Physical Chemistry II: Quantum Chemistry
Lecture 20: Introduction to Computational Quantum Chemistry

Yuan-Chung Cheng
yuanchung@ntu.edu.tw
5/14/2019
Tutorial Information

- https://ceiba.ntu.edu.tw/1063NCHUCompChem01

- Books:
Computational Chemistry Overview
Quantum Chemistry

The general theory of quantum mechanics is now complete... The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known – Paul Dirac, 1929.

Right: QM is the foundation of Chemistry
Wrong: Not so fast - complexities necessitate approximations

Nowadays we have powerful computers!!
The Nobel Prize in Chemistry 1998

John A. Pople

"for his development of computational methods in quantum chemistry"

Walter Kohn

"for his development of the density-functional theory"
The Nobel Prize in Chemistry 2013

2013 Nobel Chemistry Prize jointly to Martin Karplus, Michael Levitt and Arieh Warshel "for the development of multiscale models for complex chemical systems".

Martin Karplus
Michael Levitt
Arieh Warshel
Computational Chemistry Methods

- Molecular mechanics
- Semiempirical molecular orbital methods
- *Ab initio* molecular orbital methods
- Density functional method
- Quantum Monte Carlo method
- …

Yields Energy, Structure, and Properties
Molecular Mechanics

- Simplest type of calculation
 - Used when systems are very large and approaches that are more accurate become too costly (in time and memory)

- Does not use any quantum mechanics instead uses parameters derived from experimental or *ab initio* data
 - Uses information like bond stretching, bond bending, torsions, electrostatic interactions, van der Waals forces and hydrogen bonding to predict the energetics of a system
 - The energy associated with a certain type of bond is applied throughout the molecule. This leads to a great simplification of the equation

- It should be clarified that the energies obtained from molecular mechanics do not have any physical meaning, but instead describe the difference between varying conformations (type of isomer). Molecular mechanics can supply results in heat of formation if the zero of energy is taken into account.
Semiempirical

- Semiempirical methods use experimental data to parameterize equations.

- Like the *ab initio* methods, a Hamiltonian and wave function are used.
 - much of the equation is approximated or eliminated.

- Less accurate than *ab initio* methods but also much faster.

- The equations are parameterized to reproduce specific results, usually the geometry and heat of formation, but these methods can be used to find other data.

Courtesy of Shalayna Lair, University of Texas at El Paso
Ab Initio Methods

“Ab initio” – Latin, means “from the beginning” or “from first principles.”

No experimental input is used and calculations are based on fundamental laws of physics.

Various levels of *ab initio* calculations (jargons):

- Hartree-Fock Self-Consistent Field (HF-SCF)
 - simplest *ab initio* MO calculation
 - electron correlation is not taken into consideration.
- Configuration Interaction (CI)
- Coupled-Cluster (CC)
- The Møller-Plesset Perturbation Theory (MP)
- Density Functional Theory (DFT)

Include electron correlation

Courtesy of Shalayna Lair, University of Texas at El Paso
Hartree-Fock SCF Review

Slides from Hai Lin
Schrödinger Equation

\[H \Psi = E \Psi \]

\[
H = T_n + T_e + V_{nn} + V_{ee} + V_{ne}
\]

\[
T_n = -\sum_{a}^{N_n} \frac{1}{2M_a} \nabla^2_a
\]
Kinetic energy of nuclei

\[
T_e = -\sum_{i}^{N_e} \frac{1}{2m_e} \nabla^2_i
\]
Kinetic energy of electrons

\[
V_{nn} = \sum_{a}^{N_n} \sum_{b>a}^{N_n} \frac{Z_a Z_b}{r_{ab}}
\]
Coulombic energy between nuclei

\[
V_{ee} = \sum_{i}^{N_e} \sum_{i>j}^{N_e} \frac{1}{r_{ij}}
\]
Coulombic energy between electrons

\[
V_{ne} = \sum_{a}^{N_n} \sum_{i}^{N_e} \frac{Z_a}{r_{ai}}
\]
Coulombic energy between nuclei and electrons

The “electronic structure problem”
To solve the Schrödinger equation approximately, assumptions are made to simplify the equation:

- **Born-Oppenheimer approximation** allows separate treatment of nuclei and electrons. \((m_a >> m_e)\)

- **Hartree-Fock independent electron approximation** allows each electron to be considered as being affected by the sum (field) of all other electrons.

- **LCAO Approximation** represents molecular orbitals as linear combinations of atomic orbitals (basis functions).
Born-Oppenheimer Approximation

- Nuclei are much heavier than electrons \((m_a / m_e > 1836)\) and move much slower.
- Effectively, electrons adjust themselves instantaneously to nuclear configurations.
- Electron and nuclear motions are uncoupled, thus the energies of the two are separable.

1. For a given nuclear configuration, one calculates electronic energy.
2. As nuclei move continuously, the points of electronic energy joint to form a potential energy surface on which nuclei move.

