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Information 

•  Study session on quantum computation of 
quantum chemistry – originally meant to be 
for my group only… 

•  Location: Chemistry Building Room 215 
•  Time: 12:30 PM – 2:00 PM (Welcome to 

bring your lunch!) 
•  CEIBA:  

https://ceiba.ntu.edu.tw/course/d0bc36/index.htm 

•  Lectures will be recorded and posted on 
Youtube 



Information 

•  We will study the following four papers: 
1.  I. Kassal et al., Annu. Rev. Phys. Chem. 62, 185 

(2011). 
2.  P. J. J. O’Malley et al., Phys. Rev. X 6, 361 (2016). 
3.  R. Babbush et al., Phys. Rev. X 8, 011044 (2018). 
4.  I. D. Kivlichan et al., Phys. Rev. Lett. 120, 110501 

(2018). 
•  The goal is to thoroughly examine the state-of-art 

theories for quantum computing in Chemistry – true 
quantum advantage or not? – and to promote 
research in this direction 

•  Why these four papers? 



Paper #1 

•  A review for physical chemists! (Aspuru-Guzik) 
•  Basics of quantum computing, and overview of the 

problem and basic algorithms (up to 2010) 
•  Qubits/quantum circuit/QFT/PEA/electronic 

Hamiltonian in second-quantized form  



Paper #2 

•  Algorithms and experiments on the simulation of H2 
dissociation curve (John Martinis, Josephson Junction 
Quantum Computing, UCSB & Google) 

•  Read-outs based on variational quantum eigensolver & 
phase estimation algorithm are both tested 

•  Jordan-Wigner transformation/Bravyi-Kitaev 
transformation/Trotterization/VQE/iterative PEA/CI 
space reduction/unitary coupled cluster 



Paper #3 

•  “Linear-scaling” algorithms for solving electronic 
structures in planewave dual basis – simulation of 
materials, i.e. quantum VASP!! 

•  Basic solid-state physics/FFFT/linear depth quantum 
simulation/computation on planar architecture/Taylor-
series algorithm 



Paper #4 

•  “Linear-scaling” algorithms for Trotter propagation -- 
FFFT replaced by fermonic swap gates 

•  Fermonic swap network/linear depth Trotter/linear 
depth preparation of Slater determinants. 

•  We hope that in the end the 4 papers would provide a 
unified view of QC in Q. Chem. 



Electronic Structure Problem 

•  Solving the electronic structure problem is a major 
challenge in quantum chemistry. 

•  For more details, see 
https://ceiba.ntu.edu.tw/course/0d5091/index.htm 



Schrödinger Equation 
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Courtesy of Hai Lin 

HΨ = EΨ



Approximations 
To solve  the Schrödinger equation approximately, assumptions 
are made to simplify the equation: 
 

• Born-Oppenheimer approximation allows separate 
treatment of nuclei and electrons. (ma >> me) 

• Hartree-Fock independent electron approximation 
allows each electron to be considered as being affected by 
the sum (field) of all other electrons. 

• LCAO Approximation represents molecular orbitals as 
linear combinations of atomic orbitals (basis functions). 

Courtesy of Hai Lin 



Born-Oppenheimer Approximation 
• Nuclei are much heavier than electrons (ma / me > 1836) and 
move much slower. 

• Effectively, electrons adjust themselves instantaneously to 
nuclear configurations.  

• Electron and nuclear motions are uncoupled, thus the energies 
of the two are separable.  

Energy 

Internuclear 
Distance 

1.  For a given nuclear 
configuration, one calculates 
electronic energy.  

2.  As nuclei move continuously, 
the points of electronic energy 
joint to form a potential energy 
surface on which nuclei move.  

Elec. Schrodinger equation: H (R)Ψ(R) = E(R)Ψ(R)



Basic Quantum Mechanics 

HΨ = EΨ

Ψ = Ψ(x1, x2..., xN )
The N-electron wave function is a function with 3N 
dimensions, this is too complicated to even “think 
about” practically for systems with > 3 electrons à 
must simplify the functional form of the wave 
function. 

