Physical Chemistry II: Quantum Chemistry Lecture 20: Introduction to Computational Quantum Chemistry

> Yuan-Chung Cheng yuanchung@ntu.edu.tw 5/14/2019

Tutorial Information

https://ceiba.ntu.edu.tw/1063NCHUCompChem01

Books:

MODERN QUANTUM CHEMISTRY Introduction to Advanced Electronic Structure Theory

Attila Szabo and Neil S. Ostlund

Computational Chemistry Overview

Quantum Chemistry

Paul Dirac

The general theory of quantum mechanics is now complete... The underlying physical laws necessary for the mathematical theory of a large part of physics and **the whole of chemistry** are thus completely known – Paul Dirac, 1929.

Right: QM is the foundation of Chemistry Wrong: Not so fast - complexities necessitate approximations

Nowadays we have powerful computers!!

The Nobel Prize in Chemistry 1998

John A. Pople

"for his development of computational methods in quantum chemistry"

Walter Kohn

"for his development of the densityfunctional theory"

The Nobel Prize in Chemistry 2013

2013 Nobel Chemistry Prize jointly to Martin Karplus, Michael Levitt and Arieh Warshel "for the development of multiscale models for complex chemical systems".

Martin Karplus

Michael Levitt

Arieh Warshel

Computational Chemistry Methods

- Molecular mechanics
- Semiempirical molecular orbital methods
- Ab initio molecular orbital methods
- Density functional method
- Quantum Monte Carlo method

Yields Energy, Structure, and Properties

Molecular Mechanics

- Simplest type of calculation
 - Used when systems are very large and approaches that are more accurate become to costly (in time and memory)
- Does not use any quantum mechanics instead uses parameters derived from experimental or *ab initio* data
 - Uses information like bond stretching, bond bending, torsions, electrostatic interactions, van der Waals forces and hydrogen bonding to predict the energetics of a system
 - The energy associated with a certain type of bond is applied throughout the molecule. This leads to a great simplification of the equation
- It should be clarified that the energies obtained from molecular mechanics do not have any physical meaning, but instead describe the difference between varying conformations (type of isomer). Molecular mechanics can supply results in heat of formation if the zero of energy is taken into account.

Courtesy of Shalayna Lair, University of Texas at El Paso

Semiempirical

- Semiempirical methods use experimental data to parameterize equations
- Like the *ab initio* methods, a Hamiltonian and wave function are used
 - □ much of the equation is approximated or eliminated
- Less accurate than *ab initio* methods but also much faster
- The equations are parameterized to reproduce specific results, usually the geometry and heat of formation, but these methods can be used to find other data.

Courtesy of Shalayna Lair, University of Texas at El Paso

Ab Initio Methods

- "Ab initio" Latin, means "from the beginning" or "from first principles."
- No experimental input is used and calculations are based on fundamental laws of physics.
- Various levels of *ab initio* calculations (jargons):
 - Hartree-Fock Self-Consistent Field (HF-SCF)
 - simplest ab initio MO calculation
 - electron correlation is not taken into consideration.
 - Configuration Interaction (CI)
 - Coupled-Cluster (CC)
 - \square The Møller-Plesset Perturbation Theory (MP) ackslash
 - Density Functional Theory (DFT)

Include electron correlation

Courtesy of Shalayna Lair, University of Texas at El Paso

Courtesy of Donald G Truhlar

Hartree-Fock SCF Review

Slides from Hai Lin

Schrödinger Equation $\mathbf{H} = \mathbf{T}_{n} + \mathbf{T}_{e} + \mathbf{V}_{nn} + \mathbf{V}_{ee} + \mathbf{V}_{ne}$

$H\Psi = E\Psi$

$$\mathbf{T}_{n} = -\sum_{n=1}^{N_{n}} \frac{1}{2N_{n}} \nabla_{a}^{2}$$
 Kinetic

 $\sum_{a} -\frac{2}{2M_{a}} \sum_{a} \sqrt{2M_{a}}$ Kinetic energy of nuclei

 $\mathbf{T}_{e} = -\sum_{i}^{N_{e}} \frac{1}{2m} \nabla_{i}^{2}$ Kinetic energy of electrons

 $\mathbf{V}_{nn} = \sum_{n=1}^{N_n} \sum_{j=1}^{N_n} \frac{Z_a Z_b}{Z_a}$ Coulombic energy between nuclei

 $\mathbf{V}_{\text{ne}} = \sum_{a}^{N_{\text{n}}} \sum_{i}^{N_{\text{e}}} \frac{Z_{a}}{r_{ai}}$ Coulombic energy between nuclei and electrons

The "electronic structure problem"

Approximations

To solve the Schrödinger equation approximately, assumptions are made to simplify the equation:

- •Born-Oppenheimer approximation allows separate treatment of nuclei and electrons. $(m_a \gg m_e)$
- •Hartree-Fock independent electron approximation allows each electron to be considered as being affected by the sum (field) of all other electrons.
- •LCAO Approximation represents molecular orbitals as linear combinations of atomic orbitals (basis functions).