Elec. Schrodinger equation: \(H(R)\Psi(R) = E(R)\Psi(R)\)
Basic Quantum Mechanics

Schrodinger equation: \(H\Psi = E\Psi \)

Variational principle:
\[
E = \langle \Psi | \hat{H} | \Psi \rangle \geq E_{\text{exact}}
\]

\[
\Psi = \Psi(x_1, x_2, \ldots, x_N)
\]

The N-electron wave function is a function with 3N dimensions, this is too complicated to even “think about” practically for systems with > 3 electrons → must simplify the functional form of the wave function.
Many-electron Wave function

Hartree product: All electrons are independent, each in its own orbital.

\[\psi^{HP}(x_1, x_2, \ldots, x_N) = f_1(x_1) f_2(x_2) \cdots f_N(x_N) \]

Pauli principle: Two electrons can not have all quantum number equal.

This requires that the total (many-electron) wave function is anti-symmetric whenever one exchanges two electrons’ coordinates.

\[\psi(x_1, x_2, \ldots, x_N) = -\psi(x_2, x_1, \ldots, x_N) \]

Slater determinant satisfies the Pauli exclusion principle.

\[\psi(x_1, x_2, \ldots x_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} f_1(x_1) & f_2(x_1) & \cdots & f_N(x_1) \\ f_1(x_2) & f_2(x_2) & \cdots & f_N(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ f_1(x_N) & f_2(x_N) & \cdots & f_N(x_N) \end{vmatrix} \]

Courtesy of Hai Lin
Many-electron Wave function (2)

Example: A two-electron system.

Hartree product: Both electrons are independent.

\[\psi^{HP}(\mathbf{x}_1, \mathbf{x}_2) = f_1(\mathbf{x}_1) f_2(\mathbf{x}_2) \]

Slater determinant satisfies the Pauli principle.

\[\psi(\mathbf{x}_1, \mathbf{x}_2) = \frac{1}{\sqrt{2}} \begin{vmatrix} f_1(\mathbf{x}_1) & f_2(\mathbf{x}_1) \\ f_1(\mathbf{x}_2) & f_2(\mathbf{x}_2) \end{vmatrix} \]

\[\psi(\mathbf{x}_1, \mathbf{x}_2) = \left(\frac{1}{2}\right)^{1/2} \left[f_1(\mathbf{x}_1) f_2(\mathbf{x}_2) - f_2(\mathbf{x}_1) f_1(\mathbf{x}_2) \right] \]

\[\psi(\mathbf{x}_2, \mathbf{x}_1) = \left(\frac{1}{2}\right)^{1/2} \left[f_1(\mathbf{x}_2) f_2(\mathbf{x}_1) - f_2(\mathbf{x}_2) f_1(\mathbf{x}_1) \right] = -\psi(\mathbf{x}_1, \mathbf{x}_2) \]

The total (many-electron) wavefunction is anti-symmetric when one exchanges two electrons’ coordinates \(\mathbf{x}_1 \) and \(\mathbf{x}_2 \).
Hartree-Fock Approximation

• Assume the wave function is a single Slater determinant.
• Each electron “feels” all other electrons as a whole (field of charge), i.e., an electron moves in a mean-field generated by all other electrons. \(\rightarrow \) variational ground state composed of “optimal” single electron wavefunctions (orbitals)

• A Fock operator \(F \) is introduced for a given electron in the \(i \)-th orbital:

\[
F_i \phi_i = \varepsilon_i \phi_i
\]

\[
F_i = \text{kinetic energy term of the given electron} \quad + \quad \text{potential energy term due to fixed nuclei}
\]

\[
\text{averaged potential energy term due to the other electrons}
\]

\(\phi_i \) is the \(i \)-th molecular orbital, and \(\varepsilon_i \) is the corresponding orbital energy.

Note: The total energy is NOT the sum of orbital energies. If you sum them up, you count the electron-electron interactions twice.
The Fock Operator

\[F_i = h_i + \sum_{j}^{N} (J_j - K_j) \]

- Core-Hamiltonian operator: Kinetic energy term and nuclear attraction for the given electron.
- Coulomb operator: Coulombic energy term for the given electron due to another electron.
- Exchange operator: Exchange energy due to another electron (A pure quantum mechanical term due to the Pauli principle, no classical interpretation).

Courtesy of Hai Lin
Self-consistency

• Each electron “feels” all the other electrons as a whole (field of charge), i.e., an electron moves in a mean-field generated by all the other electrons.

• The Fock equation for an electron in the i-th orbital contains information of all the other electrons (in an averaged fashion), i.e., the Fock equations for all electrons are coupled with each other.

• All equations must be solved together (iteratively until self-consistency is obtained).
 — Self-consistent field (SCF) method.

