
Lecture 5

A Particle in a Box

Study Goal of This Lecture

• Solving a particle in a box

• Know the eignevalue an eigenfunction of particle in a box

• Calculate the expectation value of particle in a box

• Solving a particle in a multidimensional box

5.1 Solving a particle in a box

5.1.1 General Procedure for Solving the T.I.S.E.

Up to this point we have covered the basic ”rules” of quantum mechancis and

in the following lectures we will basically repeatedly ”practicing” applications of

these rules and approximated methods. It takes some work to familize/internalized

quantum mechanics rules. We will start with simple/exactly solvable models. Note

that we have gone over some mathematics without doing much practices/examples,

particularly, we spent quite some time discuss about ”measurement”, and now we

are ready to apply the formalism to real problems. After we have spent some time

to practice some simple quantum mechanics problems, we will returm to the issue

of fundamental rules of quantum mechanics and explicitly state the ”postulates” or

”ground rules” of quantum mechanic.
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Now, lets focus on the applications of quantum mechanics to ”solving” simple

problems. We spent some time talking about the important of ”eigenfunction” and

”eigenvalues” of quantum mechanical operators, indeed, we state that a single mea- Eigenfunctions and

eigenvalues are impor-

tant.

surement causes a wavefunction to collapse into a eigenfunction of the associated

observable and results an outcome of a value associated with the eigenfunction. It

can’t be emphasized enough that eigenfunctions of an quantum mechanical operator

plays the central role in quantum mechanics. Actually, the Schrödinger equation is

an eigenvalue problem.

Ĥψ = Eψ, Ĥ =
p̂2

2m
+ V̂ (x). (5.1)

⇒ eigenfunctions of Ĥ, i.e. energy eigenstates, are important ⇒ they represent Ĥ also governs time

evolution.

Some declaration or no-

tations:

Âφ1 = a1φ1, this is

a eigenproblem, a1 is

a eigenvalue and φ1 is

a eigenfunction. Eigen-

function = wavefunc-

tion = state.

the likely stable/stationary ”energy” states. (In other words, eigenstate of Ĥ are

energetically stable states)

5.1.2 Particle in a 1-D box

The simplest quantum mechanical system, hence always the first problem to

solve in a quantum mechanic class, is the particle in a one dimensional box. Consider

a particle of mass m constrainted to move in a 1-D box of length a.

Figure 5.1: Superposition of several wave.

The potential energy is:

V (x) =


∞ if x < 0

0 if 0 ≤ x ≤ a

∞ if x > a

. (5.2)
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To solve the Schrödinger equation, we need to write down the Hamiltonian first:

Ĥ =
p̂2

2m
+ V̂ (x) =

−~2

2m

d2

dx2
, for 0 ≤ x ≤ a. (5.3)

There is no need to consider the range outside the box since the potential energy

is infinity. Next, we write down the whole Schrödinger equation:

−~2

2m

d2

dx2
ψ(x) = Eψ(x) (5.4)

Here we call it k for a

reason.⇒ d2

dx2
ψ(x) = −k2ψ(x), where k =

√
2mE

~
. (5.5)

The general solution of this differential equation is

ψ(x) = A cos(kx) +B sin(kx). (5.6)

Recall that for a physically admissible ψ(x), ψ(x) must satisfy some conditions, such

as continuity, smoothness, normalized ... etc.

In this case, ψ(x) = 0 outside the box since we requires that V ψ(x) = 0 even when

V =∞. To avoid discontinuity at x = 0 and x = a, we must require.

ψ(x = 0) = 0, (5.7)

ψ(x = a) = 0. (5.8)

These are boundary conditions. From Equ(5.7), we find

A cos(k · 0) +B sin(k · 0) = 0⇒ A = 0. (5.9)

and from Equ (5.8), we obtain

B sin(ka) = 0⇒ ka = nπ, n = 1, 2, 3, · · · , (5.10)

where n is called quantum number, describes discrete eigenstate. n 6= 0 because it

will make ψ(x) = 0. Q: what does it mean

ψ(x) = 0 and why it is

not valid?

From Equ(5.10), we find that k is not all arbitrary number, the valid k is:

kn =
nπ

a
. (5.11)

Solving the E:

Be careful of distin-

guishing between ~ and

h!
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En =
~2k2

2m
=

~2

2m
× n2π2

a2
=

n2h2

8ma2
. (5.12)

corresponding eigenfunction:

ψn(x) = B sin(kx) = B sin
(nπx

a

)
. (5.13)

To determine B, we consider the normalization condition

1 =

∫ a

0
ψ∗
n(x)ψn(x)dx = |B|2 ·

∫ a

0
sin2(

nπx

a
)dx (5.14)

= |B|2 ·
∫ a

0

[1

2
− 1

2
cos

(
2nπx

a

)]
dx

= |B|2 ·
[1

2
a− 1

2

a

2nπ
sin

(
2nπx

a

)∣∣∣a
0

]
=

1

2
|B|2a.

∴ B =

√
2

a
, (5.15)

Any arbitrary φ(x) can

be written as φ(x) =∑
nCnψn(x).

ψn(x) =

√
2

a
sin

nπx

a
. (5.16)

It is easy to show that
∫
ψn(x)ψm(x)dx = 0 for n 6= m, that is {ψn} are orthornor-

mal. From these eigenfunctions, we can calculate any properties of the particle.