Born-Oppenheimer Approximation

- •Nuclei are much heavier than electrons ($m_a / m_e > 1836$) and move much slower.
- •Effectively, electrons adjust themselves instantaneously to nuclear configurations.
- •Electron and nuclear motions are uncoupled, thus the energies of the two are separable.

Elec. Schrodinger equation: $H(R)\Psi(R) = E(R)\Psi(R)$

Basic Quantum Mechanics

- Schrodinger equation: $H\Psi = E\Psi$
- Variational principle: $E = \langle \Psi | \hat{\mathbf{H}} | \Psi \rangle \geq E_{\text{exact}}$

$$\Psi = \Psi(x_1, x_2, \dots, x_N)$$

The N-electron wave function is a function with 3N dimensions, this is too complicated to even "think about" practically for systems with > 3 electrons \rightarrow must simplify the functional form of the wave function.

Many-electron Wave function

Hartree product: All electrons are independent, each in its own orbital.

$$\boldsymbol{\psi}^{HP}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) = f_1(\mathbf{x}_1) f_2(\mathbf{x}_2) \cdots f_N(\mathbf{x}_N)$$

Pauli principle: Two electrons can not have all quantum number equal.

This requires that the total (many-electron) wave function is anti-symmetric whenever one exchanges two electrons' coordinates.

$$\psi(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) = -\psi(\mathbf{x}_2, \mathbf{x}_1, \dots, \mathbf{x}_N)$$

e;

 e_N

Slater determinant satisfies the Pauli exclusion principle.

$$\psi(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} f_1(\mathbf{x}_1) & f_2(\mathbf{x}_1) & \cdots & f_N(\mathbf{x}_1) \\ f_1(\mathbf{x}_2) & f_2(\mathbf{x}_2) & \cdots & f_N(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ f_1(\mathbf{x}_N) & f_2(\mathbf{x}_N) & \cdots & f_N(\mathbf{x}_N) \end{vmatrix}$$

Many-electron Wave function (2)

Example: A two-electron system.

Hartree product: Both electrons are independent.

$$\boldsymbol{\psi}^{HP}(\mathbf{x}_1,\mathbf{x}_2) = f_1(\mathbf{x}_1)f_2(\mathbf{x}_2)$$

Slater determinant satisfies the Pauli principle.

$$\psi(\mathbf{x}_1, \mathbf{x}_2) = \frac{1}{\sqrt{2}} \begin{vmatrix} f_1(\mathbf{x}_1) & f_2(\mathbf{x}_1) \\ f_1(\mathbf{x}_2) & f_2(\mathbf{x}_2) \end{vmatrix}$$

$$\psi(\mathbf{x}_1, \mathbf{x}_2) = (1/2)^{1/2} \left[f_1(\mathbf{x}_1) f_2(\mathbf{x}_2) - f_2(\mathbf{x}_1) f_1(\mathbf{x}_2) \right]$$

 $\psi(\mathbf{x}_2, \mathbf{x}_1) = (1/2)^{1/2} \left[f_1(\mathbf{x}_2) f_2(\mathbf{x}_1) - f_2(\mathbf{x}_2) f_1(\mathbf{x}_1) \right] = -\psi(\mathbf{x}_1, \mathbf{x}_2)$

The total (many-electron) wavefunction is anti-symmetric when one exchanges two electrons' coordinates x_1 and x_2 .

Hartree-Fock Approximation

- •Assume the wave function is a single Slater determinant.
- Each electron "feels" all other electrons as a whole (field of charge), .i.e., an electron moves in a mean-field generated by all other electrons. → variational ground state composed of "optimal" single electron wavefunctions (orbitals)

$$\mathbf{F}_{i} \ \phi_{i} = \varepsilon_{i} \ \phi_{i}$$

$$\mathbf{F}_{i} = \begin{array}{c} \text{kinetic energy} \\ \text{term of the} \\ \text{given electron} \end{array} + \begin{array}{c} \text{potential energy} \\ \text{term due to fixed} \\ \text{nuclei} \end{array}$$

energy term due to the other electrons

 ϕ_i is the *i*-th molecular orbital, and \mathcal{E}_i is the corresponding orbital energy.

Note: The total energy is NOT the sum of orbital energies. If you sum them up, you count the electron-electron interactions twice.

classical interpretation)

Self-consistency

- •Each electron "feels" all the other electrons as a whole (field of charge), .i.e., an electron moves in a mean-field generated by all the other electrons.
- •The Fock equation for an electron in the *i*-th orbital contains information of all the other electrons (in an averaged fashion), i.e., the Fock equations for all electrons are coupled with each other.

All equations must be solved together (iteratively until self-consistency is obtained).
— Self-consistent field (SCF) method.