Courtesy of Hai Lin
Molecular Orbital & Slater Determinant

occupied orbitals

virtual orbitals

Single-electron wavefunction (orbital!!):
\[\chi_i(x_1) : \text{spin orbital} \]
\[x_1 : \text{electron variable} \]

N-electron wavefunction: Slater determinants

Given a basis, Hartree-Fock theory provides a variational groundstate & molecular orbitals within the single determinant approximation \(\Rightarrow \) mean-field, no electron correlations

\[\Psi(x_1,\ldots,x_N) = (N!)^{1/2} \begin{vmatrix} \chi_i(x_1) & \chi_j(x_1) & \cdots & \chi_k(x_1) \\ \chi_i(x_2) & \chi_j(x_2) & \cdots & \chi_k(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_i(x_N) & \chi_j(x_N) & \cdots & \chi_k(x_N) \end{vmatrix} \]
Molecular Orbital & Slater Determinant

Single-electron wavefunction (orbital!!):
\[\chi_i(x_1) : \text{spin orbital} \]
\[x_1 : \text{electron variable} \]

N-electron wavefunction: Slater determinants
\[
\Psi(x_1,\ldots,x_N) = (N!)^{1/2} \begin{vmatrix}
\chi_i(x_1) & \chi_j(x_1) & \cdots & \chi_k(x_1) \\
\chi_i(x_2) & \chi_j(x_2) & \cdots & \chi_k(x_2) \\
\vdots & \vdots & \ddots & \vdots \\
\chi_i(x_N) & \chi_j(x_N) & \cdots & \chi_k(x_N)
\end{vmatrix}
\]

Electron configuration: a many-electron wave function constructed from a single Slater determinant
Molecular Orbital & Slater Determinant

Single-electron wavefunction (orbital!!):

\[\chi_i(x_1) : \text{spin orbital} \]

\[x_1 : \text{electron variable} \]

N-electron wavefunction: Slater determinants

\[\Psi(x_1, \ldots, x_N) = (N!)^{1/2} \begin{vmatrix} \chi_i(x_1) & \chi_j(x_1) & \cdots & \chi_k(x_1) \\ \chi_i(x_2) & \chi_j(x_2) & \cdots & \chi_k(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_i(x_N) & \chi_j(x_N) & \cdots & \chi_k(x_N) \end{vmatrix} \]

\[\chi_i(x_1) \text{ written as linear combination of atomic orbitals} \rightarrow \text{basis functions!} \]
LCAO \rightarrow Basis Functions

- Use a form that describes hydrogenic orbitals well
 - Slater functions (STO): physical, but difficult to calculate two-electron integrals
 - Gaussians (GTO): analytical two-electron integrals, but wrong behavior at nucleus and decays too fast with r

$$
\phi_{1s}(\vec{r}; \zeta_1) = \sqrt{\frac{\zeta_1^3}{\pi}} \exp(-\zeta_1 \vec{r}) \quad g_s(\vec{r}; \alpha) = \left(\frac{2\alpha}{\pi}\right)^{3/4} \exp(-\alpha \vec{r}^2)
$$

Slater function \quad Gaussian
Gaussian Basis Functions

GTOs have many advantages, most importantly, product of two Gaussians remains a Gaussian – analytical integrals

\[e^{-a_m r_m^2} e^{-a_n r_n^2} = e^{\frac{-a_m a_n}{a_m + a_n} r_{mn}^2} e^{-a c^2} \]
Basis Functions

Hydrogen-like atomic orbitals
Ab initio Jargons: Basis Set

- STO-nG: use n Gaussians to approach a Slater-type orbital
- Many basis sets with different sizes and characteristics: STO-nG, 3-21G, 4-31G, 6-31G*, 6-311G**, cc-pVDZ, cc-pVTZ, aug-cc-pVDZ…
- Choose wisely according to the problem at hand
Basis Set Size Effects

HF orbital energies of N₂

HF occupied and virtual orbital energies of H₂O
Ab initio Jargons: Closed vs. Open Shell

Closed shell
Opposite-spin electrons are all paired up!

Open shell
There remain unpaired electron spins
Ab initio Jargons: Restricted vs. Unrestricted

Restricted Hartree-Fock (RHF)
- \(\alpha \)- and \(\beta \)-spin orbitals have common spatial part

Unrestricted Hartree-Fock (UHF)
- \(\alpha \)- and \(\beta \)-spin orbitals can have different spatial parts
- Open shell & unrestricted important for bond breaking events!
What can be calculated?

From Prof. Dr. Frank Neese, http://www.thch.uni-bonn.de/tc
Koopmans’ Theorem

For example, HF MO energies give the ionization potential and electron affinity:

\[N \rightarrow N-1 \]

\[E=0 \]

Ionization potential

Usually accurate

occupied orbitals

\[N \rightarrow N+1 \]

\[E=0 \]

virtual orbitals

Usually quite bad

electron affinity
Equilibrium Structures

<table>
<thead>
<tr>
<th>System</th>
<th>X–H bond length</th>
<th>H–X–H bond angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory</td>
<td>Experiment</td>
</tr>
<tr>
<td>H₂</td>
<td>0.730</td>
<td>0.742</td>
</tr>
<tr>
<td>CH₃</td>
<td>1.072</td>
<td>1.079</td>
</tr>
<tr>
<td>CH₄</td>
<td>1.082</td>
<td>1.085</td>
</tr>
<tr>
<td>NH₂</td>
<td>1.015</td>
<td>1.024</td>
</tr>
<tr>
<td>NH₃</td>
<td>0.991</td>
<td>1.012</td>
</tr>
<tr>
<td>OH</td>
<td>0.967</td>
<td>0.971</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.948</td>
<td>0.957</td>
</tr>
<tr>
<td>HF</td>
<td>0.921</td>
<td>0.917</td>
</tr>
</tbody>
</table>

Lengths in Angstroms and angles in degrees for small molecules (from Daudel et al., 1983).

