
Lecture 17

Many-electron System I –

Helium Atom and Pauli

Exclusion Principle

Study Goal of This Lecture

• Helium atom - many electron wavefunctions

• Helium atom - variational ground state (screening)

• Eigenstates of a two-spin system

17.1 Helium Atom

Helium atom includes two electrons moving around a fixed nucleus with charge

Z = 2, we can write down the Hamiltonian as:

Ĥ = − ~2

2me
(∇2

1 +∇2
2)− 1

4πε0
(
Ze2

r1
+
Ze2

r2
− e2

r12
)

= − ~2

2me
∇2

1 −
1

4πε0

Ze2

r1︸ ︷︷ ︸
Ĥ1

−− ~2

2me
∇2

2 −
1

4πε0

Ze2

r2︸ ︷︷ ︸
Ĥ2

+
e2

4πε0r12︸ ︷︷ ︸
Ĥ12

= Ĥ1 + Ĥ2 + Ĥ12.

(17.1)
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If Ĥ12 = 0(or neglected) then the problem is exactly solved. Recall that for a total

system composes of independent sub-systems

ĤT = Ĥ1 + Ĥ2 + · · · , (17.2)

and we can firstly solve all

Ĥnφ
n
m = Enmφ

n
m, (17.3)

then the solution of ĤT is the product states

ψ =
∏
n

φn. (17.4)

If consider as many-electrons, i.e. Ĥn for the n-th electron. Then the product solu-

tion is a natural ”independent electron” solution. Even when the electron-electron

interactions are non-zero, we will see the independent electorn approximation is a

good starting point.

Let’s consider the Helium atom, we know:

Ĥ1φ1 = E1φ1,

Ĥ2φ2 = E2φ2,
(17.5)

and total E = E1 + E2. φ1, φ2 are Helium hydrogen-like atomic orbitals. We know

the two ground states (neglect spin for a moment.)

Ĥ1φ1s(1) = E1sφ1s(1),

Ĥ2φ1s(2) = E1sφ1s(2),
(17.6)

number 1 and 2 denotes electorn 1 and electron 2 respectively. Therefore, the two-

electron wave function

Ψ = φ1s(1)φ1s(2) = 1s(1)1s(2)︸ ︷︷ ︸
electron

configuration

. (17.7)

The abbreviation 1s(1)2s(2) denotes ”electron configuration”→many-electron wave-

function.

Ψ = Ψ(1, 2) = Ψ(r1, θ1, φ1, r2, θ2, φ2) = R10(r1)Y 0
0 (θ1, φ1)︸ ︷︷ ︸

1s(1)

·R10(r2)Y 0
0 (θ2, φ2)︸ ︷︷ ︸

1s(2)

.

(17.8)

In Dirac notation:

|Ψ〉 = |1s(1)1s(2)〉 ≡ |1s(1)〉 ⊗ |1s(2)〉 . (17.9)

2



17.1.1 The ground state energy at various levels of approximations

• Independent electron:

〈Ψ|Ĥ1 + Ĥ2|Ψ〉 = 2E1s(Z = 2) ' −2× 22 × 13.6 = −108.8eV (17.10)

• With electron repulsion:

〈Ψ| e2

4πε0r12
|Ψ〉 ' 34eV (17.11)

This integral is best evaluated using an expansion of 1
|r1−r2| in spherical har-

monics function, which we will do it in a practice problem. (This is actually

the first-order energy correction in the perturbation theory.)

With this correction, we obtain

E ' −108.8 + 34 = −74.8eV (17.12)

The exact result measured by adding the first two ionization energy of Helium

atom is −79.0eV . Therefore, the 〈Ψ|Ĥ|Ψ〉 result has error ' 5.3%, note that

the approximation value is larger than exact one. We can improve the result The energy is greater

than exact value satis-

fies the variational prin-

ciple.

by going to higher order in the perturbation theory or by using the variational

method.

17.2 Variational Principle for Helium Atom

Consider the variational principle, using a hydrogen-like 1s orbital with a differ-

ent “variational” charge: Note that this is not a

true valid wave function

since there is no spin!

Ψ(α) = φ1s(Z = α, 1)φ1s(Z = α, 2)

=
1

π

( α
a0

)3
e

−αr1
a0 e

−αr2
a0︸ ︷︷ ︸

H-like 1s orbital
with effective

nuclear charge α

. (17.13)

Variational integral: 〈
Ĥ
〉

=

∫
Ψ∗ĤΨdτ∫
Ψ∗Ψdτ

≥ Eexact. (17.14)

We find, minimal
〈
Ĥ
〉

by requiring
d〈Ĥ〉

dα = 0, notice that:

〈Ψ(α)|Ĥ12|Ψ(α)〉 =
5α

8

e2

4πε0a0
, (17.15)
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Ĥ1 =
−~2

2m
∇2

1 −
Ze2

4πε0r1
=
−~2

2m
∇2

1 −
αe2

4πε0r1︸ ︷︷ ︸
A

− (Z − α)e2

4πε0r1︸ ︷︷ ︸
B

, (17.16)

〈φ(α)|A|φ(α)〉 = −α
2

2

e2

4πε0a0
, (17.17)

〈φ(α)|B|φ(α)〉 = −(Z − α)e2

4πε0
×
∫ ∞
−∞

∫ π

0

∫ 2π

0
|φ1s(Z = α, 1)|2 1

r1
r2

1 sin θ1dr1dθ1dφ1

= −α(Z − α)
e2

4πε0
.

