced coordinate.

with reduced mass µ = m1m2
m1+m2

, so

T =
~L2

2I
=

~L2

2µR2
. (11.3)

Now we return to consider ~L. It is a vector, defined as:

~L = ~r × ~p =

∣∣∣∣∣∣∣∣
î ĵ k̂

x y z

px py pz

∣∣∣∣∣∣∣∣ = (ypz − zpy )̂i+ (zpx − xpy)ĵ + (xpy − ypx)k̂. (11.4)

Therefore,

~L = Lxî+ Ly ĵ + Lzk̂ and ~L2 = L2
x + L2

y + L2
z. (11.5)

11.2 Quantum Rigid Rotor

11.2.1 Angular Momentum Operator

In quantum mechanics, we use the corresponding principle and obtain Note
[
y, ∂∂y

]
= 0

Ĥ = T̂ + V̂ =
L̂2

2µR̂2
=

L̂2

2µR̂2
=
L̂2

2I
, (11.6)

L̂ = L̂xî+ L̂y ĵ + L̂zk̂, (11.7)

L̂x = ŷp̂z − ẑp̂y = −i~(y
∂

∂z
− z ∂

∂y
), (11.8)

L̂y = −i~(z
∂

∂x
− x ∂

∂z
), (11.9)

L̂z = −i~(x
∂

∂y
− y ∂

∂x
). (11.10)
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Figure 11.2: Spherical coordinate.

11.2.2 Spherical Coordinate

For rotation motions, these operators are most conveniently studied in spherical

coordinate:

|~r| = r : fixed. (11.11)

x = r sin θ cosφ

y = r sin θ sinφ

y = r cos θ

(11.12)

to transform operators from Cartesian Coordinate, we need:

cos θ =
z

r
=

z√
x2 + y2 + z2

,

tanφ =
y

x
.

(11.13)

Therefore, we want to write L̂x, L̂y, L̂z in spherical coordinates. We know how to

rewrite x, y, z, but how about the operator ∂
∂x? → the chain rule!

∂

∂x
=
(∂θ
∂x

)
y,z

∂

∂θ
+
(∂φ
∂x

)
y,z

∂

∂φ
, (11.14)

3



and

∂

∂x
cos θ = − sin θ

(∂θ
∂x

)
y,z

=
∂

∂x
[

z√
x2 + y2 + z2

]

=
z

(x2 + y2 + z2)
3
2

× −1

2
× 2x

= − 1

r3
× x× z

= − 1

r3
× r sin θ cosφ× r cos θ.

(11.15)

∴
(∂θ
∂x

)
y,z

=
1

r
cos θ cosφ. (11.16)

We can similarly prove: by ∂
∂x tanφ, that(∂φ

∂x

)
y,z

= −1

r
× sinφ

sin θ
. (11.17)

∴ L̂x = i~
[

sinφ
∂

∂θ
+ cot θ cosφ

∂

∂φ

]
(11.18)

Also

L̂y = −i~
[

cosφ
∂

∂θ
− cot θ sinφ

∂

∂φ

]
, (11.19)

L̂z = −i~ ∂

∂φ
, (11.20)

and

L̂2 = −~2
[ 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
. (11.21)

Nota that [L̂x, L̂y] , [L̂y, L̂z] , [L̂z, L̂x] 6= 0 and [L̂2, L̂x,y,z] = 0.

11.2.3 Spherical Harmonic

Thus, the Schrödinger equation:

Ĥψ = Eψ, Ĥ =
L̂2

2I
. (11.22)

∴ −~2

2I

[ 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
ψ(θ, φ) = Eψ(θ, φ). (11.23)

The solution are well known in mathematics, they are the spherical harmonic. They

are denoted as Y m
l (θ, φ) and are simultaneous eigenfunctions of L̂2 and L̂z Why does it require

two quantum number to

describe the wavefunc-

tion?

→ Because there are

two variables (degree of

freedoms).

L̂2Y m
l (θ, φ) = l(l + 1)~2Y m

l (θ, φ), with l = 0, 1, 2, · · · , (11.24)
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l is angular momentum quantum number.

L̂zY
m
l (θ, φ) = m~Y m

l (θ, φ), with m = −l,−l + 1, · · · , 0, · · · , l − 1, l , (11.25)

m is magnetic quantum number.

So, the energy levels of a rigid rotor is Energy only depends on

l.

J is often used in

spectroscopy.