Molecular Orbital & Slater Determinant

Single-electron wavefunction (orbital!!):

 $\chi_i(\mathbf{x}_1)$: spin orbital

 x_1 : electron variable

virtual orbitals

N-electron wavefunction: Slater determinants

$$\Psi(\mathbf{x}_{1},...,\mathbf{x}_{N}) = (N!)^{1/2} \begin{vmatrix} \chi_{i}(\mathbf{x}_{1}) & \chi_{j}(\mathbf{x}_{1}) & \cdots & \chi_{k}(\mathbf{x}_{1}) \\ \chi_{i}(\mathbf{x}_{2}) & \chi_{j}(\mathbf{x}_{2}) & \cdots & \chi_{k}(\mathbf{x}_{N}) \\ \vdots & \vdots & \vdots \\ \chi_{i}(\mathbf{x}_{N}) & \chi_{j}(\mathbf{x}_{N}) & \cdots & \chi_{k}(\mathbf{x}_{N}) \end{vmatrix}$$

Given a basis, Hartree-Fock theory provides a variational groundstate & molecular orbitals within the single determinant approximation → mean-field, no electron correlations

Molecular Orbital & Slater Determinant

Single-electron wavefunction (orbital!!):

 $\chi_i(\mathbf{x}_1)$: spin orbital

x₁: electron variable

virtual orbitals

 $\Psi(\mathbf{x}_{1},...,\mathbf{x}_{N}) = (N!)^{1/2} \begin{vmatrix} \chi_{i}(\mathbf{x}_{1}) & \chi_{j}(\mathbf{x}_{1}) & \cdots & \chi_{k}(\mathbf{x}_{1}) \\ \chi_{i}(\mathbf{x}_{2}) & \chi_{j}(\mathbf{x}_{2}) & \cdots & \chi_{k}(\mathbf{x}_{N}) \\ \vdots & \vdots & & \vdots \\ \chi_{i}(\mathbf{x}_{N}) & \chi_{j}(\mathbf{x}_{N}) & \cdots & \chi_{k}(\mathbf{x}_{N}) \end{vmatrix}$

N-electron wavefunction: Slater determinants

Electron configuration: a many-electron wave function constructed from a single slater determinant

Molecular Orbital & Slater Determinant

Single-electron wavefunction (orbital!!):

 $\chi_i(\mathbf{x}_1)$: spin orbital

 x_1 : electron variable

virtual orbitals

$$\Psi(\mathbf{x}_{1},...,\mathbf{x}_{N}) = (N!)^{1/2} \begin{vmatrix} \chi_{i}(\mathbf{x}_{1}) & \chi_{j}(\mathbf{x}_{1}) & \cdots & \chi_{k}(\mathbf{x}_{1}) \\ \chi_{i}(\mathbf{x}_{2}) & \chi_{j}(\mathbf{x}_{2}) & \cdots & \chi_{k}(\mathbf{x}_{N}) \\ \vdots & \vdots & \vdots \\ \chi_{i}(\mathbf{x}_{N}) & \chi_{j}(\mathbf{x}_{N}) & \cdots & \chi_{k}(\mathbf{x}_{N}) \end{vmatrix}$$

N-electron wavefunction: Slater determinants

 $\chi_i(\mathbf{x}_1)$ written as linear combination of atomic orbitals \rightarrow basis functions!

LCAO → Basis Functions

- Use a form that describes hydrogenic orbitals well
 - Slater functions (STO): physical, but difficult to calculate two-electron integrals
 - Gaussians (GTO): analytical two-electron integrals, but wrong behavior at nucleus and decays too fast with r

$$\phi_{1s}(\vec{r};\zeta_1) = \sqrt{\frac{\zeta_1^3}{\pi}} \exp(-\zeta_1 \vec{r}) \qquad g_s(\vec{r};\alpha) = \left(\frac{2\alpha}{\pi}\right)^{3/4} \exp(-\alpha \vec{r}^2)$$

Slater function

Gaussian

Gaussian Basis Functions

 GTOs have many advantages, most importantly, product of two Gaussians remains a Gaussian – analytical integrals

$$e^{-a_m r_m^2} e^{-a_n r_n^2} = e^{-\frac{a_m a_n}{a_m + a_n} r_{mn}^2} e^{-a_n r_c^2}$$

Basis Functions

Hydroden-like atomic orbitals

Ab initio Jargons: Basis Set

- STO-nG: use n Gaussians to approach a Slater-type orbital
- Many basis sets with different sizes and characteristics: STO-nG, 3-21G, 4-31G, 6-31G*, 6-311G**, cc-pVDZ, cc-pVTZ, aug-cc-pVDZ...
- Choose wisely according to the problem at hand

Basis Set Size Effects

HF orbital energies of N₂

HF occupied and virtual orbital energies of H_2O

Ab initio Jargons: Closed vs. Open Shell

Closed shell Opposite-spin electrons are all paired up! **Open shell** There remain unpaired electron spins

Ab initio Jargons: Restricted vs. Unrestricted

Restricted Hartree-Fock (RHF)

 α – and β –spin orbitals have common spatial part

Unrestricted Hartree-Fock (UHF)

 α – and β –spin orbitals can have different spatial parts

Open shell & unrestricted important for bond breaking events!