E = Ψ Ĥ Ψ ≥ EexactVariational principle: 

Schrodinger equation: 



… 

Many-electron Wave function 

e1 
e2 

eN 

ei 

Pauli principle: Two electrons can not have all quantum 
number equal.  

 

This requires that the total (many-electron) wave function  
is anti-symmetric whenever one exchanges two electrons’  
coordinates.  

Hartree product: All electrons are independent, each in its own orbital. 

Slater determinant satisfies the Pauli exclusion principle. 

ψ HP (x1,x2 ,...,xN ) = f1(x1) f2 (x2 ) fN (xN )

ψ (x1,x2 ,...,xN ) = −ψ (x2 ,x1,...,xN )

ψ (x1,x2 ,…xN ) =
1
N !

f1(x1) f2 (x1)  fN (x1)
f1(x2 ) f2 (x2 )  fN (x2 )
   

f1(xN ) f2 (xN )  fN (xN )
Courtesy of Hai Lin 



Many-electron Wave function (2) 

e1 
e2 

The total (many-electron) wavefuntion is anti-symmetric when one 
exchanges two electrons’ coordinates x1 and x2.  

Hartree product: Both electrons are independent. 

Slater determinant satisfies the Pauli principle. 

Example: A two-electron system. 

ψ HP (x1,x2 ) = f1(x1) f2 (x2 )

ψ (x1,x2 ) =
1
2

f1(x1) f2 (x1)
f1(x2 ) f2 (x2 )

ψ (x1,x2 ) = (1 / 2)
1/2 f1(x1) f2 (x2 ) − f2 (x1) f1(x2 )[ ]

ψ (x2 ,x1) = (1 / 2)
1/2 f1(x2 ) f2 (x1) − f2 (x2 ) f1(x1)[ ] = −ψ (x1,x2 )

Courtesy of Hai Lin 



Molecular Orbital & Slater Determinant 

occupied 
orbitals 

virtual 
orbitals 

� 

χ i(x1) :  spin orbital
x1 :  electron variable

Single-electron wavefunction (orbital!!): 

N-electron wavefunction: Slater determinants 

  

� 

Ψ(x1,...,xN ) = (N!)1/ 2

χ i(x1) χ j (x1)  χk (x1)
χ i(x2) χ j (x2)  χk (xN )
  

χ i(xN ) χ j (xN )  χk (xN )

Given a basis, Hartree-Fock theory provides a 
variational groundstate & molecular orbitals within 
the single determinant approximation è mean-field, 
no electron correlations 



Molecular Orbital & Slater Determinant 

occupied 
orbitals 

virtual 
orbitals 

� 

χ i(x1) :  spin orbital
x1 :  electron variable

Single-electron wavefunction (orbital!!): 

N-electron wavefunction: Slater determinants 

  

� 

Ψ(x1,...,xN ) = (N!)1/ 2

χ i(x1) χ j (x1)  χk (x1)
χ i(x2) χ j (x2)  χk (xN )
  

χ i(xN ) χ j (xN )  χk (xN )

Electron configuration: a many-electron wave 
function constructed from a single slater determinant 



•  Use a form that describes hydrogenic 
orbitals well 
– Slater functions (STO): physical, but difficult to 

calculate two-electron integrals 
– Gaussians (GTO): analytical two-electron 

integrals, but wrong behavior at  
nucleus and decays too fast with r 
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LCAO è Basis Functions 

Slater function Gaussian 



•  GTOs have many advantages, most 
importantly, product of two Gaussians 
remains a Gaussian – analytical integrals 

Gaussian Basis Functions 



Basis Functions 

Hydroden-like atomic orbitals 



•  STO-nG: use n Gaussians to approach a Slater-type 
orbital (minimal basis set) 