El =
~2

2I
l(l + 1) =

~
2I
J(J + 1), where l, J = 0, 1, 2, · · · . (11.26)

Note that each energy level has 2l + 1-fold degeneracy!(Due to for all m = −l,−l +

1, · · · , 0, · · · , l − 1, l Y m
l states have the same energy.) One should think that for a

So what is Y m
l (θ, φ)

function?
state Y m

l (θ, φ), the amplitude of angular momentum is

|~L| =
√
l(l + 1)~, (11.27)

and the projection on the rotational axis z is

|Lz| = m~. (11.28)

Of course |Lz| must smaller than |~L|, so m = −l,−l+1, · · · , 0, · · · , l−1, l, alway

<
√
l(l + 1). This is summarized by the figure, for example for l = 2, there are five m

states: m = ±2,±1, 0. Each represented by a vector with length =
√
l(l + 1)~ =

√
b~

and z-projection m~ precessing along z.

Note the quantization conditions. All five states has the same energy. The first few

spherical harmonics will be given later and they are also listed on Silbey’s Table 9.2.

11.2.4 Uncertainty of Quantum Rigid Rotor

Let’s spend some time on the uncertainty of spherical harmonics: Conceptually,

given a quantized ratotaional energy level, one determined l rotational energy:

El =
~
2I
l(l + 1), (11.29)

but the direction is not determined, i.e. there are degenerate states with the same

energy, this preserves the uncertainty in the system.
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Figure 11.3: Graphical summary of spherical harmonics.

11.3 The First Few Spherical Harmonics

The first few spherical harmonics:

Y 0
0 = ( 1

4π )
1
2 , (11.30)

Y 0
1 = ( 3

4π )
1
2 cos θ, (11.31)

Y −1
1 = ( 3

8π )
1
2 sin θe−iφ, (11.32)

Y 1
1 = ( 3

8π )
1
2 sin θeiφ. (11.33)

Let’s look on some features of those spherical harmonics function:

• For Y 0
0 , the rotation energy is ”0”. However, it does not violate the uncertainty

principle because this state has an wavefunctions that gives ”equal”, ”uniform”

probability density in θ and φ. This is quite different to the case of harmonic

oscillator.

• We find the complex number in wavefunction. Practically, we will do superpo-
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sition to obtain:

px =
1√
2

(Y 1
1 + Y −1

1 ),

py =
1√
2

(Y 1
1 − Y −1

1 ),

pz = Y 0
1 .

(11.34)

These are p orbitals in hydrogen atom!

Note that, just like the eigenfunctions of harmonic oscillator, we do not need to know

the explicit forms of Y m
l (θ, φ), we only need to know that:∫

Y m
l (θ, φ)Y m′

l′ (θ, φ)dτ = δl,l′ · δm,m′ . (11.35)

11.4 More on Magnetic Quantum Number

The emergence of the magnetic quantum number provides useful insights and is

analogous to the giving of l, so we will study it a little more, recall:

L̂z = −i~ ∂

∂φ
. (11.36)

To find eigenfunctions ⇒ T (φ)

−i~ ∂

∂φ
T (φ) = b · T (φ), (11.37)

∴ T (φ) = Ae
−ibφ

~ . (11.38)

If T (φ) is a single-valued function, we must have T (φ) = T (φ+2π)⇐ the same after

rotating one round. Cylic boundary condi-

tion.Derivation of eigenfunction of L̂z

Since T (φ) = T (φ+ 2π),

Ae
ibφ
~ = Ae

ib(φ+2π)
~ = Ae

ibφ
~ e

i2πb
~ , (11.39)

e
ib2π
~ = 1, cos

2πb

~
+ i sin

2πb

~
= 1. (11.40)

Therefore
2πb

~
= 2πm, m = 0,±1,±2, · · · , b = m~, (11.41)

T (φ) =
1√
2π
e−imφ. (11.42)
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11.4.1 Physical Meaning

• ”Measured” angular momentum along on axis equals to integer of ~!

• For rotation about an axis, i.e. on a plane, or rotation in two directions

Ĥ2D =
L̂2
z

2I
⇒ Ĥ2DT (φ) =

1

2I
(m~)2T (φ), m = 0,±1,±2, · · · , (11.43)

for m 6= 0 state, the energy has two-fold degenerarcy. Why it has two-fold de-

generarcy?
Still, we do not explain why l = 0, 1, 2, · · · and why L̂2 has eigenvalues of l(l+ 1)~2.

But a physical way to understand this is to recognize that: For 〈L̂2〉 and 〈L̂2
z〉,

if 〈L̂2〉 = 〈L̂2
z〉 ,then 〈L̂x〉 = 〈L̂y〉 = 0, everything is determined. Therefore, if

L̂2 = l(l + 1)~2, the maximal 〈L̂2
z〉 is when m = ±l.
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