
Lecture 24

Light-Matter Interactions

Study Goal of This Lecture

• Time-dependent perturbation theory

• Interaction of radiation and matter

• Absorption and stimulated emission

24.1 Preface

Now we have learned that electronic structures of molecules can be “approxi-

matelly” solved to yield various molecular properties, such as energy/ dipole mo-

ment/ vibration frequency · · · etc.

How do we observe/measure these properties? ⇒ Spectroscopy: our window

into microscopic molecular world.

24.2 Why spectroscopy

We will turn our attention to various spectroscopic methods. As an elite college

student, you should ask why. Why bother? and so what? Asking why and so what

actually will help you to learn a subject, because these questions allow you to focus

on keys of learning the subject, allow you to look at a broad field with a “big picture”.

In this vein, I hope I can covince you that spectroscopic methods are our me-

chanics: a large part of QM was inspired, or even more previouly, was necessary by
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the advanced of spectroscopic methods. Without observation of black-body radiation

and atomic spectrum, there won’t be motivations for quantum mechanics!

Also keep in mind that “spectroscopy” is not the only subject that requires quan-

tum chemistry. Chemical reactions, chemical dynamics, · · · , a huge part of chemistry

discipline requires quantum mechanic!! However, much of these will be covered in

other courses. For example, bonding and transformation of chemical structure,(much

of these involves the ideas of PESs defined by molecular wavefunctions at varying

nuclear geometries.) will be covered in organic chemistry and inorganic chemistry

as well. We won’t even talk about the “instrumental” part of spectroscopy, which

will be covered in analytical chemistry. The development of theory of spectroscopy

requires using “time-dependent” quantum mechanics. Because, all spectroscopic

techniques involve

1. Prepare the system in equilibrium.

2. Apply a “perturbation”(or more) to push the system out of equilibrium.

3. “Observe” while system relax and establish equilibrium again.

Figure 24.1: Using quantum mechanics to study spectroscopy.

We will briefly introduce time-dependent formalism that can be used to de-

scribe such responses. This is the so called time-dependent perturbation theory for

quantum mechanics. Note that this advanced materials is meant to let you gain a

underlying physical picture to pave the way for our later discussions. The derivation

of these time-dependent perturbation theory part is optional and won’t appear on
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the final exam. However, you need to know the results which are actually present in

Silbey’s textbook.

Recall the time-dependent Schrödinger equation:

i~
∂

∂t
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 . (24.1)

If Ĥ(t) = Ĥ0 is time-independent and we know exactly it’s eigenvalues and eigen-

functions H0 is the molecular

Hamiltonian.Ĥ0 |ψn〉 = En |ψn〉 , (24.2)

then for any wavefunction |ψ〉 initially written as a superposition of {φn}, we have

|ψ(0)〉 =
∑
n

Cn(0) |φn〉 & |ψ(t)〉 =
∑
n

Cn(t) |φn〉 . (24.3)

Plug it into TDSE

i~
∑
n

∂Cn(t)

∂t
|φn〉 = Ĥ0

∑
n

Cn(t) |φn〉 =
∑
n

Cn(t)En |φ(t)〉 , (24.4)

and operate 〈φm| from the left, we obtain

i~
∑
n

∂Cn(t)

∂t
〈φm|φn〉 =

∑
n

Cn(t)En 〈φm|φn〉

⇒ i~Cn(t) = En
∂Cn(t)

∂t
= EnCn(t), Cn(t) = Cn(0)e−

iEnt
~ .

(24.5)

Therefore This is why it is called

wave mechanics.|φ(t)〉 =
∑
n

Cn(0)e−
iEnt

~ |φn〉 , (24.6)

time-evolution is phase evolution, a superposition of interferencing waves! Note that

if the system is initially prepared in a eigenstate, e.g. the ground state |φn〉, then

Cn = 1 and all Cm = 0 for m 6= n

⇒ |φ(t = 0)〉 = |φn〉 , |φ(t)〉 = e−
iEnt

~ |φn〉 . (24.7)