What can be calculated?

From Prof. Dr. Frank Neese, http://www.thch.uni-bonn.de/tc

Koopmans' Theorem

For example, HF MO energies give the ionization potential and electron affinity:

Equilibrium Structures

System	X-H t	oond length	H-X-H bond angle					
	Theory	Experiment	Theory	Experiment				
H ₂	0.730	0.742						
CH_3	1.072	1.079	120.0	120.0				
CH₄	1.082	1.085	109.5	109.5				
NH ₂	1.015	1.024	108.6	103.4				
NH ₃	0.991	1.012	116.1	106.7				
OH	0.967	0.971						
H_2O	0,948	0.957	111.5	104.5				
HF	0.921	0.917						

Lengths in Angstroms and angles in degrees for small molecules (from <u>Daudel et al., 1983</u>).

Calculated by "geometry optimization"

Vibrational Frequencies

	System	Theory	Experiment
	$\overline{H_2}$	4644	4405
	CH ₃	3321	3184
		3125	3002
		1470	1383
		776	580
The frequencies with H-F are overestimated	CH_4	3372	3019
		3226	2917
		1718	1534
		1533	1306
The frequencies	NH_2	3676	3220
states 1.1.17	-	3554	3173
		1651	1499
are overestimated	NH_3	3985	3444
		3781	3336
		1814	1627
		597	950
	OH	3955	3735
	H_2O	4143	3756
		3987	3657
		1678	1595
	HF	4150	4138

Vibrational frequencies for small molecules in cm⁻¹ (from <u>Daudel et al., 1983</u>).

HF-SCF with a large basis set.

"vibrational/normal mode analysis"

Electron Densities

$$\rho(\vec{r}) = \sum_{i=1}^{N} |\phi_i(\vec{r})|^2$$

- The electron densities computed are structure-less. They resemble the densities of superposed atoms.
- > The chemical bonds are hardly visible.

From <u>R. F.W. Bader</u>

Limitations of HF-SCF

- The Hartree-Fock SCF method is limited by the single Slater determinant approximation
- HF-SCF calculation does not include the effects of electron correlation

$$E_{corr} = E_{exact} - E_{HF}$$

E_{corr}: correlation energy

Advanced QC: Electron Correlation

 Hartree-Fock is a mean field theory

 Overestimate ionic states at long distances and the probability to • As a result, for two electrons $P(r_1, r_2) = P(r_1)P(r_2)$

http://www.fz-juelich.de/nic-series/Volume3/Volume3.html

find two electrons close together

Electron Correlation Methods

- Electron correlations can be accounted for by considering a combination of Slater determinants – post-HF
 - Configuration Interactions (CI)
 - □ Coupled-Cluster (CC)
 - □ Møller-Plesset Perturbation Theory (MP)
 - Multi-Configuration Self-Consistent Field (MC-SCF)
 - Density Functional Theory (DFT)

Basics of Density Functional Theory

Brief History of DFT

- 1926: Old DFT -- Thomas-Fermi theory and extensions.
- **5**0's-60's: Slater and co-workers develop Xα as crude KS-LDA.
- 1965: Modern DFT begins with Kohn-Sham equations. By introducing orbitals, get 99% of the kinetic energy right, get accurate n(r), and only need to approximate a small contribution, E_{XC}[n].
- 1965: KS also suggested local density approximation (LDA) and gradient expansion approximation.
- 1993: More modern functionals (GGA's and hybrids) shown to be usefully accurate for thermochemistry
- 1995-: TDDFT & hybrid DFT methods
- 1998: Kohn and Pople win Nobel prize in chemistry
- 2000-: DFT with dispersion/long-range corrected DFT
- 2010: DFT in materials science, geology, soil science, astrophysics, protein folding,...

Density Functional Theory for Pedestrians

Electron density function (much simpler object than wave function): $\rho(\vec{r_1}) = \int \Psi^*(\vec{r_1}, \vec{r_2} \dots \vec{r_N}, \sigma_1, \sigma_2 \dots \sigma_N) \cdot \Psi(\vec{r_1}, \vec{r_2} \dots \vec{r_N}, \sigma_1, \sigma_2 \dots \sigma_N) d^3r_2 d^3r_3 \dots d^3r_N d\sigma_1 d\sigma_2 \dots d\sigma_N$

Hohenberg-Kohn Theorem (1964)

1. $V_{ext}(\vec{r}) = V_{ext}[\rho(\vec{r})]$

 $\rho_0 \Rightarrow \{N, Z_A, R_A\} \Rightarrow \hat{H} \Rightarrow \Psi_0 \Rightarrow E_0 \text{ (and other properties)}$

