Lecture 14

Hydrogen-like atom-I1

Study Goal of This Lecture

e Energy levels

o Atomic orbitals

14.1 Recall

Recall for hydrogen-like atoms, the Hamiltonian is

. —h?, 0? 0? ok Ze?

The Schrodinger equation:
Hy = Ev,

can be solved in the spherical coordinates to yield
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The energy levels describe the spectrum of hydrogen here, we often rewrite F,, in a

few other constants:
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Make sure you under-
stand why R(r) depends

on n and [.



where ag is Bohr radius, it is the most probable distance of the electron from the

nucleus for the hydrogen 1s orbital,
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And FE), is the Hartree energy,
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Note that ag ~ 0.53A and one Hartree~ 27.2¢V,
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14.2 Hydrogen Atom Spectrum

In spectroscopy, we often use ”wavelength” or ”wavenumbers” to describe tran-

sitions. In this case,
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R= W ~
The real R slightly depends on the nuclear atomic number. The above equation
also defines the ionization energy, the energy required to take the electron in the
groundstate to n = oco.
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Figure 14.1: Hydrogen atom spectrum.

14.2.1 Atomic Orbital

Now we are ready to consider the eigenfunctions,

Y lmy, = Rnl(r)Ylml(H, ?). (14.12)
Eigenfunctions of the electron are: The s,p,d,f terminology
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Notice that the angular part wavefunction of p-orbital is complex. In chemistry, we

frequently use real-value spherical harmonic:

’(ppz = RQP X Y10(97 ¢)7
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Note that v,,,1,, are not eigenfunctions of L., but still eigenfunctions of L2 =

Eigenfunctions of H.



We can write down the 3s,3p,3d--- vice versa. If you are interested in know-
ing it, see the textbook. These are the "stable” states for a single eletron moving
around a positive charge and denotes Hydrogen-like ” atomic orbitals” = In quantum
mechanics, orbitals are defined as ”one-electron” wavefunction.

Note that these functions are normalized and orthogonal to each other, i.e.
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Therefore, the nomralization condition requires that

/ | Ryt (r) [*r2dr = 1, (14.15)
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the probability density is
P(r) = |Ru(r)|*r?. (14.16)

P(r) is called radial probability density functions, it is the probability density of
finding a electron at distance r from the nuclei. The factor 72 comes from the
surface.

It is impossible to directly visualize v, but we can gain a good understanding of

its functional form by plotting radial and angular functions seperately.

14.2.2 Radial distribution function

Now let’s gain a rough idea(qualitative) about the radial distribution function

First, the 1s function Ry (r) along the z-direction looks like:

It's important to distin-
guish the terms "wave-

function” and "orbital”!



cusp, discontinuous
(Due to coulomb
potential)

exponential
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Figure 14.2: Radial function R1 g

and for others:

density distribution

Figure 14.3: Radial distribution function of 1s, 2s and 2p .



Now we define the following terms:

Terms Name

Remark

Unim H-like atomic orbitals

|Vnim |2 One electron probability density

Ry (r) Radial function

r?R,;(r)?  Radial probability distribution function
s,p,d,--- Denoting [ =0,1,2,--- orbitals

Eigenstates of the Hamiltonian

No physical meaning

Used in chemistry

For more contents, see the slides!



