
Lecture 9

Theories of Quantum Mechanics

Study Goal of This Lecture

• Postulate of quantum mechanics

• Dirac notation

9.1 Theories of quantum mechanics

Now we are ready to summerize the fundation of quantum mechanics. Note that

this is introduced to provide a set of well defined rules that allows us to calculate and

explain experimental observables. Philosophical questions such as why Schrödinger

equation is linear and why measurement are probabilistic are out of the scope of our

discussions.

9.1.1 Theories of Quantum Mechanics

Quantum mechanics can be formulated in terms of six postulates: This is Silbey’s version,

everything here follow

”particle are waves”.
1. Wavefunction

The state of a qunatum system is fully specified by a wavefunction ψ(~r, t). The

wavefunction has no physical meaning but |ψ(~r, t)|2dxdydz is the probability

of finding the system in the volumn dxdydz located at ~r at time t. This also

requires: ∫
ψ∗(~r)ψ(~r)dτ = 1, normalization (9.1)
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and

ψ(~r) is a smooth and single value function. (9.2)

2. Observables

For each experimentally measurable property, there exists a corresponding Her-

mitian operator in quantum mechanics.

x̂→ x·, p̂x → −i~
∂

∂x
. (9.3)

3. Measurement

In a single measurement, the possible outcome of the observable Â are the

eigenvalues {ai} of Â.

Âφi = aiφi. (9.4)

4. Expectation value

If a quantum system is described by the wave function ψ(~r, t) and the value of

the observable is measured once each on many identical preparations of such

system, then the averaged value of all these measurement is given by

〈Â〉 =

∫
ψ∗(~r, t)Âψ(~r, t)dτ, (9.5)

note that probability of measured the eigenvalue ai of Â is

|ci|2 = |
∫
ψ∗(~r)φi(~r)dτ |2. (9.6)

5. Time evolution

The wavefunction of a system changes with the time according to the time-

dependent Schrödinger equation:

i~
∂

∂t
ψ(~r, t) = Ĥψ(~r, t), (9.7)

where Ĥ is the Hamiltonian of the system. Assume that Ĥ is time-independent,

then the above equation can be solved via seperation of variables, define:

ψ(~r, t) = φ(~r)f(t), (9.8)

plug into Equ(9.7), we obtain

i~φ(~r)
df(t)

dt
= Ĥφ(~r)f(t), (9.9)

i~
1

f(t)

df(t)

dt
= 1

φ(~r)Ĥ(~r)φ(~r). (9.10)
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Note that the LHS depends on t and the RHS depends on ~r, in order to hold

the equal sign, the only solution is that both side equal to a constant.i~
1
f(t)

df(t)
dt = C,

1
φ(~r)Ĥ(~r)φ(~r) = C.

(9.11)

Clearly, the second equation is the time-independent Schrödinger equation, so

C = E, and the first equation yields:

df(t)

dt
=
−i
~
Enf(t), (9.12)

∴ f(t) = e−
iEnt

~ , (9.13)

ψn(~r, t) = φn(~r)e
−iEnt

~ . (9.14)

The solution of the time-independent Schrödinger equation provides eigenwave-

functions of a quantum mechanic system. These eigenwavefunctions change

in time in a single ”phase oscillating” form. Note |φn(~r, t)|2 = φ∗n(~r, t =

0)φn(~r, t = 0), it is independent of time, which means φn(~r, t) are station-

ary wavefunctions.

We solve time-independent Schrödinger equation in order to have a nice/simple

way to describe time-evolution. For an arbitrary wave function(i.e. not neces-

sary be the eigenstate), it can be written as a linear superposition of eigenstate

{φn} at time t = 0.

ψ(~r, t = 0) =
∑
n

Cnφn(~r), initial condition. (9.15)

According to Schrödinger equation

ψ(~r, t) =
∑
n

Cne
−Ent

~ φn(~r), ←− wavefunction at later time (9.16)

The wave function at any later time can be fully determined! ⇒ quantum

dynamics.

*We will spend some time on next lecture to discuss about quantum dynamics,

but they are beyond our scope and the materials will not show up in the exam.

6. Pauli exclusion principle This part will be dis-

cussed later when we

dealing with many-

electron wave functions.

Wave functions describing a many-electron system must change sign(i.e. anti-

symmetry) under the exchange of any two electrons.
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Think that these rules were verified by experiments but not ”proved” through

logical deductions. These theories form the fundation of quantum mechanic. We have

applied these rules, either explicitly or implicitly, to study several quantum systems.

Later when we encounter more complicated systems, you will see these again and

again. These principles provide satisfactory explanation of physical experiments!

Now we are in position to introduce a compact notation for the description of

quantum mechanical systems → The Dirac notation.

9.2 The Dirac Bracket Notation

Dirac notation is a compact notation to describe quantum mechanical phenom-

ena, most useful when formulating the ”matrix formalation” of quantum mechanics.

Here, we will only introduce the notation without going into the detailed formulation

of ”Matrix mechanics”. The goal is to introduce this common notation that we will

be using later in the course. The quantum mechanics can be formulated into two

mechanics:

• Schrödinger → wave mechanics

• Heisenberg → matrix mechanics

These are two approaches to quantum mechanics. Heisenberg’s approach came

out after Schrödinger’s wave mechanics had been well accepted by the community.

Heisenberg’s approach puzzled the physicist then. There even a intense debate on

which formalism is correct. At the end, Von Neumann proves that two approches

are equivalent and Dirac proposed a whole new mechanics which unified these two

mechanics. Dirac’s idea is the mechanics we use nowaday.

