
Lecture 12

Properties of Quantum Angular

Momentum

Study Goal of This Lecture

• Angular momentum operators

• Expectation values and measurements

• Heisenberg uncertainty principle

12.1 Review

We have discussed the eigenvalues and eigenfunctions of quantum rigid rotors.

There, the quantization of the angular degrees of freedom, θ and φ, leads to two

quantum numbers:

l: angular momentum quantum number

m: magnetic quantum number

The eigenfunctions, called spherical harmonics, are specified by the two quantum

numbers.

L̂2Y m
l (θ, φ) = l(l + 1)~2Y m

l (θ, φ), l = 0, 1, 2, · · · , (12.1)

L̂zY
m
l (θ, φ) = m~Y m

l (θ, φ), m = ±l,±(l − 1), · · · , 0 . (12.2)
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We could also write this in Dirac notation:

|l,m〉 = Y m
l (θ, φ), (12.3)

so

L̂2 |l,m〉 = l(l + 1)~2 |l,m〉 , (12.4)

L̂z |l,m〉 = m~ |l,m〉 . (12.5)

Note that we have also defined:

L̂2 = L̂2
x + L̂2

y + L̂2
z, (12.6)

L̂x = ŷp̂z − ẑp̂y, (12.7)

L̂y = ẑp̂x − x̂p̂z, (12.8)

L̂z = x̂p̂y − ŷp̂x. (12.9)

In this lecture, we will return to cover some basic properties of the angular momen-

tum operators.

12.2 Commutators

Let’s first examine the commutators. Recall the canonical quantum commutator:

[x̂, p̂x] = i~, [x̂, p̂y] = 0. (12.10)

We can evaluate[
L̂x, L̂z

]
= (ŷp̂z − ẑp̂y)(ẑp̂x − x̂p̂z)− (ẑp̂x − x̂p̂z)(ẑp̂x − x̂p̂z)

= ŷp̂z ẑp̂x − ŷp̂zx̂p̂z − ẑp̂y ẑp̂x + ẑp̂yx̂p̂z

− ẑp̂xŷp̂z + ẑp̂xẑp̂y + x̂p̂yŷp̂z − x̂p̂z ẑp̂y

= ŷp̂x[p̂z, ẑ] + x̂p̂z[ẑ, p̂z]

= −i~ŷp̂x + i~x̂ŷ

= i~(x̂p̂y − ŷp̂x) = i~L̂z.

(12.11)

Similarly,

Recognize the ”cyclic

rule”.

[
L̂y, L̂z

]
= i~L̂x,

[
L̂z, L̂x

]
= i~L̂y. (12.12)

Now we clearly show
[
L̂x, L̂y

]
6= 0, then how about

[
L̂2, L̂x

]
? We are ready to do

the calculation:
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[
L̂x, L̂y

]
= i~L̂z

∴ L̂zL̂x = L̂xL̂y − i~L̂z

[
L̂2, L̂x

]
= (L̂2

x + L̂2
y + L̂2

z)L̂x − L̂xL̂
2
x + L̂2

y + L̂2
z

=�
�̂L3
x + L̂yL̂yL̂x + L̂zL̂zL̂x −�

�̂L3
x − L̂xL̂yL̂y − L̂xL̂zL̂z

= L̂y(L̂xL̂y − i~L̂z) + L̂z(L̂xL̂z + i~L̂y)− L̂xL̂yL̂y − L̂xL̂zL̂z

= L̂yL̂xL̂y − i~L̂yL̂z + L̂zL̂xL̂z + i~L̂zL̂y − L̂xL̂yL̂y − L̂xL̂zL̂z

= (L̂xL̂y − i~L̂z)L̂y − i~L̂yL̂z + (L̂xL̂z + i~L̂y)L̂z + i~L̂zL̂y − L̂xL̂yL̂y − L̂xL̂zL̂z

= 0.

(12.13)

Similarly, one can find [
L̂2, L̂y

]
= 0,

[
L̂2, L̂z

]
= 0. (12.14)

These prove what we described on the previous lecture.(L̂2 and L̂z can share the

same eigenfunctions.)