•  Many basis sets with  
different sizes and 
characteristics: STO-nG, 
3-21G, 4-31G, 6-31G*, 
6-311G**, cc-pVDZ,  
cc-pVTZ, aug-cc-pVDZ… 

•  Choose wisely according 
to the problem at hand 

Ab initio Jargons: Basis Set 

STO-3G for 1s 



Limitations of HF-SCF 

•  The Hartree-Fock SCF method is limited 
by the single Slater determinant 
approximation 

•  HF-SCF calculation does not include the 
effects of electron correlation 

Ecorr = Eexact − EHF

Ecorr: correlation energy 



Excited Configurations 
Hartree-Fock groundstate is a good reference state that generates 
excited determinants (excited configurations) 

HF GS Single excitations Double excitations 
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Configuration Interaction  

Since the HF method yields the best single determinant 
wavefunction and provides about 99% of the total electronic 
energy, it is commonly used as the reference on which 
subsequent improvements are based. 
As a starting point, consider as a trial function a linear combination of 
Slater determinants: 

€ 

Ψ = a0ΦHF + ai
i=1
∑ Φi Multi-determinant wavefunction 

a0 is usually close to 1 (~0.9). 

•  M basis functions yield M molecular orbitals. 
•  For N electrons, N/2 orbitals are occupied in the RHF wavefunction. 
•  M-N/2 are unoccupied or virtual (anti-bonding) orbitals. 

Courtesy of Sourav Pal, National Chemical Laboratory 



Generate excited Slater determinants by promoting up 
to N electrons from the N/2 occupied to M-N/2 virtuals: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

i 

a a a 
b b 

c 

i i 

j j 

k 

ΨHF

€ 

Ψi
a Ψij

ab Ψijk
abc

  a,b,c… = 
virtual MOs 

    i,j,k…  =  
occupied MOs 

a,b 

i,j 

Ψij
ab

a 
b 

c,d 

i 

j 

k,l 

Ψijkl
abcd

Single Double Triple Quadruple Ref. Excitation level … 
Courtesy of Sourav Pal, National Chemical Laboratory 



Represent the space containing all N-fold excitations by Ψ(N). 
Then the COMPLETE CI wavefunction has the form 

Where 

€ 

Φ HF = Hartree− Fock

Φ (1) = Ci
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Linear combination of Slater 
determinants with single 
excitations 

Doubly excitations 

Triples 

N-fold excitation 

The complete ΨCI expanded in an infinite basis yields the exact 
solution to the Schrödinger eqn. (Non-relativistic, Born-
Oppenheimer approx.), often used as benchmark. 

Courtesy of Sourav Pal, National Chemical Laboratory 

ΨCI = C0ΦHF +Φ
(1) +Φ(2) +Φ(3) + ... +Φ(N ) + ...



The various coefficients,          , may be obtained in a variety of ways. 
A straightforward method is to use the Variation Principle. 

The elements of the vector,       , are the coefficients,  
And the eigenvalue, EK, approximates the energy of the Kth state. 

∂ECI
∂Cijk...

abc... = 0

Cijk...
abc...

ECI =
ΨCI |H |ΨCI

ΨCI |ΨCI

H

CK = EK


CK

Cijk...
abc...

CK

Expectation value of He. 

Energy is minimized 
wrt coeff  

In a fashion analogous to the HF 
eqns, the CI Schrodinger equation 
can be formulated as a matrix 
eigenvalue problem. 

E1 = ECI for the lowest state of a given symmetry and spin. 
E2 = 1st excited state of the same symmetry and spin, and so on. 