Recall, the key in qunatum mechanics is the superposition principle. It states

that any wavefunction can be written as linear combination of eigenfunctions of an

operator Â

ψ =
∑
n

Cnφn, where Âφn = anφn. (9.17)
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Let’s expand this summation:

ψ =
∑
n

Cnφn

= C1φ1 + C2φ2 + · · ·+ Cnφn

=

C1φ1+

C2φ2+

C3φ3+

...

Cnφn

=



C1

C2

C3

...

Cn


.

We find that we can write a wavefunction as a column vector and the basis is the

eigenfunction of Â. Also, we can define a operators as a matrix. Now the problem

becomes: How can one write down the expectation value with these fomulation? We

define ”dual” kets and bras.

Definition 1. Kets and Bras

Quantum state ψ −→ a ket |ψ〉 (column vector)

Each ket has a complimentary ”bra”

−→ a bra 〈ψ| ≡ (|ψ〉)† ∴ row vector

|ψ〉 =



C1

C2

C3

...

Cn


, 〈ψ| =

(
C∗1 C∗2 C∗3 · · · C∗n

)
.

Kets and bras can also be written as superposition form|ψ〉 = C1 |φ1〉+ C2 |φ2〉+ · · · ,

〈ψ| = C∗1 〈φ1|+ C∗2 〈φ2|+ · · · .

Definition 2. Inner product

The inner product is defined as:

〈ψ1|ψ2〉 =

∫
ψ∗1ψ2dτ. (9.18)
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Then for eigenstates of Â, {|φn〉} (Â is Hermitian)

〈φn|φm〉 = δnm, (9.19)

so

〈ψ|ψ〉 = (
∑
n

C∗n 〈φn|)(
∑
m

Cm |φm〉)

=
∑
n,m

C∗nCm 〈φn|φm〉 =
∑
n,m

C∗nCmδn,m

=
∑
n

|Cn|2 = 1 ← normalization condition.

(9.20)

9.2.1 Expectation value

So far, we have learned: Given a hermitian operator Â, the expectation value:

〈Â〉 =

∫
ψ∗Âψdτ. (9.21)

How do we express this in Dirac notation? Note that if ψ is a ”ket” → |ψ〉, then Âψ

is also a ”ket” →
∣∣∣Âψ〉. Therefore

〈Â〉 =

∫
φ∗(Âψ)dτ =

〈
ψ
∣∣∣Âψ〉 . (9.22)

Because of the Hermitian properties:∫
ψ∗Âψdτ =

∫
ψ(Â†ψ)∗dτ =

∫
(Âψ)∗ψdτ =

〈
Âψ
∣∣∣ψ〉 . (9.23)

We conclude that we can write

〈Â〉 =
〈
ψ
∣∣∣Âψ〉 =

〈
Âψ
∣∣∣ψ〉 = 〈ψ|Â|ψ〉 , (9.24)

and this gives us:

〈φn|Â|φn〉 = an 〈φn|φn〉 = an. (9.25)

Now we back to the algebra in Dirac notation:

|ψ〉 =
∑
n

Cn |φn〉 ,
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〈
Â
〉

= 〈ψ|Â|ψ〉

= (
∑
n

C∗n 〈φn|)Â(
∑
m

Cm |φm〉)

= (
∑
n

C∗n 〈φn|)
∑
m

CmÂ |φm〉

=
∑
n,m

C∗nCm 〈φn|Â|φn〉

=
∑
n,m

C∗nCman 〈φn|φn〉 =
∑
n,m

C∗nCmanδn,m

=
∑
n

|Cn|2an.

↑ This is the definition of measurement we mentioned in previous lecture!

Comparision

Wave mechanics Dirac notation

ψ(x) |ψ〉
ψ∗(x) 〈ψ|∫

ψ∗1(x)ψ2(x)dx 〈ψ1|ψ2〉〈
Â
〉

=
∫
ψ∗(x)Âψ(x)dx 〈ψ|Â|ψ〉

9.3 Example of Utilizing Dirac Notation

Here we demostrate the using of Dirac notation in harmonic oscillator. The

solution of Schrödinger equation can be written as:

Ĥ |n〉 = (n+
1

2
)~ω |n〉 , (9.26)

and for ladder operator, the identities:

N̂ = â†â, (9.27)

N̂ |n〉 = n |n〉 , (9.28)

â |n〉 =
√
n |n− 1〉 , (9.29)

â† |n〉 =
√
n+ 1 |n+ 1〉 . (9.30)

Now we consider the expecation value of x̂2 and p̂2:

x̂ =

√
~

2mω0
(â† + â), p̂ = i

√
~mω0

2
(â† − â), (9.31)
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〈
x2
〉
n

= 〈n| ~
2mω0

(â† + â)(â† + â)|n〉

=
~

2mω0
〈n|â†â† + â†â+ ââ† + ââ|n〉

=
~

2mω0
〈n|â†â+ ââ†|n〉

=
~

2mω0
〈n|n+ n+ 1|n〉

= (n+
1

2
)
~
mω

.

(9.32)

〈p̂2〉n = (n+
1

2
)~mω. (9.33)

For the eigenstate:

∆x∆p =

√
(n+

1

2
)
~
mω

√
(n+

1

2
)~mω = (n+

1

2
)~ ≥ ~

2
. (9.34)

Dirac notation makes the algebra more concise and easy to read.
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