Calculated by “geometry optimization”
Vibrational Frequencies

<table>
<thead>
<tr>
<th>System</th>
<th>Theory</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>4644</td>
<td>4405</td>
</tr>
<tr>
<td>CH₃</td>
<td>3321</td>
<td>3184</td>
</tr>
<tr>
<td></td>
<td>3125</td>
<td>3002</td>
</tr>
<tr>
<td></td>
<td>1470</td>
<td>1383</td>
</tr>
<tr>
<td></td>
<td>776</td>
<td>580</td>
</tr>
<tr>
<td>CH₄</td>
<td>3372</td>
<td>3019</td>
</tr>
<tr>
<td></td>
<td>3226</td>
<td>2917</td>
</tr>
<tr>
<td></td>
<td>1718</td>
<td>1534</td>
</tr>
<tr>
<td></td>
<td>1533</td>
<td>1306</td>
</tr>
<tr>
<td>NH₂</td>
<td>3676</td>
<td>3220</td>
</tr>
<tr>
<td></td>
<td>3554</td>
<td>3173</td>
</tr>
<tr>
<td></td>
<td>1651</td>
<td>1499</td>
</tr>
<tr>
<td>NH₃</td>
<td>3985</td>
<td>3444</td>
</tr>
<tr>
<td></td>
<td>3781</td>
<td>3336</td>
</tr>
<tr>
<td></td>
<td>1814</td>
<td>1627</td>
</tr>
<tr>
<td></td>
<td>597</td>
<td>950</td>
</tr>
<tr>
<td>OH</td>
<td>3955</td>
<td>3735</td>
</tr>
<tr>
<td>H₂O</td>
<td>4143</td>
<td>3756</td>
</tr>
<tr>
<td></td>
<td>3987</td>
<td>3657</td>
</tr>
<tr>
<td></td>
<td>1678</td>
<td>1595</td>
</tr>
<tr>
<td>HF</td>
<td>4150</td>
<td>4138</td>
</tr>
</tbody>
</table>

The frequencies with H-F are overestimated.

Vibrational frequencies for small molecules in cm⁻¹ (from [Daudel et al., 1983](#)).

HF-SCF with a large basis set.
Electron Densities

\[\rho(\vec{r}) = \sum_{i=1}^{N} |\phi_i(\vec{r})|^2 \]

- The electron densities computed are structure-less. They resemble the densities of superposed atoms.
- The chemical bonds are hardly visible.

From R. F.W. Bader
Limitations of HF-SCF

- The Hartree-Fock SCF method is limited by the single Slater determinant approximation.
- HF-SCF calculation does not include the effects of electron correlation.

\[E_{corr} = E_{exact} - E_{HF} \]

\(E_{corr} \): correlation energy
Advanced QC: Electron Correlation

- Hartree-Fock is a mean field theory
- As a result, for two electrons
 \[P(r_1, r_2) = P(r_1)P(r_2) \]

Figure 3. The interelectronic cusp

- Overestimate ionic states at long distances and the probability to find two electrons close together

Peter Knowles

Electron Correlation Methods

- Electron correlations can be accounted for by considering a combination of Slater determinants – post-HF
 - Configuration Interactions (CI)
 - Coupled-Cluster (CC)
 - Møller-Plesset Perturbation Theory (MP)
 - Multi-Configuration Self-Consistent Field (MC-SCF)
 - Density Functional Theory (DFT)
Basics of Density Functional Theory
Brief History of DFT

- 1926: Old DFT -- Thomas-Fermi theory and extensions.
- 50’s-60’s: Slater and co-workers develop Xα as crude KS-LDA.
- 1965: Modern DFT begins with Kohn-Sham equations. By introducing orbitals, get 99% of the kinetic energy right, get accurate $n(r)$, and only need to approximate a small contribution, $E_{XC}[n]$.
- 1965: KS also suggested local density approximation (LDA) and gradient expansion approximation.
- 1993: More modern functionals (GGA’s and hybrids) shown to be usefully accurate for thermochemistry
- 1995-: TDDFT & hybrid DFT methods
- 1998: Kohn and Pople win Nobel prize in chemistry
- 2000-: DFT with dispersion/long-range corrected DFT
- 2010: DFT in materials science, geology, soil science, astrophysics, protein folding,...
Density Functional Theory for Pedestrians

Electron density function (much simpler object than wave function):
\[\rho(\vec{r}_1) = \int \Psi^*(\vec{r}_1, \vec{r}_2 \ldots \vec{r}_N, \sigma_1, \sigma_2 \ldots \sigma_N) \cdot \Psi(\vec{r}_1, \vec{r}_2 \ldots \vec{r}_N, \sigma_1, \sigma_2 \ldots \sigma_N) d^3r_2 d^3r_3 \ldots d^3r_N d\sigma_1 d\sigma_2 \ldots d\sigma_N \]

Hohenberg-Kohn Theorem (1964)