Therefore, instead of $\,\Psi$ dependent on 4N coordinates we would need just $\rho_{\rm 0}$ dependent on just 3 coordinates

2. The variational principle for DFT

 $E[\overline{\rho}] \ge E[\rho_0]$ $E[\rho] = T_k[\rho] + E_{Ne}[\rho] + E_{ee}[\rho] \text{ or }$ $E[\rho] = T_k[\rho] + E_{Ne}[\rho] + J[\rho] + E_{xc}[\rho]$

If we would know how to express each of those four terms

$$J[\rho] = \frac{1}{2} \iint \frac{\rho(\vec{r}_1)\rho(\vec{r}_2)}{r_{12}} d\vec{r}_1 d\vec{r}_2; \quad E_{Ne}[\rho] = -\sum_{m=1}^M Z_m \int \frac{\rho(\vec{r})}{\left|\vec{r} - \vec{R}_m\right|} d\vec{r}$$

Density Functional Theory for Pedestrians

Kohn-Sham formalism \rightarrow represent $\rho(\mathbf{r})$ using a fictitious non-interacting system, i.e. a single Slater determinant. This resolves the problem with the kinetic energy term (Kohn-Sham orbitals): $T_{i} = -\frac{1}{2} \sum_{k=1}^{N} \int \varphi_{k}^{*}(\vec{r}) \nabla^{2} \varphi_{k}(\vec{r}) dr$

$$T_{\rm k} = -\frac{1}{2} \sum_{i=1}^{N} \int \varphi_i^*(\vec{r}) \nabla^2 \varphi_i(\vec{r}) dr$$
$$\rho(\vec{r}) = \sum_{i=1}^{N} |\varphi_i(\vec{r})|^2$$

The big unknown left is the exchange-correlation functional $E_{\rm XC}[\rho] = E_{\rm X}[\rho] + E_{\rm C}[\rho]$ (X: exchange, C: correlation)

We know exact E_{xc} exists but nobody knows its functional form \rightarrow approximations!!

The Hartree-Fock case:

$$E_{\rm X}^{\rm HF} = -\frac{1}{2} \sum_{i,j} \iint \frac{\varphi_i(\vec{r_1})\varphi_j(\vec{r_1})\varphi_i(\vec{r_2})\varphi_j(\vec{r_2})}{r_{12}} d\vec{r_1} d\vec{r_2}; \qquad E_{\rm C}[\rho] = 0$$

Approximations for $E_{\rm xc}$ (Jacob's ladder)

$$E_{\rm xc} = \int \epsilon_{\rm xc} \left({\bf r} \right) d^3 r$$

- 1. Local density approximation (LDA): $\epsilon_{\rm xc} = f(\rho)$
- 2. Generalized gradient approximation (GGA): $\epsilon_{xc} = f(\rho, \nabla \rho)$
- 3. Meta-GGA: $\epsilon_{\rm xc} = f(\rho, \nabla \rho, \nabla^2 \rho, t), t = \frac{1}{2} \sum_i |\nabla \psi_i|^2$
- 4. The use of occupied orbitals (e.g., Hartree-Fock)
- 5. The use of unoccupied orbitals (e.g., RPA)

- Local density approximation (LDA)
 - Uses only n(r) at a point,

$$E_{\rm xc}^{
m LDA}[n] = \int d^3r \ e_{
m xc}^{
m unif}(n(\mathbf{r}))$$

- Generalized gradient approx (GGA)
 - Uses both $n(\mathbf{r})$ and $|\nabla n(\mathbf{r})|$

$$E_{\mathrm{xc}}^{\mathrm{GGA}}[n] = \int d^3r \ e_{\mathrm{xc}}(n(\mathbf{r}), |\nabla n|)$$

Examples are PBE and BLYP

• Hybrid:

$$E_{\mathrm{xc}}^{\mathrm{hyb}}[n] = a(E_{\mathrm{x}} - E_{\mathrm{x}}^{\mathrm{GGA}}) + E_{\mathrm{xc}}^{\mathrm{GGA}}[n]$$

- Mixes some fraction of HF, a usually about 25%
- Examples are B3LYP and PBE0

Electron Correlations

- Dynamical correlation (captured by DFT): interactions between energetically separated configurations
- Static correlation (not in DFT): mixing of near-degenerate configurations → multiconfigurational character is necessary

Mix GGA with Hartree-Fock exchange.

