
Lecture 8

Properties of Quantum

Harmonic Oscillator

Study Goal of This Lecture

• Energy level and vibrational states

• Expectation values

8.1 Energy Levels and Wavefunctions

We have ”solved” the quantum harmonic oscillator model using the operator

method. Again, the mathematics is not difficult but the ”logic” needs some effort

to get used to it. Think it through. Now we are ready to examine the rules. The

quantum harmonic oscillator model yields.

Hamiltonian:

Ĥ =
p̂2

2m
+

1

2
mω2x̂2, ω =

√
k

µ
, (8.1)

k is force constant which related to bond energy and the µ is reduced mass for di-

atomics.
µ = m1m2

m1+m2

Schrödinger Equation:

Ĥψn = Enψn. (8.2)
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Energy:

En = (n+
1

2
)~ω, n = 0, 1, 2, 3, · · · . (8.3)

Wavefunctions:

ψ0(x) = (
µω

π~
)
1
4 · e−

µω
2~ x

2
, ψn(x) =

[ 1√
2

(

√
µω

~
x−

√
~
µω

d

dx
)
]n
· ψ0(x). (8.4)

Energy levels and stationary wave functions:

Figure 8.1: Wavefunctions of a quantum harmonic oscillator. Figure’s author: Al-

lenMcC.

The features of harmonic oscillator:

1. ψ0(x) is non-degenerate, all levels are non-degenerate.

2. Energy levels are equally spaced. The vibrational quanta = ~ω and n is the

number of vibrational energy in the oscillator. The zero point energy = 1
2~ω.

3. Wave function can be constructed by considering number of nodes.

4. At classical turning points: kinetic energy = 0,

V (xt) = En ⇒
1

2
µω2x2t = (n+

1

2
)~ω, (8.5)
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x
(n)
t =

√
2~
µω

(n+
1

2
). (8.6)

Still, |ψn(x > xnt )|2 > 0, there is pobability of finding the particle in the

classical forbidden region ⇒ quantum tunneling.

5. Vibrational spectrum (IR/Raman) from transition between nearest vibrational

levels.

∴ ∆E = ~ω = hν, ν =
ω

2π
=

1

2π

√
k

µ
,

note ν ∝
√

k
µ , for stronger bond: ν ↑ and for larger mass: ν ↓. This related to

isotope effect. (See Exercise)

8.2 Expectation Values

In addition to thest properties of energy levels and wave functions, we can also

quantitative calculate any expectation values of observables using the results we have

so far. Let’s recall the properties of ladder operators:

â =

√
mω

2~
(x̂+ i

p̂

mω
), lowing operator,

â† =

√
mω

2~
(x̂− i p̂

mω
), raising operator,

x̂ =

√
~

2mω
(â† + â),

p̂ = i

√
~mω

2
(â† − â),

[â, â†] = 1,

â†ψn =
√
n+ 1ψn+1,

âψn =
√
nψn−1.

These results allow us to rewrite any observable in terms of â and â†, then we can

calculate expectation values easily!

Let’s calculate the position and momentum expectation values for the vibrational

states first. Before we start, note that {ψn} form a orthonormal set

∴
∫
ψ∗nâψndτ =

∫
ψ∗n(
√
n+ 1)ψn+1dτ =

√
n+ 1

∫
ψ∗nψn+1dτ = 0. (8.7)
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Similarly,

∴
∫
ψ∗nâ

†ψndτ = 0. (8.8)

Expectation value of position

The expectation value of position of wavefunction with n quantum number.

〈x̂〉n =

∫
ψ∗n(x)x̂ψm(x)dx

=

∫
ψ∗n(x)

√
~

2mω
(â† + â)ψn(x)dx

=

√
~

2mω

∫
ψ∗n(x) · [

√
n+ 1ψn+1(x) +

√
nψn−1(x) ]dx = 0.

