
Lecture 16

Variational Principle

Study Goal of This Lecture

• Variational principle

• Solving the ground state harmonic oscillator with variational principle

16.1 Approximated Methods

In many-electron atoms, two things must be dealt with:

• electron-electon repulsion: no exact solution, approximated methods are needed.

• Pauli exclusion principle: considering of spin eigenstate and statistics.

and the approximated methods in quantum mechanics are:

• Variation principle

• Perturbation theory

Exact treatments end here at Hydrogen-like atoms. For more complex systems,

no analytical exact solution exist. (Few other additional exactly solvable systems are

particle in a spherical box, δ-function potential, finite-depth well and Morse poten-

tail). In quantum mechanics, most useful approximated method are the variational

principle and the perturbation theory, which have different applications. In this lec-

ture, we briefly introduce the variational method, the perturbation thoery will be

1



the optional materials. (However, perturbation theory is extremely useful in QM!) A

more in-depth treatment of perturbation theory is out of the scope of this course since

it is usually more mathematically involved. Nevertheless, the idea of ”perturbation”

is essential in physical chemistry, so we put it in the optional materials.

16.2 Variational theorem

The variational method is based on the following variational theorem:

Theorem 16.2.1. Variation theorem

Given a system with a time-independent Hamiltonian Ĥ. If ψ is a well-behaved

wavefunction(trial wavefunction) of the system that satisfied the boundary conditions

of the problem, then ∫
ψ∗Ĥψdτ∫
ψ∗ψdτ

≥ E0 (16.1)

where E0 is the ground state energy of Ĥ,i.e. lowest eigenvalue of Ĥ.

Since variational theorem usually involved many integrals, so it is most conve-

nient to write down this theorem using Dirac’s bracket notation:

|ψ〉 :trial wavefunction (16.2)

〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

≥ E0. (16.3)

The denominator is normalization condition. The variational theorem allows us to

calculate an upper bound for the system’s ground state energy.

Proof of variational theorem.

Assume the true orthornormal eigenbasis of Ĥ is {|φn〉}:

Ĥ |φn〉 = En |φn〉 , (16.4)

then for an arbitrary |ψ〉, we can represent it as linear combination of {|φn〉}(superposition

principle)

|ψ〉 =
∑
n

Cn |φn〉 . (16.5)
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Therefore,

〈ψ|Ĥ|ψ〉 =
(∑

n

C∗n 〈φn|
)
Ĥ
(∑

m

C∗m |φm〉
)

=
∑
n,m

C∗nCm 〈φn|Ĥ|φm〉

=
∑
n,m

C∗nCmEm 〈φn|φm〉

=
∑
n,m

C∗nCmEmδnm

=
∑
n

|Cn|2En.

(16.6)

Similarly, 〈ψ|ψ〉 =
∑

n |Cn|2. Note that E0 is the ground state, by definition

E0 ≤ E1 ≤ E2 ≤ · · · ≤ En ≤ · · · , (16.7)

also, |Cn|2 ≥ 0, thus,

〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

=

∑
n |Cn|2En∑
n |Cn|2

≥
∑
|Cn|2E0∑
n |Cn|2

= E0. (16.8)

Example given in the textbook, i.e. use a quadratic function to evaluate the

ground state energy of a particle in a box, yields an upper bound. But, that is not

a true variational treatment. We will consider a real example below:

16.3 Example: Harmonic Oscillator

Let’s consider a harmonic oscillator, recall the Hamiltonian for harmonic oscil-

lator:

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 =

−~2

2m

d2

dx2
+

1

2
mω2x2. (16.9)

To demonstrate the variational methods, we guess a trial function: a gaussion

ψ(x) = e−αx
2
, (16.10)

α is the variational parameter and it is greater than zero. (Otherwise it would not

satisfy the boundary condition.)

We first calculate:∫ ∞
−∞

ψ∗ψdx =

∫ ∞
−∞

e−αx
2
e−αx

2
dx =

∫ ∞
−∞

e−2αx
2
dx =

√
π

2α
(16.11)
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and Note that∫∞
−∞ e

−2αx2dx =
√

2π
4α∫∞

−∞ x
2e−2αx

2
dx =

1
8

√
2π
α3

∫ ∞
−∞

ψ∗Ĥψdx =

∫ ∞
−∞

e−αx
2
Ĥe−αx

2
dx

=

∫ ∞
−∞

e−αx
2
[(−~2

2m

d2

dx2
+

1

2
mω2x2

)
e−αx

2
]
dx

=

∫ ∞
−∞

e−αx
2
[−~2

2m

(
− 2αeαx

2
+ 4α2x2e−αx

2
)

+
1

2
mω2x2e−αx

2
]
dx

=

∫ ∞
−∞

[α~2
m

e−2αx
2

+
(1

2
mω2 − 2α2~2

m

)
x2e−2aαx

2
]
dx

=
α~2

m

√
π

2α
+ (

1

2
mω2 − 2α2~2

m
)
1

8

√
2π

α3
.

(16.12)

So, now we define function f :

f =

∫
ψ∗Ĥψdx∫
ψ∗ψdx

=

α~2
m

√
π
2α + (12mω

2 − 2α2~2
m )18

√
2π
α3√

π
2α

=
α~2

m
+
(1

2
mω2 − 2α2~2

m

)
× 1

4α

=
α~2

2m
+
mω2

8α
.

(16.13)

In order to find the minimum of f , we differentiate it with respect to α

df

dα
= 0⇒ ~2

2m
− mω2

8α2
= 0. (16.14)

Finally, we obtain

α2 =
m2ω2

4~2
−→ α = ±mω

2~
. (16.15)

We find that the variational principle yield the exact ground state wavefunction for

the harmonic oscillator. This is not surprising since the ground state, as we know,

is an Gaussian.

A good choice of trial wavefunction form is essentail for the success of variational

method. Normally, it requires many combinations of function to obtain optimal

result.
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