12.2.1 Expectation Values

Now any properties related to angular momentum(spin? momentum? · · · ) could

be evaluated by taking expectation values. Suppose:

|Ψ〉 =
∑
l,m

Cl,m |l,m〉 . (12.15)

Since set {|l,m〉} is complete, this is always true. So given any operator regarding

rotations:

Â = Â(L̂x, L̂y, L̂z), (12.16)

〈A〉 = 〈Ψ|Â|Ψ〉 =
∑

l,m,l′,m′

C∗l′,m′Cl,m

〈
l′,m′

∣∣Â∣∣l,m〉 . (12.17)

Now recall that {|l,m〉} are eigenstates of L̂2 and L̂z. So any operator Â = (L̂2, L̂z)

is easy to calculate.
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E.g. Ĥ = L̂2

2I .

∴ 〈Ψ|Ĥ|Ψ〉 =
∑

l,m,l′,m′

1

2I
C∗l′,m′Cl,m

〈
l′,m′

∣∣L̂2
∣∣l,m〉

=
∑

l,m,l′,m′

1

2I
C∗l′,m′Cl,ml(l + 1)~2

〈
l′,m′

∣∣l,m〉
=

1

2I

∑
l,m

|Cl,m|2l(l + 1)~2.

(12.18)

|Cl,m|2 is the probability in state |l,m〉.
The problem is Â = Â(L̂x, L̂y). Some are still simple:

E.g. L̂2
x + L̂2

y.

∵ L̂2 = L̂2
x + L̂2

y + L̂2
z, (12.19)

∴ 〈l,m|(L̂2
x + L̂2

y)|l,m〉 = 〈l,m|(L̂2 − L̂2
z)|l,m〉 = l(l + 1)~2 −m2~2. (12.20)

This one has a simple geometrical interpretation:

Figure 12.1: Geometric interpretation of L̂2
x + L̂2

y

Finishing the simple one, but how about L̂x, L̂y? It’s not so trivial. But look at

the form L̂2
x + L̂2

y and remember what we did in treating harmonic oscillator based

on the operator method, you should not be surprised by the following results:

Define

L̂+ = L̂x + iL̂y

L̂− = L̂x − iL̂y

⇒
L̂x =

1

2
(L̂+ + L̂−)

L̂y =
−i
2

(L̂+ − L̂−)

(12.21)
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[
L̂z, L̂±

]
= ±~L̂±, (12.22)[

L̂+, L̂−

]
= 2~L̂z. (12.23)

Where L̂+ and L̂− is the ladder operator for angular momentum. We can derive

further to obtain:

L̂+ |l,m〉 =
√
l(l + 1)−m(m+ 1)~ |l,m+ 1〉 , (12.24)

L̂− |l,m〉 =
√
l(l + 1)−m(m− 1)~ |l,m− 1〉 , (12.25)

and

L̂+ |l,m = l〉 = 0, L̂− |l,m = −l〉 = 0. (12.26)

These results can be dervied by the same procedure that we used to dervie the har-

monic oscillator cases. However these are out of the scope in this class and it will

not be given here.(See Levine’s textbook)

The results above allow us to calculate any expectation values for functions of

L̂x, L̂y, L̂z. For instance: Try to check by yourself!

〈l,m|L̂x|l,m〉 = 〈l,m|1
2

(L̂+ + L̂−)|l,m〉 = 0, (12.27)

〈l,m|L̂2
x|l,m〉 =

1

2
[l(l + 1)−m2]~2. (12.28)

In undergraduate QM, we will not emphasize the ladder operator for angular mo-

mentum. Can you guess the eigen-

values of L̂x and L̂y?

12.3 Measurement

What if we can measure a single rotational state? we should obtain the following

result:

Measure L̂z, one gets m~, m = −l, · · · ,+l

Measure L̂x, one gets m~, m = −l, · · · ,+l too!

Since the ”axis” is artificially labeled, the measurment results in three directions

are identical(symmetry). But we know that
[
L̂z, L̂x

]
6= 0, which means they do not

share the same eigenbasis. So, an eigenfunction of L̂z which yield single value when

measuring L̂z will be the superposition of the eigenfunctions of L̂x.
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Figure 12.2: Measurement Tree.