(8.9)

Notice that only the

term which the num-

ber of â and â† match

will contribute.(or say-

ing nonzero)

〈x̂2〉 =

∫
ψ∗n(x)

~
2mω

(â† + â2)ψn(x)dx

=
~

2mω

∫
ψ∗n(x){(â† + â)[

√
n+ 1ψn+1(x) +

√
nψn−1(x)]}dx

=
~

2mω

∫
ψ∗n(x){

√
(n+ 1)(n+ 2)ψn+2(x) + nψn(x)+

(n+ 1)ψn(x) +
√
n(n− 1)ψn−2(x)}dx

=
~

2µω
(2n+ 1) =

1

µω2
~ω(n+

1

2
) =

En
µω2

.

(8.10)

With these result, we obtain the potential energy:

〈V̂ 〉n = 〈1
2
µω2x̂2〉n =

1

2
µω2〈x̂2〉n =

1

2
En. (8.11)

We find that it is half the total energy → make sense!
Try to explain why it is

one half the total energy

in your own language!
The expectation value of momentum

Since the potential energy is known, the kinetic energy can be determined easily:

〈T̂ 〉n = En − 〈V̂ 〉n =
1

2
En. (8.12)

So the expectation value of momentum square:

∴ 〈 p̂
2

2µ
〉n = 〈T̂ 〉n, 〈p̂2〉n = 2µ · 1

2
En = µ~ω(n+

1

2
). (8.13)

The above fomula can be checked using the same trick of ladder operator. Ex-

pectation value of momentum can be calculated too and one will find it is is zero

(〈p̂〉n = 0).
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Uncertainty of harmonic oscillator

Recall that for any phycial observable Â, the uncertainty is

(∆Â)2 = 〈(Â− 〈A〉)2〉 = 〈Â2〉 − 〈A〉2, (8.14)

so for the uncertainty of position and momentum:

∆x̂ =
√
〈x̂2〉 − 〈x〉2 =

√
~

2µω
, (8.15)

∆p̂ =
√
〈p̂2〉 − 〈p〉2 =

√
µ~ω

2
. (8.16)

Multiply them, we obtain

∆x̂∆p̂ =
~
2
. (8.17)

This is the minimal possible value allowed by the Heisenberg uncertainty principle.

This is a special property of the ground state of the harmonic osillator model.

It is also called a ”minimal uncetainty wavefunction”, ”coherent state”, · · · . We

will show what’s special about it when we discuss time-evolution of it. The key for

calculating the expectation value of quantum harmonic oscillator is to use â and â†.

8.2.1 Evaluate the Expectation Value of Superposition State

The above calculation is not restricted to eigenstate. Since Ĥψn = Enψn, {ψn}
form a complete orthonormal set, any wavefunction can be written as superposition

of {ψn}:
Ψ(x) =

∑
n

Cnψn, where Cn =

∫
ψ∗nΨ(x)dx. (8.18)

Then any Â(x, p) can be evaluated:

〈Â〉 =

∫
Ψ∗(x) · Â(x̂, p̂) ·Ψ(x)dx. (8.19)

Let’s consider an example, for:

Ψ =
1√
2

(ψ0 + ψ1), (8.20)

then the energy will be

〈E〉 =

∫
Ψ∗ĤΨdτ =

1

2

∫
(ψ∗0 + ψ∗1)Ĥ(ψ0 + ψ1)dτ. (8.21)
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Since Ĥ(ψ0 + ψ1) = Ĥψ0 + Ĥψ1 = E0ψ0 + E1ψ1

〈E〉 =

∫
Ψ∗ĤΨdτ =

1

2

∫
(ψ∗0 + ψ∗1)(E0ψ0 + E1ψ1)dτ

=
1

2
[ E0

∫
ψ∗0ψ0dτ + E1

∫
ψ∗0ψ1dτ + E0

∫
ψ∗1ψ0dτ + E1

∫
ψ∗1ψ1dτ ]

=
1

2
(E0 + E1)← averaged energy!

(8.22)

and for the position:

〈x〉 =
1

2

∫
(ψ∗0 + ψ∗1)

√
~

2mω
(â† + â)(ψ0 + ψ1)dτ

=
1

2

√
~

2mω

∫
(ψ∗0 + ψ∗1)(ψ1 +

√
2ψ2 + ψ0)dτ

=
1

2

√
~

2mω
6= 0.

(8.23)

Figure 8.2: Ψ = 1√
2
(ψ0 + ψ1). This state can exist but it is not a stationary state.

6