Probability of finding the system remains in |φn〉 is |Cn(t)|2 = 1 ⇐ always in the

same state. And for any observable:〈
Â
〉

= 〈φn|e
iEnt

~ Âe−
iEnt

~ |φn〉 = 〈φn|Â|φn〉 . (24.8)

It is time-independent! Due to this, we say that the eigenstate of Ĥ0 are stationary

states. That is not the case if an external perturbation is introduced.
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24.3 Time-dependent perturbation theory(First order)

Now let’s consider a perturbed Hamiltonian

Ĥ = Ĥ0 + V̂ (t). (24.9)

Again, Ĥ0 is exactly known. Since the eigenbasis of Ĥ0 still spans the whole space,

we can write arbitrary wavefunctions as the superposition of {φn}:

|ψ〉 =
∑
n

Cn(t) |φn〉 =
∑
n

bn(t)e−
iEnt

~ |φn〉 . (24.10)

Plug it into full Schrödinger equation

i~
∂

∂t

(∑
n

bn(t)e−
iEnt

~

)
|φn〉 = (Ĥ0 + V̂ (t))

∑
n

bn(t)e−
iEnt

~ . (24.11)

LHS:

i~
∑
n

∂bn(t)

∂t
e−

iEnt
~ |φn〉+ i~

∑
n

bn(t)
∂

∂t
{e−

iEnt
~ |φn〉}

= i~
∑
n

∂bn(t)

∂t
e−

iEnt
~ |φn〉 − i�~

∑
n

bn(t)
iEn

�~
e−

iEnt
~ |φn〉

= i~
∑
n

∂bn(t)

∂t
e−

iEnt
~ |φn〉+

∑
n

bn(t)En |φn〉 × e−
iEnt

~ .

(24.12)

RHS:

(Ĥ0 + V̂ (t))
∑
n

bn(t)e−
iEnt

~

=
∑
n

bn(t)Ene
− iEnt

~ |φn〉+
∑
n

bn(t)e−
iEnt

~ V̂ (t) |φn〉 .
(24.13)

Therefore, we find that

i~
∑
n

∂bn(t)

∂t
e−

iEnt
~ |φn〉 =

∑
n

bn(t)e−
iEnt

~ V̂ (t) |φn〉 , (24.14)

now, again, operate 〈φm| to check out bm(t),

i~
∑
n

∂bn(t)

∂t
e−

iEnt
~ δmn =

∑
n

bn(t)e−
iEnt

~ 〈φm|V̂ (t)|φn〉 , (24.15)

i~
∂bm(t)

∂t
e−

iEnt
~ =

∑
n

bn(t)e−
iEnt

~ 〈φm|V̂ (t)|φn〉 , (24.16)
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therefore,
∂bm(t)

∂t
= − i

~
∑
n

bn(t)e
i(Em−En)t

~ 〈φm|V̂ (t)|φn〉 . (24.17)

Up to now, we obtain an exact formula, but it can’t be solved easily. Let’s

assume the system is initially prepared in a eigenstate of Ĥ0, {|φk〉}. When V̂ (t) is

small and the time is short,

bn(t) ' bn(0) +O
(
V̂nmt

)
, (24.18)

and note bn(0) = δnk, since we prepare it in state k. So we obtain 〈φm|V̂ (t)|φk〉 is the

coupling from |k〉 to

|m〉.
dbm(t)

dt
= − i

~
e

i(Em−En)t
~ 〈φm|V̂ (t)|φk〉 (24.19)

at time t = t′

bm(t′) ' δmk −
i

~

∫ t′

0
e

i(Em−Ek)t

~ 〈φm|V̂ (t)|φk〉 dt. (24.20)

This is the first order time-dependent perturbation theory. The population of

finding the system at state |φm〉 at time t′ is then Pm(t′) ' |bm(t)|2. Note that

the rate of going from |φk〉 → |φm〉 is generally d
dtPm(t′) ∝ | 〈φm|V̂ (t)|φk〉 |2 i.e.

the square of the interaction introduced by the perturbation V̂ (t), determines the

transition rate.

