
Lecture 26

Rotational and Vibrational

Spectroscopy

Study Goal of This Lecture

• Rotational spectrum

• non-rigid rotor: centrifugal distribution

• Vibrational spectrum

26.1 Preface

Now we explicitly consider molecular spectrum, starting from rotations (rigid

rotors) and vibrations (harmonic oscillator) that are related to nuclear motions.

Note that in spectroscopy we concern:

• position of the peaks → energy level, spectrum

• intensity of the peaks → absorption coefficient

• selection rules

The first point relates to eigenstate (energy levels) and the second and third one

relate to coupling square (|µ12|2).
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26.2 Molecular Spectroscopy

The nuclear Hamiltonian:

Ĥ = − ~2

2µ
∇2
R + E(R). (26.1)

In general, nuclear motions can be seperated into three different categories:

Ĥ = Ĥtr + Ĥrot + Ĥvib, (26.2)

translational, rotational and vibrational part correspond to free electron, rigid rotor

and harmonic model respectively. The wave function can be written as:

Ψ = ψe × ψtr × ψrot × ψvib. (26.3)

For general non-linear molecules, there are 3 translational, 3 rotational and

3N−6 vibrational motions. For diatomic or linear molecule, there are one rotational

mode disappears and thus, 3 translation, 2 rotational and 3N−5 vibrational motions.

26.3 Diatomic Molecule

In the following, we will focus on diatomic molecule:

Figure 26.1: Diatomic molecule.

for diatomic molecule, there is two rotational motions and one vibrational motion.

Note that two rotational motions are degenerate. Thus, the respective Hamiltonians

are:

Ĥrot =
L̂2

2I
, (26.4)

Ĥvib =
−~2

2µ
∇2
r + V (r), (26.5)

V (r) is determined by electronic energy, and the rotational Hamiltonian is indepen-

dent of Ĥe. (Rotational motions do not affect electronic motion.)

Let’s discuss the rotational transitions first. In general, I is a function of r Rotational spectroscopy

can be used to

measure bond length

and bond angles.
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and thus rotational motions are coupled to vibrational motions, it should also be

clear that I should depends on the rotational states, because of the centrifugal force.

However, to a first approximation, the rigid rotor approximation that treats I as a

constant is a very good one.

26.3.1 Ideal Rigid Rotor

For ideal rigid rotor, I is fixed, then

J is spectroscopic sym-

bol and l is angular mo-

mentum.

ĤrotY
m
J = ErY

m
J , (26.6)

Er(J) =
~
2I
J(J + 1) (26.7)

with J = 0, 1, 2, · · · , it is angular momentum quantum number,

M = −J, · · · , J.

The energy levels are (2J + 1)-fold degenerate!! In spectroscopy we like to use

“wavenumbers” cm−1 as the unit, then

F̃ (J) =
Er
hc

=
h

8π2Ic
J(J + 1) = B̃J(J + 1). (26.8)

F̃ (J) is term values and B̃ is rotational constant ' 10cm−1. This equation gives the

rotational energy levels for rotational transitions. Next, we would like to ask: How

about the selection rules?

26.3.2 Selection Rules

Consider a transition from ψJ,M → ψJ ′,M ′ , the transition rules are determined

by the transition dipole moment:

µ12 =

∫∫∫
ψ∗J ′,M ′ψ∗νψ

∗
e µ̂ψeψνψJ,Mdτedτvibdτrot. (26.9)

Define

µ̂0 =

∫∫
ψ∗νψ

∗
e µ̂ψeψνdτedτvib (26.10)

as permanent dipole moment of a molecule in the electronic and vibrational state.

Then we can write:

µ12 =

∫
ψ∗J ′,M ′ µ̂0ψJ,Mdτrot, (26.11)

therefore, the selection rules:
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1. The molecule has permanent dipole moment µ̂0 6= 0(i.e. polar)

2. specific selection rule: ∆J = ±1, ∆M = 0

We take a close look on point 2:

previously, we use the conservation of angular momentum arguement to argue that

∆J = ±1, but it is already included in the expression for the transition dipole

moment. Recall that µ̂0 is a vector along “some” axis → say z. Then ~µ0 ∼ z ∼
µ0 cos θ, therefore

µ12 =

∫
YM ′
J ′ (θ, φ) cos θYM

J (θ, φ)dΩθ,φ. (26.12)

The mathematcial properties of spherical harmonics:

cos θY m
l (θ, φ) =

√
l2 −m2

4l2 − 1
Y m
l−1(θ, φ) +

√
(l + 1)2 −m2

4(l + 1)2 − 1
Y m
l+1(θ, φ), (26.13)

coefficient are not important, so we rewrite

cos θY m
l (θ, φ) = c1Y

m
l−1(θ, φ) + c2Y

m
l+1(θ, φ) (26.14)

⇒
∫
YM ′
J ′ (θ, φ) cos θYM

J (θ, φ)dΩ

= c1

∫
YM ′
J ′ (θ, φ)YM

J−1(θ, φ)dΩ + c2

∫
YM ′
J ′ (θ, φ)YM

J+1(θ, φ)dΩ

= c1δJ ′,J−1δM ′,M + c2δJ ′,J+1δM ′,M ⇒ ∆J = ±1, ∆M = 0.