Kohn-Sham theory (1965) – equation for orbitals:

$$\left(T + V_{\text{ne}} + V_{\text{ee}} + \frac{\partial F_{\text{x}}}{\partial \rho} + \frac{\partial F_{\text{c}}}{\partial \rho}\right)\varphi_i = \varepsilon_i \varphi_i$$

Compare Hartree-Fock theory (1930):

$$\left(T + V_{\text{ne}} + V_{\text{ee}} + V_{\text{x}}^{\text{HF}}\right)\varphi_i = \varepsilon_i\varphi_i$$

Advantages: Attractive HF exchange cancels self-interaction in V_{ee}

Hybrid DFT (Becke 1993):

$$\left(T + V_{\text{ne}} + V_{\text{ee}} + \frac{X}{100}V_{\text{x}}^{\text{HF}} + (1 - \frac{X}{100})\frac{\partial F_{\text{x}}}{\partial \rho} + \frac{\partial F_{\text{c}}}{\partial \rho}\right)\varphi_{i} = \varepsilon_{i}\varphi_{i}$$

(39,000+ citations in March 2013)

Mean (unsigned) errors in kcal/mol

	Bond energies	Barrier heights	
Hartree-Fock theory	31	9	
Local spin-density approximation	16	18	
Correct thru 2nd order: SOGGA	7	13	
GGA: BLYP (1988)	1.5	8	
Hybrid: B3LYP (1993)	0.9	4	
✓ Becke–3 parameter–Lee-Yang-Parr	"chem main- bond	ical accuracy" for group bond energi engths	ies,

Calculations on a set of main-group molecules.

B3LYP is enormously popular.

Sousa, Fernandes, Ramos, JPC A (2007)

Limitations of the current Exchange and Correlation functionals

- > Ground state DFT functionals
 - Long history on ground state functionals LDA/GGA/Meta-GGA/Hybrid functional (with exact exchange)
 - but still many problems to solve:
 - \rightarrow long-range asymptotic (1/r)
 - \rightarrow biradical states
 - \rightarrow self-interaction correction (SIC)
 - \rightarrow non-locality/exact exchange
 - The original DFT formulation is only for the ground state → How to treat excited states?

The Jacob's Ladder

http://www.sas.upenn.edu/~jianmint/Research/

Popular combinations of $E_x[\rho]$ and $E_c[\rho]$

- SVWN=LSDA
- SVWN5
- BLYP

Hybrid functionals

• B3LYP

 $E_{xc}^{hybr} = a_0 E_x^{HF} + (1 - a_0) E_x^{LDA} + a_x \Delta E_x^{B88} + E_c^{LDA} + a_c \Delta E_c^{GGA}$ $a_0 = 0.2; \ a_x = 0.72; \ a_c = 0.81$

- B3P86, B3PW91, B1B95 (1 parameter), B1LYP, MPW1PW91, B98, B971, B972, PBE1PBE etc.
- You can even construct your own. Gaussian provides such a functionality: $E_{xc} = P_2 E_X^{HF} + P_1 (P_4 E_X^{Slater} + P_3 \Delta E_x^{non-local}) + P_6 E_C^{local} + P_5 \Delta E_C^{non-local}$ IOP(3/76),IOP(3/77) and IOP(3/78) setup P₁ - P₆

B3LYP =

BLYP IOp(3/76=1000002000) IOp(3/77=0720008000) IOp(3/78=0810010000)

See: http://gaussian.com/dft/

DFT references

- 1. W. Koch, M.C. Holthausen, A Chemist's Guide to Density Functional Theory (Wiley-VCH Verlag GmbH, 2001)
- 2. M.E. Casida in *Recent Advances in Density Functional Methods, Part 1* (World Scientific, Singapore, 1995)
- 3. M.E. Casida in *Recent Developments and Applications of Modern Density Functional Theory, Theoretical and Computational Chemistry*, vol 4., ed. by J.M. Seminario (Elsevier, Amsterdam, 1996).
- 4. Marques M.A.L. and Gross E.K.U. Annu. Rev. Phys. Chem 55, 427 (2004).

Applicability of DFT

A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions[†]

Lars Goerigk^{ab} and Stefan Grimme*^a

Received 28th December 2010, Accepted 10th February 2011 DOI: 10.1039/c0cp02984j

Validation of electronic structure methods for isomerization reactions of large organic molecules

Sijie Luo,^a Yan Zhao^b and Donald G. Truhlar*^a

Received 20th March 2011, Accepted 25th May 2011 DOI: 10.1039/c1cp20834a

• Main group compounds

		$_{\rm HF}$	SVWN	BVWN	BLYP	MP2	QCISD	Expt.
H_2	$R_0(\text{H-H})$	1.379	1.446	1.398	1.414	1.395	1.410	1.401
HF	$R_0(\text{H-F})$	1.722	1.776	1.778	1.786	1.782	1.765	1.733
$\mathrm{H}_{2}\mathrm{O}$	$R_0(\text{O-H})$	1.790	1.844	1.842	1.850	1.829	1.831	1.810
	θ_0 (H-O-H)	105.5	103.6	102.9	102.7	104.0	104.0	103.9
NH_3	$R_0(N-H)$	1.891	1.938	1.937	1.944	1.920	1.925	1.910
	θ_0 (H-N-H)	107.2	106.0	105.8	104.8	106.4	106.0	106.0
CH_4	R_0 (C-H)	2.046	2.078	2.071	2.076	2.057	2.065	2.092
\overline{E}	$R_0(44)$	-0.010	0.014	0.018	0.020	0.010	0.012	_
$ \overline{E} $	$R_0(44)$	0.020	0.021	0.018	0.020	0.014	0.013	_

