
Lecture 21

Valence Bond Theory

Study Goal of This Lecture

• Configuration interaction

• Generalized valence bond theory

21.1 Configuration Interaction

Following the prescription we use for many electron atoms, we construct many-

electon molecular wavefunction from Slater determinant of single electron wavefunc-

tions.(This single electron wavefunction is molecular orbital.) Recall, an electron
Recall that the orbital

is single electron wave-

function.

configuration correspond to a Slater determinant, then for Hydrogen molecule:

Figure 21.1: Electron configuration of H2.
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Ψ(1σg)2 =
1√
2

∣∣∣∣∣∣1σg(1)α(1) 1σg(1)β(1)

1σg(2)α(2) 1σg(2)β(2)

∣∣∣∣∣∣
=

1√
2

[1σg(1)α(1)1σg(2)β(2)− 1σg(1)β(1)1σg(2)α(2)].

(21.1)

Expand it in atomic orbital:

Ψ(1σg)2 =
1

2(1 + S)
× [1sA(1) + 1sB(1)][1sA(2) + 1sB(2)]× 1√

2
[α(1)β(2)−β(1)α(2)].

(21.2)

The calculation yields the energy: De = 2.65eV (255kJ/mol) and bond length 0.84Å.

The experimental value is De = 4.75eV and Re = 0.74Å. Results can be improved

by considered a “screened” 1s orbital, that is φ1s = k3/2π−1/2e−k·r and use the

Hartree-Fock SCF approach to find optimal M.O. or further, consider many more

basis functions(p, d, . . .).

These yield better results but the final “Hartree-Fock” result still does not yield
We call this as Hartree-

Fock limit.
the exact result, this cannot be improved by using bigger basis. Such results is

intrinsic in the “single Slater determinant” approach. The reason is illustrated by

considering the form of Ψ(1σg)2 :

Ψ(1σg)2 ∼ 1sA(1)1sA(2) + 1sB(2)1sB(1)︸ ︷︷ ︸
H−
AH

+
B +H+

AH
−
B

ionic part

+ 1sA(1)1sB(2) + 1sA(2)1sB(1)︸ ︷︷ ︸
H-H

covalent part

. (21.3)

This wavefunction describes a state with equal ionic and covalent characters even

at R → ∞, which we know it should be purely covalent when R → ∞. This

is a consequence of Slater determinant being uniform combination of all possible

electron arrangements. To avoid this limitation, we need to consider interactions

between different Slater determinant. For instance, consider the configuration of

excited state.

Figure 21.2: Electron configuration of excited state H2.
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Ψ(1σu)2 =
1√
2

∣∣∣∣∣∣1σu(1)α(1) σu(1)β(1)

1σu(2)α(2) σu(2)β(2)

∣∣∣∣∣∣
=

1

2(1− S)
[1sA(1)− 1sB(1)]× [1sA(2)− 1sB(1)]× 1√

2
[α(1)β(2)− α(2)β(1)],

(21.4)

Ψ(1σu)2 ∼ 1sA(1)1sA(2) + 1sB(1)1sB(2)− 1sA(1)1sB(2)− 1sA(2)1sB(1), (21.5)

then we assume the exact wavefunction is the combination of Ψ(1σg)2 and Ψ(1σu)2 :

Ψ = C1Ψ(1σg)2 + C2Ψ(1σu)2 . (21.6)

Superposition of these two states will allow the balance between ionic and covalent

contributions. This method is called “Configuration Interaction”, abbreviated as

“CI”. Using this simple CI approach yields much better results, if a big basis sets

and more configuration determinant are used, the result will approach the exact

value.

This simple(actually the “simplest”) MO treatment illustrate the essential part

of the MO theory, and apply the same procedure to more complex, polyatomic

molecule are straightforward. Steps which have to take can be summarized as:

1. Find a set of functions centered on atoms or the “basis” AOs.

2. Represent MOs as LCAO, use HF-SCF to find a set of MOs that minimizes

the energy of the N electron system.

3. Use CI to further improve the results.

The different between the exact energy and the Hartree-Fock limit is called the

“correlation energy”.

Note that MO theory states from fully delocalized MOs, that do not assign

electrons to individual atoms. This is quite different from the Lewis “bond” picture

of molecules.

21.2 Valence Bond Theory

Another approach is to use the valence bond theory which begins by consider

the neutral electron configuration of atoms. For example, for the H2 molecule, the
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valence bond treatment considers
Only consider covalent

configurations which

share the electrons.

f1 = 1sA(1)1sB(2),

f2 = 1sA(2)1sB(1),
(21.7)

Construting the many-

electrons wavefunction

directly, no MO step.

Ψcovalent = C1f1 + C2f2. (21.8)

In this case, no need for variation, we know

Ψ± =
f1 ± f2√
2(1± S2)

. (21.9)

The result yields De = 3.15eV and Re = 0.87Å. To further improve the result, one

need to add the ionic contribution, that is

Ψionic ∼ 1sA(1)1sA(2) + 1sB(1)1sB(2), (21.10)

and then use

Ψ = C1Ψcovalent + C2Ψionic. (21.11)

This is called the Generalized Valance Bond method, and it is basically the same

with the simple CI approach!! For polyatomic molecules, localized “hybrid orbitals”

need to be constructed first as the basis of the VB theory. For example, H2O has

eight valence electron and the oxygen atom is sp3 hybridized. Then the basis of

contructing molecular wavefunction of water would be:

φsp3
(i)

=
1√
4

(2s+ 2px + 2py + 2pz),

φsp3
(ii)

=
1√
4

(2s− 2px − 2py + 2pz),

φsp3
(iii)

=
1√
4

(2s+ 2px − 2py − 2pz),

φsp3
(iv)

=
1√
4

(2s− 2px + 2py − 2pz),

φHA
= 1sA, φHB

= 1sB.

(21.12)

Note that in the VB picture, the “resonance structure” is considered in the GVB

approach: The valence bond wavefunction is
Note that the VB wave-

function matchs the

idea of Lewis structure.

(Check by yourself!)

ΨV B ∼ 1sO(1) ¯1sO(2)φsp3
(i)

(3)φ̄sp3
(i)

(4)φsp3
(ii)

(5)φ̄sp3
(ii)

(6)

×
[
φsp3

(iii)
(7)1sA(8) + φsp3

(iii)
(8)1sA(7)

]
×
[
φsp3

(iv)
(9)1sB(10) + φsp3

(iv)
(10)1sB(9)

]
+ all other electron permutations.

(21.13)
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Figure 21.3: Resonance structure of H2.

The VB method is mostly used in qualitative pictures. Quantitative calculations

are also possible, in fact, if additional resonance wavefunctions are considered. i.e.

the GVB approach, the GVB method is often better than HF method. However the

calculation are often much complicated (especially the programming part) so it is

difficult to apply. That’s why the world of computation chemistry is dominant by

MO approaches.

5