1. \(V_{ext}(\vec{r}) = V_{ext}[\rho(\vec{r})] \)

\[\rho_0 \Rightarrow \{N, Z_A, R_A\} \Rightarrow \hat{H} \Rightarrow \Psi_0 \Rightarrow E_0 \text{ (and other properties)} \]

Therefore, instead of \(\Psi \) dependent on 4N coordinates we would need just \(\rho_0 \) dependent on just 3 coordinates

2. The variational principle for DFT

\[E[\rho] \geq E[\rho_0] \]

\[E[\rho] = T_k[\rho] + E_{Ne}[\rho] + E_{ee}[\rho] \text{ or} \]

\[E[\rho] = T_k[\rho] + E_{Ne}[\rho] + J[\rho] + E_{xc}[\rho] \]

If we would know how to express each of those four terms

\[J[\rho] = \frac{1}{2} \iint \frac{\rho(\vec{r}_1)\rho(\vec{r}_2)}{r_{12}} d\vec{r}_1 d\vec{r}_2; \quad E_{Ne}[\rho] = -\sum_{m=1}^M Z_m \int \frac{\rho(\vec{r})}{|\vec{r} - \vec{R}_m|} d\vec{r} \]
Density Functional Theory for Pedestrians

Kohn-Sham formalism \Rightarrow represent $\rho(r)$ using a fictitious non-interacting system, i.e. a single Slater determinant. This resolves the problem with the kinetic energy term (Kohn-Sham orbitals):

$$T_k = -\frac{1}{2} \sum_{i=1}^{N} \int \varphi_i^*(\vec{r}) \nabla^2 \varphi_i(\vec{r}) d\vec{r}$$

$$\rho(\vec{r}) = \sum_{i=1}^{N} |\varphi_i(\vec{r})|^2$$

The big unknown left is the exchange-correlation functional

$$E_{xc}[\rho] = E_x[\rho] + E_c[\rho]$$

(X: exchange, C: correlation)

We know exact E_{xc} exists but nobody knows its functional form \Rightarrow approximations!!

The Hartree-Fock case:

$$E_{x}^{\text{HF}} = -\frac{1}{2} \sum_{i,j} \int \varphi_i(\vec{r}_1) \varphi_j(\vec{r}_1) \varphi_i(\vec{r}_2) \varphi_j(\vec{r}_2) \frac{1}{r_{12}} d\vec{r}_1 d\vec{r}_2; \quad E_c[\rho] = 0$$
Approximations for E_{xc} (Jacob’s ladder)

$$E_{xc} = \int \epsilon_{xc} (r) \, d^3 r$$

1. Local density approximation (LDA): $\epsilon_{xc} = f (\rho)$

2. Generalized gradient approximation (GGA): $\epsilon_{xc} = f (\rho, \nabla \rho)$

3. Meta-GGA: $\epsilon_{xc} = f (\rho, \nabla \rho, \nabla^2 \rho, t), \quad t = \frac{1}{2} \sum_i |\nabla \psi_i|^2$

4. The use of occupied orbitals (e.g., Hartree-Fock)

5. The use of unoccupied orbitals (e.g., RPA)
- **Local density approximation (LDA)**
 - Uses only \(n(r) \) at a point,

\[
E_{XC}^{LDA}[n] = \int d^3 r \ e_{XC}^{\text{unif}}(n(r))
\]

- **Generalized gradient approx (GGA)**
 - Uses both \(n(r) \) and \(|\nabla n(r)|\)

\[
E_{XC}^{GGA}[n] = \int d^3 r \ e_{XC}(n(r), |\nabla n|)
\]
 - Examples are PBE and BLYP

- **Hybrid:**

\[
E_{XC}^{\text{hyb}}[n] = a(E_x - E_x^{GGA}) + E_{XC}^{GGA}[n]
\]
 - Mixes some fraction of HF, \(a \) usually about 25%
 - Examples are B3LYP and PBE0
Electron Correlations

- Dynamical correlation (captured by DFT): interactions between energetically separated configurations
- Static correlation (not in DFT): mixing of near-degenerate configurations → multiconfigurational character is necessary
Mix GGA with Hartree-Fock exchange.

Kohn-Sham theory (1965) – equation for orbitals:

\[
\left(T + V_{ne} + V_{ee} + \frac{\partial F_x}{\partial \rho} + \frac{\partial F_c}{\partial \rho} \right) \varphi_i = \varepsilon_i \varphi_i
\]

Compare Hartree-Fock theory (1930):

\[
\left(T + V_{ne} + V_{ee} + V_{HF}^x \right) \varphi_i = \varepsilon_i \varphi_i
\]

Advantages: Attractive HF exchange cancels self-interaction in \(V_{ee} \)

Hybrid DFT (Becke 1993):

\[
\left(T + V_{ne} + V_{ee} + \frac{X}{100} V_{HF}^x + \frac{X}{100} \frac{\partial F_x}{\partial \rho} + \frac{\partial F_c}{\partial \rho} \right) \varphi_i = \varepsilon_i \varphi_i
\]

(39,000+ citations in March 2013)
<table>
<thead>
<tr>
<th>Method</th>
<th>Bond energies</th>
<th>Barrier heights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hartree-Fock theory</td>
<td>31</td>
<td>9</td>
</tr>
<tr>
<td>Local spin-density approximation</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>Correct thru 2nd order: SOGGA</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>GGA: BLYP (1988)</td>
<td>1.5</td>
<td>8</td>
</tr>
<tr>
<td>Hybrid: B3LYP (1993)</td>
<td>0.9</td>
<td>4</td>
</tr>
</tbody>
</table>

Becke–3 parameter–Lee-Yang-Parr

“chemical accuracy” for main-group bond energies, bond lengths, ...