Let’s summerize the systematic way of solving the Schrödinger equation :

1. Write down Ĥ

2. Write down Schrödinger equation and simplify.

3. Find general solutions to the Schrödinger equation.

4. Find boundary condtions.

5. Plug in the boundary conditions and find quantization conditions.

6. Find En and ψn(x).

7. Normalize the eigenfunction.

With the eigenfunctions, we can calculate experimental expectation values when

the system is prepared in any of the states (Notice that one wavefunction is one

quantum state).
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5.2 Properties of a Particle in a Box

Let’s plot these eigenfunctions → stationary states.

Figure 5.2: Plot of the wavefunction of particle in a box.

Observation:

• Energy ∝ n2, not equally spaced

• As E increases, number of nodes increases too (Number of node = n− 1.)

• The probability |ψ(x)|2 is more localized in the center at n = 1 and then spread

out as n ↑

• The zero point energy is h2

8mn2

• Energy ∝ 1
a2

, so when size of the box increases, the energy drops rapidlly

• Return to classical state at n→∞

Note that the particle is not ”fixed” localized in space, instead, we can only

calculate the ”probability” of finding the particle at a position. Now let’s calculated
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the averageand ”width”/spreading of the particle.

For example:

〈x〉n =

∫ a

0
ψ∗
n(x)x̂ψn(x)dx =

2

a

∫ a

0
sin

nπx

a
x sin

nπx

a
dx

2

a

∫ a

0
sin2 nπx

a
dx. (5.17)

Look up the integral table,∫
x sin2(ux)dx =

x2

4
− x sin(2ux)

4u
− cos(2ux)

8u2
, (5.18)

therefore,

〈x〉n =
2

a
× a2

4
=
a

2
⇐ center of box for all eigenstates. (5.19)

Spreading of the eigenstates:

〈x̂2〉n =

∫ a

0
ψ∗
n(x)x̂2ψn(x)dx =

2

a

∫ a

0
x2 sin2 nπx

a
dx = (

a

2πn
)2(

4π2n2

3
− 2), (5.20)

so the variance is:

∆x2 = 〈x2〉 − 〈x〉2 =
a2

3
− 3a2

2n2π2
− a2

4
=
a2

12
− 3a2

2n2π2
. (5.21)

Therefore,

∆x =

√
a2

12
− 3a2

2n2π2
. (5.22)

Similarly, we can calculate 〈px〉 and 〈p2x〉. Directly get the result:

〈px〉 = 0, (5.23)

〈p2x〉 =
n2~2π2

a2
, (5.24)

thus

∆px =
n~π
a
. (5.25)

With Equ(5.22) and Equ(5.25), we obtain:

As n ↑, ∆x∆px ↑
The uncertainty princi-

ple is a ”lower bound”.

∆x∆px =
~
2

√
(
π2

3
n2 − 2) >

~
2
. (5.26)

The Heisenberg uncertainty principle is hold.
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5.3 Particle in a 3-D box

This can be genrerlized to higher dimensions, consider a box of dimension a, b, c

along x, y, z axis. Thus the Schrödinger equation can be written as

− ~2

2m
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)ψ(x, y, z) = Eψ(x, y, z). (5.27)

Note that ψ is a function of three variables, and the variables in the Hamiltonian

are independent. i.e. no terms such as ∂
∂x

∂
∂y or xy · · · .

We call this kind of system a ”seperable” system. In general, the solution can

be written as a ”product” of indepedent functions Independent degree of

freedom → product!!

To write in a product is a

huge reduction of com-

plexity.

ψ(x, y, z) = X(x)Y (y)Z(z). (5.28)

Plugging into the equation, we obtain:

− ~2

2m
[Y (y)Z(z)

∂2

∂x2
X(x) +X(x)Z(z)

∂2

∂y2
Y (y) +X(x)Y (y)

∂2

∂z2
Z(z)]

= EX(x)Y (y)Z(z).

(5.29)

Divide by X(x)Y (y)Z(z) on both sides, we obtain

− ~2

2m
[

1

X(x)

∂2

∂x2
X(x) +

1

Y (y)

∂2

∂y2
Y (y) +

1

Z(z)

∂2

∂z2
Z(z)] = E (5.30)

Why it can be expanded

in this manner?

⇒


−~2
2m

∂2

∂x2X(x) = ExX(x)

−~2
2m

∂2

∂y2
Y (y) = EyY (y)

−~2
2m

∂2

∂z2
Z(z) = EzZ(z)

, Ex + Ey + Ez = E. (5.31)

The original equation is now separated into three independent equations, and we

know the solutions ⇒ each one is a 1-D particle in a box.

The solution for 1-D particle in a box is:

X(x) =

√
2

a
sin
(nxπx

a

)
. (5.32)

Therefore, the wavefunctions of 3-D particle in a box is:

A product state.ψnx,ny ,nz(x, y, z) =

√
8

abc
sin
(nxπx

a

)
sin
(nyπy

b

)
sin
(nzπz

c

)
, (5.33)
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energy is:

Enx,ny ,nz =
h2

8m
(
n2x
a2

+
n2y
b2

+
n2z
c2

). (5.34)

Now the eigenstate are determined by three quantum numbers, i.e. we must assign

quantum number for each coordinate to define a state.

Observe from the result above, we could find that:

energy → sum, wave function → products Only for independent

subsystems!
For a cubic box, energy levels on all three directions are equal, so

Degenerate:

different wavefunctions

(eigenfunctions)

with the same

energy (eigenvalue).


nx

ny

nz

 =


1 | 2 1 1 | 2 2 1 · · ·
1 | 1 2 1 | 2 1 2 · · ·
1 | 1 1 2 | 1 2 2 · · ·

 (5.35)

The first column in the right hand side is the ground state. The second to forth

column represent first excited states and it is three-fold degenerate.
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