Thus, absorption occurs from J → J + 1 and absorption peaks locate at

ν̃ = F̃ (J + 1)− F̃ (J) = 2B̃(J + 1), J = 0, 1, 2, · · ·

Figure 26.2: Energy levels and rotational spectrum
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Above is the energy level between different allowed transition and the rotational

spectrum. Notice that the spacing between two adjacent lines is equal and that the

profile of spectrum is due to the competing between Boltzmann distribution and

number of degeneracy

fJ ∼ (2J + 1)e
− B̃J(J+1)

kBT . (26.15)

26.3.3 Non-rigid Rotor, Centrifugal Distribution

Now consider non-ideal case, where the moment of inertia increases as J in-

creases, due to the effects of centrifugal distribution

I ' I0(1 + αL̂2), (26.16)

αL̂2 is the leading term in the expansion of the rotational velocity. With above

equation, we obtain:

Ĥr =
L̂2

2I
=
L̂2

2
× 1

I0
× 1

1 + αL̂2

=
L̂2

2
× 1

I0
× 1− αL̂2

=
L̂2

2I0
− α

2I0
L̂4︸ ︷︷ ︸

Leading
correction term.
Shift the energy.

.

(26.17)

Note that L̂4 commute with L̂2, so YM
J is still the eigenfunction of L̂4. We put

spherical harmonic into the correction term and obtain:

L̂4YM
J = J2(J + 1)2YM

J , (26.18)

thus, the corrected F̃ (J) = B̃J(J+1)−D̃J2(J+1)2, where D̃ is centrifugal distortian

constant. The corrected spectrum:

ν = F̃ (J + 1)− F̃ (J) = 2B̃(J + 1)− 4D̃(J + 1)3︸ ︷︷ ︸
decreasing spacing

. (26.19)

26.4 Vibrational Spectra

26.4.1 Harmonic Oscillator

Now we turn our attentions to vibrational motion. The Potential energy surface,

V (r), generally looks like as we have discussed, the motions around the equilibrium
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point Re. An it can always be approximated by a Harmonic osillator: More generally speack-

ing, Taylor expansion to

the second order.
V (R) =

1

2
k(R−Re)2 =

1

2
mω2

0x
2. (26.20)

Figure 26.3: Vibrational Motion

We have already known that the energy levels Eν = (ν + 1
2)~ω, ν = 0, 1, 2, · · · .

Note that the zero point energy E0 = 1
2~ω, which helps to define the spectroscopic

dissociation energy D0.

26.4.2 Selection Rule

Now, the selection rule for vibrational transition from ν → ν ′ dependents on the

transition dipole moment:

µ12 =

∫
ψ∗ν′µ

(e)
0 ψνdτ, (26.21)

recall that µ0 =
∫
ψ∗e µ̂ψedτe. It is electric permanent dipole and is a function of x,

therefore, if we expand it around x = 0(set the origin at equilibrium position):

µ(e) = µ0 + (
∂µ

∂x
)|x=0 · x+

1

2
(
∂2µ

∂x2
)|x=0 · x2 + · · · , (26.22)

therefore,

µ12 = µ0 ·
��

�
��
�*0∫

ψ∗ν′ψνdτ + (
∂µ

∂x
)|x=0 ·

∫
ψ∗ν′xψνdτ + · · · . (26.23)

Thus, the selection rules are:
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1. Gross: ∂µ
∂x 6= 0, i.e. dipole moment changes with the vibrational coordinate.

2. Specific: ∆ν = ±1 (recall x ∝ (a† + a) )

now we see that the vibrational absoption occurs at a single frequency!

Of course, the ideal harmonic osscillator model is an approximation. The true

vibrational spectrum can contain additional lines, for example, the 0→ 2 transition

which is called the “overtone” transitions, but they are generally much weaker. In

next lecture, we will discuss about rotational and vibrational spectra for polyatomic

molecules and some finer points about rotational and vibrational spectroscopy. Es-

pecially the non-harmonic, termed “anharmonic” effects or “anharmonicity”.
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