Let’s consider the consecutive measurement below:

For the case of l = 1, the possible measured values are m = +1, 0,−1. If we

prepared an initial state of equal superposition of m = +1, 0,−1 states, then we can

represent the measurement as a tree:(next page)

The boxes represent measurements and the yellow arrows represent the out-

comes. From above we find that measurement of a different orthogonal component

will ”scramble” the states. This is obvious in the below one measurement in Fig.12.2.

After the first L̂z measurement, the state goes to the m = 0 state in L̂z basis. And

for the next L̂x measurement, the states change to the m = −1 states in L̂x basis.

So we can re-state the Heisenberg uncertainty principle: Uncertainty occurs be-

cause non-commuting

measurements interfere

with each other.

If two obeservables do not commute, then an measurement of Â will

scramble the wavefunction to make the following measurement on B̂

probabolistic. i.e. not exactly determined.

Or, one can not simultaneously determine Â and B̂ if
[
Â, B̂

]
6= 0. In fact, one can

prove that

〈(∆A)〉2 〈(∆B)〉2 ≥ 1

4
|
〈[
Â, B̂

]〉
|2. (12.29)
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*Variance of L̂x and L̂y and the Uncertainty

We can calculated, from physical intuitions, that given a eigenstate of L̂z, i.e.

|l,m〉, then isotropic expectation values in x, y, z are, by symmetry

〈l,m|L̂x|l,m〉 = 〈l,m|L̂y|l,m〉 = 0, (12.30)

also because 〈l,m|L̂2
x|l,m〉 = 〈l,m|L̂2

y|l,m〉, we can calculate using

〈l,m|L̂2|l,m〉 = 〈l,m|L̂2
x + L̂2

y + L̂2
z|l,m〉 , (12.31)

∴ 〈l,m|L̂2
x + L̂2

y|l,m〉 = 2 〈l,m|L̂2
x|l,m〉 = 〈l,m|L̂2 − L̂2

z|l,m〉 . (12.32)

So

〈l,m|L̂2
x|l,m〉 = 〈l,m|L̂2

y|l,m〉 =
1

2
{l(l + 1)~2 −m2~2}. (12.33)

Therefore, uncertainty ∆lx and ∆ly for the |l,m〉 state is

∆lx = ∆ly =

√
1

2
[l(l + 1)−m2] · ~. (12.34)

12.4 Summary on Quantum Angular Momentum

Angular momentum is a vector, so one must specify its ”magnitude” and ”di-

rection”. In quantum mechanics, the magnitude is quantized for stationary states:

|~L| =
√
l(l + 1)~, l = 0, 1, 2, · · · . (12.35)

Since ”magnitude” is determined, the direction can not be fully specified, otherwise

the uncertainty principle will be violated. This is reflected in the fact that[
L̂x, L̂y

]
6= 0,

[
L̂y, L̂z

]
6= 0,

[
L̂z, L̂x

]
6= 0. (12.36)

But one direction can be specified because[
L̂2, L̂x

]
=
[
L̂2, L̂y

]
=
[
L̂2, L̂z

]
= 0. (12.37)

By convention, we choose to specify L̂y, i.e. the z-component of ~L:

lz = m~, m = −l, · · · , 0, · · · ,+l. (12.38)

Since z-component is determined, the lx and ly components are fully undetermined.

This is best described by the vector diagram.
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Figure 12.3: Vector diagram.

12.4.1 Measurement are Projections

Measure L̂z → project onto ẑ.

Measure L̂x → project onto x̂.

Each measurement yields an eigenvalue and the state is changed to the corresponding

eigenstate. So if one starts with |l = 2,m = ±2〉 ≡ |2, 2〉.

• Then measuring of L̂z yields 2~, the state remains the same (eigenstate, sta-

tionary). It Will not be affected by the projection. This is the same regardless

of quantum or classical.

• How about measuring L̂x? Since
[
L̂z, L̂x

]
6= 0, the projection could be any-

thing between −
√

6− 22~ and
√

6− 22~

Comparison:

• Classical: A contineous range and values, the state remains at |2, 2〉 after

measurement (no matter it is L̂x, L̂y or L̂z).
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• Quantum: Only could yield −2~,−~, 0, ~, 2~. The state is changed to the

correponding eigenstate of L̂x after measurement. (Only being unchanged to

the measurement of L̂z.)
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