
Lecture 20

Many-electron Molecules

Study Goal of This Lecture

• Born-Oppenheimer approximation

• LCAO approximation

• Hartree-Fock independent electron approximation

20.1 Preface

Now we have dealt with quantum states for many-electron atoms, it is time to

move on to more complicated systems ⇒ many-electron models. What is the main

additional difficulties?

• Molecules have additional nuclear motions (vibrations)

• Electron can delocalized, no spherical symmertry

20.2 Born-Oppenheimer Approximation

Consider a general molecular Hamiltonian:

Ĥ = −
M∑
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1
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∇2
a +
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−
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. (20.1)
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Since nuclei are much heavier than electrons, they move more slowly. ⇒We consider

electron moving in “fixed/static” nuclear coordinates: no momentum, position {R}
fixed

Ĥelec{Ra} = −
N∑
i=1

1
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∇2
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ria

+
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. (20.2)

Solution then can be solved from

ĤelecΨelec = EelecΨelec, (20.3)

note Ψelec = Ψelec({Ra}), also the electronic energy Eelec({Ra}) depends on nuclear

coordinate {Ra}. Now if we consider the nuclear moving in the averaged electron

influence:

Ĥnucl = 〈Ψelec|Ĥ|Ψelec〉

= −
M∑
a=1

1

2Ma
∇2
a +

M∑
a=1

M∑
b>a

ZaZb
Rab

+ 〈Ψelec|Ĥelec|Ψelec〉︸ ︷︷ ︸
Eelec({Ra})

.
(20.4)

If we define total energy

Etot({Ra}) = Eelec({Ra}) +
M∑
a=1

M∑
b>a

ZaZb
Rab

, (20.5)

then

Ĥnucl = −
M∑
a=1

1

2Ma
∇2
a + Etot({Ra})︸ ︷︷ ︸

V (R), potential

. (20.6)

Therefore, nuclei moving in the potential Etot({Ra}) −→ potential energy sur-

face(PES).

If one solves

ĤnuclΨnucl = εΨnucl, (20.7)

where Ψnucl is nuclear wave function and ε is total energy. The total wavefunction

will be

Ψ({ri}; {RA}) = Ψelec ⊗Ψnucl. (20.8)

We will focus on the electron part of the problem and neglect the nuclear Schrödinger

equation throughout the course. Notice that for most nuclei (often than H & He),

classical approximation is appropriate. It is reasonable to consider the nuclear prob-

lem as classical particle moving on the PES defined by Etotal −→ classical mechanics

with PES provided by quantum mechanic.
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20.3 Linear Combination of Atomic Orbitals

The next problem of going from atoms to molecules is the proper functional

forms, i.e. basis sets, since molecules are not spherical. For the molecular system,

atomic orbitals are good basis sets!! We will illustrate this by considering H+
2 molec-

ular ion.

20.3.1 H+
2 molucular ion

The Hamiltonian of H+
2

Ĥe(R) = − ~
2me
∇2
e −

e2

4πε0
(

1

r1A
+

1

r1B
) +

e2

4πε0R
. (20.9)

We hope to solve Ĥeψe = Eeψe =⇒ approximate ψe as LCAO

ψe =
∑
i

[CiAφiA + CiBφiB] = C11sA + C21sB. (20.10)

We can then use the variational principle to determine C1 and C2 by minimizing
〈ψe|Ĥe|ψe〉
〈ψe|ψe〉 = E via ∂E

∂Ci
= 0. For H+

2 , the minimal model is to use 1s orbitals for the

two H atoms. This is a minimal basis model. Also, in this particular problem, we

know C1 = C2 = C by symmetry, but we will proceed as if C1 6= C2 to demonstrate

more general senario. ⇒ Determine C1, C2 using variational principle.