Calculations on a set of main-group molecules.
B3LYP is enormously popular.
Limitations of the current Exchange and Correlation functionals

> Ground state DFT functionals

- Long history on ground state functionals
 LDA/GGA/Meta-GGA/Hybrid functional (with exact exchange)

- but still many problems to solve:
 → long-range asymptotic (1/r)
 → biradical states
 → self-interaction correction (SIC)
 → non-locality/exact exchange

• The original DFT formulation is only for the ground state → How to treat excited states?
The Jacob’s Ladder

- Hartree World
- LDA
- GGA
- Meta-GGA
- EXX with correlation
- EXX with partial exact correlation
- Chemical Accuracy: 1 kcal/mol
- RPA+
- B3LYP, HSE03
- TPSS
- PBE

\[\psi_i(r) \text{(occupied)} \]
\[\psi_i(r) \text{(empty)} \]
\[\nabla^2 n(r), \tau(r) \]
\[\nabla n(r) \]
\[n(r) \]
- RPA: 5th: ? “advanced”
- PBE0: 4th: hybrids
- TPSS: 3rd: meta-GGA
- PBE: 2nd: GGA
- LDA: 1st: LDA
Popular combinations of $E_x[\rho]$ and $E_c[\rho]$

- SVWN=LSDA
- SVWN5
- BLYP

Hybrid functionals

- B3LYP

$$E_{xc}^{\text{hybr}} = a_0 E_x^{\text{HF}} + (1 - a_0) E_x^{\text{LDA}} + a_x \Delta E_x^{\text{B88}} + E_c^{\text{LDA}} + a_c \Delta E_c^{\text{GGA}}$$

$a_0 = 0.2; \ a_x = 0.72; \ a_c = 0.81$

- B3P86, B3PW91, B1B95 (1 parameter), B1LYP, MPW1PW91, B98, B971, B972, PBE1PBE etc.

- You can even construct your own. Gaussian provides such a functionality: $E_{xc} = P_2 E_x^{\text{HF}} + P_1 (P_4 E_x^{\text{Slater}} + P_3 \Delta E_x^{\text{non-local}}) + P_6 E_c^{\text{local}} + P_5 \Delta E_c^{\text{non-local}}$

IOP(3/76),IOP(3/77) and IOP(3/78) setup $P_1 - P_6$

B3LYP =

BLYP IOp(3/76=1000002000) IOp(3/77=0720008000) IOp(3/78=0810010000)

See: http://gaussian.com/dft/
DFT references

Applicability of DFT
A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions†

Lars Goerigkab and Stefan Grimme*a

Received 28th December 2010, Accepted 10th February 2011
DOI: 10.1039/c0cp02984j

Validation of electronic structure methods for isomerization reactions of large organic molecules

Sijie Luoa, Yan Zhaob and Donald G. Truhlar*a

Received 20th March 2011, Accepted 25th May 2011
DOI: 10.1039/c1cp20834a
PERFORMANCE: MOLECULAR GEOMETRIES

- **Main group compounds**

<table>
<thead>
<tr>
<th></th>
<th>HF</th>
<th>SVWN</th>
<th>BVWN</th>
<th>BLYP</th>
<th>MP2</th>
<th>QCISD</th>
<th>Expt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>R₀(H-H)</td>
<td>1.379</td>
<td>1.446</td>
<td>1.398</td>
<td>1.414</td>
<td>1.395</td>
<td>1.410</td>
</tr>
<tr>
<td>HF</td>
<td>R₀(H-F)</td>
<td>1.722</td>
<td>1.776</td>
<td>1.778</td>
<td>1.786</td>
<td>1.782</td>
<td>1.765</td>
</tr>
<tr>
<td>H₂O</td>
<td>R₀(O-H)</td>
<td>1.790</td>
<td>1.844</td>
<td>1.842</td>
<td>1.850</td>
<td>1.829</td>
<td>1.831</td>
</tr>
<tr>
<td>θ₀</td>
<td>H-O-H</td>
<td>105.5</td>
<td>103.6</td>
<td>102.9</td>
<td>102.7</td>
<td>104.0</td>
<td>104.0</td>
</tr>
<tr>
<td>NH₃</td>
<td>R₀(N-H)</td>
<td>1.891</td>
<td>1.938</td>
<td>1.937</td>
<td>1.944</td>
<td>1.920</td>
<td>1.925</td>
</tr>
<tr>
<td>θ₀</td>
<td>H-N-H</td>
<td>107.2</td>
<td>106.0</td>
<td>105.8</td>
<td>104.8</td>
<td>106.4</td>
<td>106.0</td>
</tr>
<tr>
<td>CH₄</td>
<td>R₀(C-H)</td>
<td>2.046</td>
<td>2.078</td>
<td>2.071</td>
<td>2.076</td>
<td>2.057</td>
<td>2.065</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(\bar{E}) R₀(44)</th>
<th>-0.010</th>
<th>0.014</th>
<th>0.018</th>
<th>0.020</th>
<th>0.010</th>
<th>0.012</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(</td>
<td>\bar{E}</td>
<td>) R₀(44)</td>
<td>0.020</td>
<td>0.021</td>
<td>0.018</td>
<td>0.020</td>
</tr>
</tbody>
</table>