Courtesy of Sourav Pal, National Chemical Laboratory 



Electron Correlation & Configuration 
Interaction 

•  Eigenfunctions are now superpositions of determinants 
•  Constructing & diagonalizing the matrix to obtain CI ground & 

excited-states with electron correlation effects 
•  Full CI (FCI) is generally impossible, one must truncate at some 

level à CIS, CISD, CISD(T), …, FCI 
•  CIS describes a large array of low-lying excitations 

All these determinants form a new & complete basis 

Szabo & Ostlund 

full CI matrix 

HΨ = EΨ



Slide of Peter Saalfrank 

HOMOàLUMO  
transition 



Cost of Methods in Computational Chemistry 

    Quality     Size dependence 
         
     

•  Ab initio MO Methods 
–  CCSD(T)   quantitative  (1~2 kcal/mol)  but expensive  ~N6  

–  MP2   semi-quantitative  and doable   ~N4  
–  HF   qualitative     ~N2-3 

•  Density Functional Theory 
–  DFT   semi-quantitative and cheap   ~N2-3  

•  Semi-empirical MO Methods 
–  AM1, PM3, MNDO  semi-qualitative    ~N2-3   

•  Molecular Mechanics Force Field 
–  MM3, Amber, Charmm  semi-qualitative (no bond-breaking)  ~N1-2   

Using a quantum computer?? 



Hamiltonian in Second Quantization 

HΨ = EΨ

CI basis states (Slater determinants) can be compactly encoded 
in a quantum computer à occupation number states  
 
 
 
 
M spin orbitals à M qubits à 2M Fock states (0 - M electrons) 
 

FCI classically requires M choose N determinants for N-electron 
states 

p, q, r, s are orbital indecies 

CI 



Quantum Advantage? 

•  Classical computer: explicitly construct the FCI 
matrix with exponentially-large number of matrix 
elements à not possible 

•  Quantum computer: implement H (N4 terms) with 
parameters (hpq & hpqrs provided by a classical HF 
calculation), then quantum mechanics takes care of 
the matrix elements à needs only M qubits 

•  Construction based on “state and matrix 
elements” versus that based on “operators” 



Quantum Computation of Quantum Chemistry 

(paper #2) 

i.e. FULL CI 



Critical Review of the State-of-the-Art 

(paper #1) 



Critical Review of the State-of-the-Art 

(paper #1) 



Critical Review of QCoQC 
•  Quantum supremacy? 

•  Doing FCI on 6-31G* water would be (almost) 
impossible on classical computers… But this does not 
mean QC has an absolute advantage here 

•  Very accurate classical first-principle simulation of C6H6 
is possible with the right approximations 



Critical Review of QCoQC 
•  Experimental simulation of H2 energy curve on a linear 

optical quantum computer: 
 

(paper #1) 

exact FCI results?? 

Exact assuming minimal basis set 
– this is not acceptable!!! 



Basis set error!! 

The minimal basis results are not accurate enough 
to be compared to experiments!! 



Critical Review of QCoQC 

•  Experimental H2 bond length = 1.4 a.u., 
bond dissociation energy = 0.1744 a.u. 

(paper #1) 

QCoQC 



Critical Review of QCoQC 

(paper #1) 

QCoQC 



Critical Review of the State-of-the-Art 

Kandala et al., Nature 549, 242, 2017. 

•   Also minimal basis -à “exact” not actually “exact” 
•  Generally speaking, the results are qualitatively poor… 



Critical Review of the State-of-the-Art 

Wecker et al., PRA 90, 022305, 2014. 

•  STO-3G basis 
•  Again, comparison 

to “exact” results is 
also claimed 

•  What will be the 
equilibrium 
geometry of this 
water molecule? 



Remarks 

•  Doing quantum chemistry on a quantum computer 
might be useful, but the current software and 
hardware must be upgraded à research challenges 
for innovative ones 

•  Classical computers still outperform quantum ones, 
significantly!! 

•  We need to: increase size, reduce circuit depth, go 
beyond the minimal basis set model, and utilize 
classical computers 

•  Paper #1 & paper #2: check the current status 
•  Paper #3 & paper #4: ideas for going beyond 
•  There is still much to learn… but haste is essential!! 