The energy of H+
2 can be written as

E =

∫
ψ∗Ĥeψdτ∫
ψ∗ψdτ

=
[C∗1 〈1sA|+ C∗2 〈1sB|]Ĥe[C1 |1sA〉+ C2 |1sB〉]

[C∗1 〈1sA|+ C∗2 〈1sB|][C1 |1sA〉+ C2 |1sB〉]

=
C2
1 〈1sA|Ĥe|1sA〉+ 2C1C2 〈1sA|Ĥe|1sB〉+ C2

2 〈1sB|Ĥe|1sB〉
|C1|2 + |C2|2 + 2C1C2 〈1sA|1sB〉

,

(20.11)

now we define:

S = 〈1sA|1sB〉, the overlap integral Can you explane why

this overlap integral is

not zero? (Recall that

the orbitals for the Hy-

drogen atoms are

orthogonal.)

HAA = 〈1sA|Ĥe|1sA〉, coulomb integral

HAB = 〈1sA|Ĥe|1sB〉, resonance/transfer integral

(electron from 1sA to 1sB)
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Therefore, we obtain:

E =
C2
1HAA + C2

2HBB + 2C1C2HAB

C2
1 + C2

2 + 2C1C2S
. (20.12)

To find the minimal E with respect to varying C1, C2, we first rewrite

(C2
1 + C2

2 + 2C1C2S)E = C1HAA + 2C1C2HAB + C2HBB, (20.13)

then

∂

∂C1
⇒ (C2

1 + C2
2 + 2C1C2)

�
�
��7

0
∂E

∂C1
+ (2C1 + 2C2S)E = 2C1HAA + 2C2HAB, (20.14)

∂

∂C2
⇒ (C2

1 + C2
2 + 2C1C2)

�
�
��7

0
∂E

∂C2
+ (2C2 + 2C1S)E = 2C2HBB + 2C1HAB, (20.15)

for the condition for minimal E: ∂E
∂C1

= ∂E
∂C2

= 0, we rearrange to yield: Recall the Cramer’s for-

mular in senior high, for

the equation to have

more than one solution,

∆ = 0.

C1(HAA − E) + C2(HAB − SE) = 0,

C1(HAB − E) + C2(HBB − SE) = 0.
(20.16)

This is a system of homogeneous linear equations. There is a nontrivial solution only
Students with linear al-

gebra background will

recongnize that this is

equilavent to a matrix

diagonalization.

if the secular determinant of the coefficent is zero,∣∣∣∣∣∣ HAA − E HAB − SE
HAB − SE HBB − E

∣∣∣∣∣∣ = 0. (20.17)

This is the “seqular equation”, which yields MOs and MO energy values. Note that

the equation is a quadratic equation for E. So there are two solutions for E, with

two corresponding sets of C1, C2 (i.e. two MO wavefunctions.) In general, with N

basis functions, there will be N Es and N MOs. ⇒ energy for molecular orbitals. In

this case, one can show that HAA = HBB = E1s + J and HAB = E1sS + K. The J is Coulomb’s integral

two solutions are

Eg = E1s +
J +K

1 + S
, (20.18)

Eu = E1s +
J −K
1− S

, (20.19)

with

Ψg =
1√

2(1 + S)
(1sA + 1sB), (20.20)
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Ψu =
1√

2(1− S)
(1sA + 1sB). (20.21)

J,K, S are function of R, the explicit expression are:

J = e2R(1 +
1

R
),

K = −S
R
e−R(1 +R),

S = e−R(1 +R+
R3

3
),

(20.22)

note that only K could be negative. Also, it is easy to verify that

〈Ψg|Ψg〉 = 1, 〈Ψu|Ψu〉 = 1, 〈Ψg|Ψu〉 = 0 (20.23)

the u, g symbol is due to

Ψg: even parity(symmetric combination), g: gerade, gerade: German for

even

ungerade: German for

odd.

Ψu: odd parity(antisymmetic combination), u: ungerade.

Now we can plot MOs:

(a) Two 1s orbitals. (b) Bonding orbital and antibonding

orbital

Figure 20.1: Molecular orbital for H+
2 .
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and the potential energy surface E(R):

Figure 20.2: Potential energy surface for H+
2 .

The energy plot indicates: We thus say

Ψg ← bonding orbital

Ψu ← antibonding or-

bital.