6-31G* (Gill, 1993); 32 molecules; in Å and o

- **Rules of thumb**

1. LDA (HF) bond lengths slightly too long (short)
2. Gradient corrections and post-HF slightly better

Peter Saalfrank (Universität Potsdam)
PERFORMANCE: TRANSITION METALS

- Geometries: M(CO)$_6$

<table>
<thead>
<tr>
<th>method</th>
<th>HF</th>
<th>MP2/ECP</th>
<th>CCSD(T)</th>
<th>SVWN</th>
<th>BP86</th>
<th>B3LYP</th>
<th>exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr(CO)$_6$</td>
<td>1.970-2.010</td>
<td>1.862</td>
<td>1.939</td>
<td>1.865</td>
<td>1.910</td>
<td>1.921</td>
<td>1.918</td>
</tr>
<tr>
<td>Mn(CO)$_6$</td>
<td>–</td>
<td>2.031</td>
<td>–</td>
<td>2.035</td>
<td>2.077</td>
<td>2.068</td>
<td>2.063</td>
</tr>
<tr>
<td>W(CO)$_6$</td>
<td>–</td>
<td>2.047</td>
<td>–</td>
<td>2.060</td>
<td>2.116</td>
<td>2.078</td>
<td>2.058</td>
</tr>
</tbody>
</table>

M-C distance (in Å); extended basis sets, mostly at least of TZ quality; Koch/Holthausen (1999)

- Dissociation energies MH$^+$ → M+H$^+$; excitation energies M → M*

<table>
<thead>
<tr>
<th></th>
<th>SVWN</th>
<th>BP86</th>
<th>B3LYP</th>
<th>MCPF</th>
<th>PCI-80</th>
<th>exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAD diss. en. (kcal/mol)</td>
<td>12</td>
<td>8</td>
<td>4-5</td>
<td>6</td>
<td>2</td>
<td>±2</td>
</tr>
<tr>
<td>MAD exc. en. (eV)</td>
<td>0.75</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Rules of thumb

1. LDA (HF) bond lengths too short (long)
2. Gradient corrections and post-HF perform better
3. Errors generally larger than for main group compounds
4. Accurate low-spin / high-spin splittings very difficult (role of exact exchange)
PERFORMANCE: VIBRATIONAL FREQUENCIES

- **For some main group compounds**

<table>
<thead>
<tr>
<th></th>
<th>HF</th>
<th>SVWN</th>
<th>BVWN</th>
<th>BLYP</th>
<th>MP2</th>
<th>QCISD</th>
<th>Expt</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>4646</td>
<td>4207</td>
<td>4461</td>
<td>4373</td>
<td>4534</td>
<td>4367</td>
<td>4401</td>
</tr>
<tr>
<td>FH</td>
<td>4358</td>
<td>3912</td>
<td>3841</td>
<td>3810</td>
<td>4041</td>
<td>4020</td>
<td>4139</td>
</tr>
<tr>
<td>CO</td>
<td>2439</td>
<td>2169</td>
<td>2105</td>
<td>2105</td>
<td>2125</td>
<td>2176</td>
<td>2170</td>
</tr>
<tr>
<td>H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>4070</td>
<td>3657</td>
<td>3597</td>
<td>3568</td>
<td>3776</td>
<td>3751</td>
<td>3832</td>
</tr>
<tr>
<td>BI</td>
<td>1827</td>
<td>1646</td>
<td>1698</td>
<td>1682</td>
<td>1735</td>
<td>1745</td>
<td>1648</td>
</tr>
<tr>
<td>AS</td>
<td>4189</td>
<td>3789</td>
<td>3721</td>
<td>3690</td>
<td>3918</td>
<td>3878</td>
<td>3943</td>
</tr>
<tr>
<td>NH₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>3689</td>
<td>3372</td>
<td>3332</td>
<td>3305</td>
<td>3504</td>
<td>3457</td>
<td>3506</td>
</tr>
</tbody>
</table>

- **Rules of thumb**

1. LDA (HF) slightly too “soft” (“hard”)
2. Gradient-corrected DFT, QCISD perform well
3. Scaling factors (6-31G*): 0.895 (HF), 0.943 (MP2), 0.995 (BLYP), 0.9614 (B3LYP)

Harmonic frequencies; 6-31G; in cm⁻¹; 213 vibrations of 32 molecules (Gill, 1993)*
PERFORMANCE: POTENTIAL CURVES