24.4 Interaction of Radiation with Matter

Now let’s apply this formula to study the behavior of molecules under the in-

fluence of a external electromagnetic field. Consider a linearly polarized light, it’s Look at classical version

first.electric field component is:

Figure 24.2: Electromagnetic field, ~E part.
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We write the electric field as

~E(x, t) = ~E0 sin
(

2πνt− 2π
x

λ

)
. (24.21)

The interaction Hamiltonian:

V (t) = − ~E0

∑
n

qi~ri sin
(

2πνt− 2π
x

λ

)
, (24.22)

the above equation means sun over all electrons and nuclei. In general, the size of the

molecule is much smaller than λ, therefore we can ignore the position dependency

and define:

~µ =
∑
i

qi~ri, molecular dipole moment. (24.23)

Then V (t) is

V (t) = − ~E0~µ sin(2πνt), (24.24)

so

V̂ (t) = −µ̂ ~E0 sin(2πνt)

= −µ̂ ~E0 sin(ω0t).
(24.25)

ω0 is angular frequency, and the whole term V̂ (t) called molecular dipole interaction.

24.4.1 Resonant Transition

For our application here, it is sufficient to consider two levels system which are

eigenstate of Ĥ0 with eigenvalue En & Em.

Figure 24.3: Two states(levels) of Ĥ0

For a system initially in |n〉 and making transition to |m〉(m 6= n), we use the

first order time-dependent perturbation theory to derive: We define

ωmn = Em−En
~ ,

~µmn = 〈φm|µ̂|φn〉,
~E = ε0ε̂.
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bm(t′) = − i
~

∫ t′

0
e

i
~ (Em−En)t 〈φm|−µ̂ ~E0 sin(ω0t)|φn〉 dt

=
i

~
~E0 〈φm|µ̂|φn〉

∫ t′

0
e

i
~ (Em−En)t × 1

2i
[eiω0t − e−iω0t]dt

=
ε0
2~
~µmn · ε̂

∫ t′

0

[
ei(ωmn+ω0)t − ei(ωmn−ω0)t

]
dt

=
E0

2~i
~µmn · ε̂

[ei(ωmn+ω0)t′ − 1

ωmn + ω0
− ei(ωmn−ω0)t′ − 1

ωmn − ω0

]
.

(24.26)

The the two terms in Eq.24.26 are only significant when:

• First term:

Max at ω0 = −ωmn, so ωmn < 0, Em < En, En = Em + ~ω0.

Figure 24.4: Stimulated emission.

This is sitmulated emission! or called anti-resonant term.
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• Second term:

Max at ω0 = ωmn, so ωmn > 0, Em > En, Em = En + ~ω0

Figure 24.5: Absorption.

This is absorption! or called resonant term.

We find that the significant transition occurs only when ∆E ' ~ω0, so we called

this resonant transition. And we also find that the rate for the two terms are

the same(kn→m = km→n), this is the “detailed balance” between |m〉 → |n〉 and

|n〉 → |m〉 transition.

In general, the transtion rate is described by the state-to-state version of the

Fermi’s Golden Rule:

Fermi’s Golden Rule:

For Vnm(t) = Vnmsin(ω0t), the rate is determined by:

km→n =
2π

~
|Vnm|2δ(Em − En ± ~ω0), (24.27)

where |Vnm|2 is the square of coupling and δ(Em − En ± ~ω0) is the

requirement of energy conservation.

This golden rule can be derived from the above result(i.e. derivation from bm(t′))

and it is important in describing transition rate, for those who are interested in, one

can check the more advanced book(......) for more contents. (or we put the quantum

dynamic handouts here for optional material?)
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24.5 Appendix: Dirac Delta-function

Some students might be first time to see the Dirac delta function, we introduce

it here if one don’t understand its meaning.

24.5.1 Dirac Delta Function

δ(x) is the “Dirac δ-function”, then it is defined as:

1.

δ(x) =

+∞ if x = 0,

0 if x 6= 0.
(24.28)

2. ∫ ∞
−∞

δ(x)dx = 1. (24.29)

3. ∫ ∞
−∞

f(x)δ(x− a)dx = f(a). (24.30)

Figure 24.6: Dirac delta function
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