1. Ψg is the ground state of the H+
2 , and Ψu is the excited state.

2. There is an energy minimum on Ψg → stable H+
2 molecular ion at internuclei

distance of 2.5Å (Exp: 2.0Å).

3. Eu has minimum at R→∞. This show that in excited state, the force are all

repulsive and there is no stable ion.

4. Ψg → Ψu corresponds to excitation due to photons, therefore, absorption of

photon could dissociate the molecular ion.

The bonding/antibonding character also correspond to the existence of nodal plane

between the nuclei, it can be shown rigorously using the virial theroem that whenever

a MO has a nodel between two atoms, it will result in repulsive potential.

Very often, the bonding/antibonding orbital notation is used, we can plot the

correlation diagram.

20.3.2 Correlation Diagram
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Figure 20.3: Correlation diagram for H+
2 .

Type of bonding

σ: σ-bond, 0 nodel plane across the two atoms.

π: π-bond, 1 nodel plane across the two atoms.

δ: δ-bond, 2 nodel plane across the two atoms.

φ: φ-bond, 3 nodel plane across the two atoms.

The number of nodal planes representing the total “axial” angular momentum,

defined by the cylindrical symmetry. Note that the results using pure hydrogen 1s

orbital is not good. For considering the 2p

orbital, it shows the

power of choosing good

basis set!

Table of outcomes for different basis set

Exp. Pure 1s Var. 1s+ 2p

De (eV) 2.79 1.76 2.73

Re (a0) 2.0 2.5 2.01

To improve the result, consider improving the basis atomic functions. Recall

that in the homework, we show that the ground state of hydrogen mixed with pz

orbitals when an external electric field is applied. Therefore, consider:

1s′A = k
3
2

1√
π
e−kr1A , (20.24)
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(2p′y)A =
ξ

5
2

4(2π)
1
2

ye
−ξrA

2 , (20.25)

and

ψ ' [1s′A + c(2p′y)A] + [1s′B + c(2p′y)B]. (20.26)

This yields a much improved result. The situation of bonding/antibonding orbitals

can be generalized to general diatomic molecule.(See Silbey Figure 11.8 & 11.10)

20.4 Born-Oppenheimer Approximation-General Case

We consider a general molecular Hamiltonian:

Ĥ =

M∑
a=1

−~2

2Ma
∇2
a +

M∑
a=1

M∑
b=a+1

ZaZbe
2

Rab

+
N∑
i=1

−~2

2mi
∇2
i −

M∑
a=1

N∑
i=1

Zae
2

ria
+

N∑
i=1

N∑
i=j+1

e2

rij
.

(20.27)

The full Schrödinger equation is

ĤΨ({ri}, {Ra}) = EΨ({ri}, {Ra}). (20.28)

In Born-Oppenheimer approximation, we assume nuclei and electron motions are

fully decoupled, i.e. independet, thus:

Ψ({ri}, {Ra}) = Ψe({ri})×Ψn({Ra}). (20.29)

The Schrödinger equation becomes (using Ĥ =
∑M

a=1
−~2
2Ma
∇2
a + Ĥe))( M∑

a=1

−~2

2Ma
∇2
a + Ĥe

)
ΨeΨn = EΨeΨn. (20.30)

If we solve the electronic part such that

ĤeΨe = Ee(R)Ψe, (20.31)

then we can multiply both sides of Equ.20.31 by Ψ∗e and integrate all electronic

degrees of freedom out:∫
Ψ∗e

( M∑
a=1

−~2

2Ma
∇2
a + Ĥe

)
ΨeΨndτe = E

∫
Ψ∗eΨeΨndτe

⇒
( M∑
a=1

−~2

2Ma
∇2
a +He +

∫
Ψ∗eĤeΨedτe

)
Ψn = EΨn,

(20.32)
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note that
∫

Ψ∗eĤeΨedτe is potential energy surface(Ee(R)). Thus we can see that

nuclei moving in the field due to averaged electron energy.

9