- Chemical bond: Summary

- Van-der-Waals bond
 Ar_2, 6-311++G(3df,3dp)

1. HF too shallow, too steep
2. LDA too deep, too flat
3. GGA and post-HF perform better

1. HF and B3LYP fail, the former because lack of correlation, the latter because $\lim_{r \to \infty} v_c(r)$ wrong
2. Good basis sets needed
PERFORMANCE: NON-BONDING INTERACTIONS

- **Types**
 1. Hydrogen-Bonded systems
 2. Charge-Transfer systems
 3. Dipole-Interacting systems
 4. Weak Interactions

- **Systematic study (JCTC 1, 415 (2005))**
 - 44 DFT, 1 WFT (MP2), good basis sets
 - 4 data bases
 - W1 reference (CCSD(T), CBS)

- **Rules of thumb**
 1. MP2 \(\approx\) hyper-GGA > meta-GGA > GGA > LDA
 2. There is always a functional . . .
PERFORMANCE: REACTIONS

- An example: Diels-Alder reaction

<table>
<thead>
<tr>
<th></th>
<th>Exp.</th>
<th>G2</th>
<th>HF</th>
<th>SVWN</th>
<th>BLYP</th>
<th>B3LYP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔE_a (kcal/mol)</td>
<td>27±2</td>
<td>25</td>
<td>51</td>
<td>5</td>
<td>26</td>
<td>28</td>
</tr>
<tr>
<td>ΔE_r (kcal/mol)</td>
<td>-38</td>
<td>-38</td>
<td>-30</td>
<td>-59</td>
<td>-14</td>
<td>-29</td>
</tr>
</tbody>
</table>

HF and DFT with 6-311+G(d,p), zero-point corrected

- Rules of thumb

1. LDA (HF) activation energies much too small (much too high)
2. LDA (HF) overbinds (underbinds)
3. Gradient corrections and post-HF perform better
OTHER ISSUES AND SUMMARY

- Things not touched upon here
 1. Solids, in particular metals

 Why does the B3LYP hybrid functional fail for metals?

 Joachim Paier, Martijn Marsman, and Georg Kresse
 Faculty of Physics, Universität Wien and Center for Computational Materials Science, Sensengasse 8/12, A-1090 Wien, Austria
 (Received 4 April 2007; accepted 14 May 2007; published online 10 July 2007)

 2. Properties (electric, magnetic, ...)
 3. Static correlation: Multi-determinant effects, conical intersections and all that
 4. Computational effort: Clear advantage for DFT

- Conclusions
 1. About $\approx 90\%$ calculations done with DFT: Good price / performance relation
 2. DFT has replaced semiempirical methods in electronic structure theory
 3. There is always a functional ...
\[\hat{H}_e \Psi_{e,n}(r; R) = E_{e,n}(R) \Psi_{e,n}(r; R) \]

\[n = 0 \text{ (ground state), } n > 0 \text{ (excited states)} \]

Electronic structure

Wavefunction based

- Semi-empirical
 - HMO, EHT, CNDO, AM1,
- Ab initio
 - Hartree-Fock (HF)
 - Post-HF
 - CI, MPn, CASSCF,

Density based

- First principles
 - DFT
 - Kohn-Sham
 - Many-body corrections
 - GW
- Semi-empirical
 - EMT, EAM
 - LDA, GGA, B3LYP,
Conducting a Computational Project

- These questions should be answered
 - What do you want to know?
 - How accurate does the prediction need to be?
 - How much time can be devoted to the problem?
 - What approximations are being made?
- The answers to these questions will determine the type of calculation, method and basis set to be used
 ➔ Model Chemistry
- If good energy is the goal ➔ use extrapolation procedures to achieve `chemical accuracy’: G1/2/3, W1/2/3, PCI-80… models
- DFT is always a good start for chemical systems
Variety of Methods in Computational Chemistry

<table>
<thead>
<tr>
<th>Quality</th>
<th>Size dependence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ab initio MO Methods</td>
<td></td>
</tr>
<tr>
<td>- CCSD(T)</td>
<td>quantitative (1~2 kcal/mol) but expensive ~N^6</td>
</tr>
<tr>
<td>- MP2</td>
<td>semi-quantitative and doable ~N^4</td>
</tr>
<tr>
<td>- HF</td>
<td>qualitative ~N^{2-3}</td>
</tr>
<tr>
<td>Density Functional Theory</td>
<td></td>
</tr>
<tr>
<td>- DFT</td>
<td>semi-quantitative and cheap ~N^{2-3}</td>
</tr>
<tr>
<td>Semi-empirical MO Methods</td>
<td></td>
</tr>
<tr>
<td>- AM1, PM3, MNDO</td>
<td>semi-qualitative ~N^{2-3}</td>
</tr>
<tr>
<td>Molecular Mechanics Force Field</td>
<td></td>
</tr>
<tr>
<td>- MM3, Amber, Charmm</td>
<td>semi-qualitative (no bond-breaking) ~N^{1-2}</td>
</tr>
</tbody>
</table>
So far we have described theories that allow us to obtain the ground state energy of a molecular system --- at a fixed molecular geometry

How would this be useful??

We will run some calculations next time!!