6-31G* (Gill, 1993); 32 molecules; in Å and o

• Rules of thumb

- **1** LDA (HF) bond lenghts slightly too long (short)
- 2 Gradient corrections and post-HF slightly better

Peter Saalfrank (Universit at Potsdam)

• Geometries: M(CO)₆

method	$_{ m HF}$	MP2/ECP	$\operatorname{CCSD}(T)$	SVWN	BP86	B3LYP	exp.
$\operatorname{Cr}(\operatorname{CO})_6$	1.970-2.010	1.862	1.939	1.865	1.910	1.921	1.918
$\mathrm{Mn}(\mathrm{CO})_6$	_	2.031	_	2.035	2.077	2.068	2.063
$W(CO)_6$	_	2.047	_	2.060	2.116	2.078	2.058

M-C distance (in Å); extended basis sets, most at least of TZ quality; Koch /Holthausen (1999)

• Dissociation energies $MH^+ \rightarrow M+H^+$; excitation energies $M \rightarrow M^*$

	SVWN	BP86	B3LYP	MCPF	PCI-80	exp.
MAD diss. en. (kcal/mol)	12	8	4-5	6	2	± 2
MAD exc. en. (eV)	0.75		0.33			

M=Sc-Cu; details see Koch / Holthausen, A Chemist's Guide to DFT (1999)

• Rules of thumb

- **1** LDA (HF) bond lenghts too short (long)
- **2** Gradient corrections and post-HF perform better \checkmark
- **3** Errors generally larger than for main group compounds
- Accurate low-spin / high-spin splittings very difficult (role of exact exchange)

• For some main group compounds

		$_{\rm HF}$	SVWN	BVWN	BLYP	MP2	QCISD	Expt.
H_2		4646	4207	4461	4373	4534	4367	4401
\mathbf{FH}		4358	3912	3841	3810	4041	4020	4139
CO		2439	2169	2105	2105	2125	2176	2170
H_2O	SS	4070	3657	3597	3568	3776	3751	3832
	BI	1827	1646	1698	1682	1735	1745	1648
	AS	4189	3789	3721	3690	3918	3878	3943
NH_3	SS	3689	3372	3332	3305	3504	3457	3506
\overline{E}	(213)	165	-51	-47	-63	69	12	_
$ \overline{E} $	(213)	168	75	61	73	99	42	_

harmonic frequencies; $6-31G^*$; in cm⁻¹; 213 vibrations of 32 molecules (Gill, 1993)

• Rules of thumb

- LDA (HF) slightly too "soft" ("hard")
- 2 Gradient-corrected DFT, QCISD perform well
- **3** scaling factors (6-31G*): 0.895 (HF), 0.943 (MP2), 0.995 (BLYP), 0.9614 (B3LYP)

PERFORMANCE: POTENTIAL CURVES

• Chemical bond: Summary

- **1** HF too shallow, too steep
- 2 LDA too deep, too flat
- **3** GGA and post-HF perform better

• Van-der-Waals bond

Ar₂, 6-311++G(3df,3dp)

- HF and B3LYP fail, the former because lack of correlation, the latter because $\lim_{r\to\infty} v_c(r)$ wrong
- **2** Good basis sets needed