(17.18)

Therefore,

〈Ψ(α)|Ĥ|Ψ(α)〉 = 〈Ψ(α)|Ĥ1|Ψ(α)〉+ 〈Ψ(α)|Ĥ2|Ψ(α)〉+ 〈Ψ(α)|Ĥ12|Ψ(α)〉

= 2 〈Ψ(α)|Ĥ1|Ψ(α)〉+ 〈Ψ(α)|Ĥ12|Ψ(α)〉

=
e2

4πε0

[
− α2 − 2α(Z − α) +

5α

8

]
=
[
α2 − 2Zα+

5α

8

] e2

4πε0
(Z = 2)

=
[
α2 − 27

8
α
] e2

4πε0
.

(17.19)

and then we know the minimal occurs at d
dα

(
α2 − 27

8 α
)

= 0⇒ αminimal = 27
16 . This

yield Emin = −77.5eV , the error reduces to about 1.9%. Physically, this corresponds

to a ”screening” of atomic charges by additional electron. The more sophisticated

trial wave function, including p, d-like contribution can be used to further improve

the results.

Let’s slow down and summarize what we learn here:

1. Products of single-electron wavefunctions provide good zeroth-order approxi-

mations to the many-electron wavefunctions ⇒ electronic configurations.

2. The results can be further improved by using the variational method or per-

turbation theory.

Note that by using more general single-electron wave function, e.g. including

functions of the np, d, f -type, the variational results can be further improved. How-

ever, even with the most general single-electron wavefunctions(complete basis), the
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result still does not equal the exact ground state energy. Because the ”true” ground

state cannot be written as a product state. The product state form is already an

approximation. When using those approximation methods, we should notice that in

chemistry, the typical accuracy should below 1kJ/mol(' 0.05eV ).

17.3 Eigenstates of a two-spin system(two electrons)

So far, we have ignored the electron spins. Consider the spin states of the two

electrons(no spatial part, pure spin), there are four combinations

α(1)α(2), β(1)β(2), α(1)β(2), α(2)β(1). (17.20)

Now, the first two combinations are valid spin wavefunctions, but the last two are

not, because these two wavefunctions means that the two electrons can be identified

by its spin states.

In valid many-electron wavefunctions, the electron should be indistinguishable.

Therefore, valid spin wavefunctions are:

α(1)α(2), (17.21)

β(1)β(2), (17.22)

1√
2

[α(1)β(2) + α(2)β(1)], (17.23)

1√
2

[α(1)β(2)− α(2)β(1)]. (17.24)

The first three spin functions are symmetric, while the last one is antisymmetry.

• Symmetric: Remains the same with respect to electron interchange(exchange

their indexes).

• Antisymmetric: Changes sign with respect to electron interchange.

The properties can also be derived by considering the spin operators: define Ŝ1, Ŝ2

and Ŝz1, Ŝz2, then the total spin operator:

Ŝ = Ŝ1 + Ŝ2, (17.25)

Ŝz = Ŝz1 + Ŝz2, (17.26)
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Ŝ2 = Ŝ2
1 + Ŝ2

2 + 2Ŝ1Ŝ2

= Ŝ2
1 + Ŝ2

2 + 2Ŝz1Ŝz2 + Ŝ1+Ŝ2− + Ŝ1−Ŝ2+,
(17.27)

while α(γ), β(γ) are eigenfunctions of Ŝ2 and Ŝz, let’s check α(1)β(2):

Ŝzα(1)β(2) = (Ŝz1 + Ŝz2)α(1)β(2)

= [Ŝz1α(1)]β(2) + α(1)Ŝz2β(2)

=
~
2
α(1)β(2)− ~

2
α(1)β(2)

= 0 · α(1)β(2).

(17.28)

It is eigenstate of Ŝz too. So we find that all spin functions are eigenstate of

Ŝz, but, α(1)β(2) is not an eigenstate of Ŝ2 (Derivation is out side the scope of this

class.) All of all, let’s see the below table:

Spin functions Ŝ2 Ŝz

α(1)α(2) 2~2(S = 1) +1

1√
2
[α(1)β(2) + β(1)α(2)] 2~2(S = 1) 0

β(1)β(2) 2~2(S = 1) −1

1√
2
[α(1)β(2)− β(1)α(2)] 0(S = 0) 0

The first three spin functions in the tabel is called spin triplets, and the last

one is spin singlet. The linear combintaion is required for α(1)β(2) to make the

wavefunction the simultaneous eigenfunctions of total spin operator Ŝ2. This result

is the same of considering the indistinguishability of electrons.
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