PERFORMANCE: NON-BONDING INTERACTIONS

The second se	Table	8. Overall R	esults (kcal/m	oi)*		
Types		1		MM	MUE		
	rank	method	HB	СТ	DI	WI	MMMMUE ^b
	1	MPWB1K	0.61	0.50	0.52	0.22	0.46
U Hydrogen-Bonded systems	2	MP2	0.66	0.60	0.55	0.16	0.49
	3	MPW1B95	0.71	0.56	0.53	0.25	0.51
	4	PBE1KCIS	0.60	0.93	0.36	0.27	0.54
2 Charge-Transfer systems	6	PREIPRE	0.53	1.05	0.39	0.29	0.55
5	7	B98	0.61	0.95	0.38	0.28	0.55
	8	B97-1	0.53	1.20	0.33	0.19	0.56
Upole-Interacting systems	9	BHandHLYP	0.52	0.63	0.73	0.41	0.57
	10	X3LYP	0.55	0.98	0.49	0.40	0.60
	11	mPW1PW91	0.63	0.75	0.55	0.53	0.62
• Weak Interactions	12	MPW3LYP	0.57	1.38	0.34	0.32	0.65
	13	MPWKCIS1K	0.79	0.74	0.74	0.42	0.67
	14	B3P80	0.40	1.10	0.53	0.68	0.71
	16	RUYP	0.77	0.80	0.78	0.60	0.74
Systematic study (ICTC 1 415 (2005))	17	TPSSh	0.63	1.43	0.53	0.45	0.76
Systematic study (SCICI, 415 (2005))	18	MPW1KCIS	1.04	0.93	0.69	0.48	0.79
	19	B97-2	1.32	0.75	0.86	0.56	0.87
	20	BB1K	1.11	0.86	1.01	0.54	0.88
• 44 DF'T. 1 WF'T (MP2), good basis sets	21	B3PW91	1.13	0.82	0.97	0.85	0.94
	22	TPSS	0.66	2.15	0.54	0.47	0.95
	23	TPSSKCIS	0.75	2.13	0.51	0.42	0.95
• 4 data bases	24	PREKCIS	0.70	2.60	0.41	0.27	1.00
	26	mPWPBE	0.82	2.17	0.60	0.56	1.03
	27	mPWB95	0.94	2.36	0.53	0.32	1.04
• W1 reference (CCSD(T), CBS)	28	HCTH	1.76	1.45	0.59	0.36	1.04
	29	mPWPW91	0.77	2.28	0.58	0.53	1.04
	30	mPWKCIS	1.15	1.87	0.62	0.52	1.04
	31	PBE	0.50	2.94	0.49	0.28	1.05
	32	MPWLYP	0.72	2./1	0.41	0.40	1.06
Rules of thumb	33	BPRA	0.82	2.15	0.71	0.93	1.14
	35	BLYP	1.29	1.72	1.00	0.81	1.21
	36	BPW91	1.70	1.47	1.18	1.09	1.36
• MP2 ~ hyper $CCA > mote CCA > CCA$	37	BB95	1.87	1.56	1.19	0.87	1.37
\bullet MF2 \approx hyper-GGA > meta-GGA > GGA	38	BPBE	1.74	1.45	1.20	1.11	1.38
	39	VSXC	0.61	2.84	1.10	1.64	1.55
> LDA	40	O3LYP	2.76	1.32	2.00	0.79	1.72
	41	OLYP	3.60	1.60	2.40	0.93	2.13
There is always a functional	42	CPIAL	2.95	6.79	2.56	0.40	2.18
There is always a functional	44	SVWN5	4.63	6.73	2.93	0.40	3.67
	45	SVWN3	4.87	6.94	3.08	0.44	3.83

1.28

1.78

average

0.92

0.56

1.14

PERFORMANCE: REACTIONS

• Rules of thumb

• LDA (HF) activation energies much too small (much too high)

- 2 LDA (HF) overbinds (underbinds)
- **3** Gradient corrections and post-HF perform better

OTHER ISSUES AND SUMMARY

• Things not touched upon here

• Solids, in particular metals

THE JOURNAL OF CHEMICAL PHYSICS 127, 024103 (2007)

Why does the B3LYP hybrid functional fail for metals?

Joachim Paier, Martijn Marsman, and Georg Kresse Faculty of Physics, Universität Wien and Center for Computational Materials Science, Sensengasse 8/12, A-1090 Wien, Austria

(Received 4 April 2007; accepted 14 May 2007; published online 10 July 2007)

2 Properties (electric, magnetic, ...)

3 Static correlation: Multi-determinant effects, conical intersections and all that

• Computational effort: Clear advantage for DFT

Conclusions

• About $\approx 90\%$ calculations done with DFT: Good price / perfomance relation

2 DFT has replaced semiempirical methods in electronic structure theory

3 There is always a functional . . .

Peter Saalfrank (Universit at Potsdam)

Conducting a Computational Project

- These questions should be answered
 - □ What do you want to know?
 - □ How accurate does the prediction need to be?
 - □ How much time can be devoted to the problem?
 - □ What approximations are being made?
- The answers to these questions will determine the type of calculation, method and basis set to be used
 Model Chemistry
- If good energy is the goal → use extrapolation procedures to achieve `chemical accuracy': G1/2/3, W1/2/3, PCI-80... models
- DFT is always a good start for chemical systems

Variety of Methods in Computational Chemistry

Quality

Size dependence

Ab initio MO Methods

\Box CCSD(T)	quantitative (1~2 kcal/mol) but expensive	~N ⁶
□ MP2	semi-quantitative and doable	~ №
□ HF	qualitative	~ № ²⁻³
Density Functional Th	neory	
DFT	semi-quantitative and cheap	~ № ²⁻³
Semi-empirical MO M	ethods	
AM1, PM3, MNDO	semi-qualitative	~ № ²⁻³
Molecular Mechanics	Force Field	
MM3, Amber, Charmm	semi-qualitative (no bond-breaking)	~ № ¹⁻²

- So far we have described theories that allow us to obtain the ground state energy of a molecular system --- at a fixed molecular geometry
- How would this be useful??
- We will run some calculations next time!!