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Information

Study session on quantum computation of
guantum chemistry — originally meant to be
for my group only...

Location: Chemistry Building Room 215

Time: 12:30 PM - 2:00 PM (Welcome to
bring your lunch!)

CEIBA:
https://ceiba.ntu.edu.tw/course/d0bc36/index.htm

Lectures will be recorded and posted on
Youtube



Information

« We will study the following four papers:

1. 1. Kassal et al., Annu. Rev. Phys. Chem. 62, 185
(2011).

2. P.J.J.O'Malley et al., Phys. Rev. X 6, 361 (2016).

3. R.Babbush et al., Phys. Rev. X 8, 011044 (2018).

4. |. D. Kivlichan et al., Phys. Rev. Lett. 120, 110501
(2018).

* The goal is to thoroughly examine the state-of-art
theories for quantum computing in Chemistry — true
quantum advantage or not? — and to promote
research in this direction

* Why these four papers?



Paper #1

y ANNUAL D ] uilduillg 1 C 1STTV 1119
tviews FUrther ‘
Click here for quick links to ( A - s 0,
Annual Reviews content online, ‘ 1 LU ‘ ‘ \

including:

« Other articles in this volume « . «

- Top cited articles Ivan Kassal, James D. Whltﬁeld,

- Top downloaded articles . .

- Our comprehensive search Alejandro Perdomo-Ortiz, Man-Hong Yung,

and Aldn Aspuru-Guzik

Department of Chemistry and Chemical Biology, Harvard University, Cambridge,
Massachusetts 02138; email: aspuru@chemistry.harvard.edu

* A review for physical chemists! (Aspuru-Guzik)

« Basics of quantum computing, and overview of the
problem and basic algorithms (up to 2010)

e Qubits/quantum circuit/QF T/PEA/electronic
Hamiltonian in second-quantized form



Paper #2

PHYSICAL REVIEW X 6, 031007 (2016)

Scalable Quantum Simulation of Molecular Energies
P.J.J. O’Malley " R. Babbush T 1L.D. Kivlichan . Romero SR McClean *R. Barends > 7. Kelly, : P Roushan :
A. Trante1 "N. Dlng B Campbell Y. Chen,’ Z Chen,' B Chiaro," A. Dunsworth A.G. Fowler,’ E Jeffrey

E. Lucero,” A. Meorant J. Y. Mutus,’ M Neeley C. Neill,' C Quintana, D. Sank A. Vam%enchel J Wenner,'
T. C. Wh1te P. V. Coveney P.J. Love,’ H. Neven,” A. Aspuru- -Guzik,? and J. M. Martinis™’

* Algorithms and experiments on the simulation of H,
dissociation curve (John Martinis, Josephson Junction
Quantum Computing, UCSB & Google)

* Read-outs based on variational quantum eigensolver &
phase estimation algorithm are both tested

« Jordan-Wigner transformation/Bravyi-Kitaev
transformation/Trotterization/VQE/iterative PEA/CI
space reduction/unitary coupled cluster



Paper #3

PHYSICAL REVIEW X 8, 011044 (2018)

Low-Depth Quantum Simulation of Materials
Ryan Babbush,l'* Nathan Wiebe,2 Jarrod McClean,l James McClain,3 Hartmut Neven,l and Garnet Kin-Lic Chan®’
]G()()gle Inc., Venice, California 90291, USA
2Mi(,'r()so\)"t Research, Redmond, Washington 98052, USA

Division of Chemistry and Chemical Engineering, California Institute of Technology,
Pasadena, California 91125, USA

« “Linear-scaling” algorithms for solving electronic
structures in planewave dual basis — simulation of
materials, i.e. quantum VASP!!

» Basic solid-state physics/FFFT/linear depth quantum
simulation/computation on planar architecture/Taylor-
series algorithm




Paper #4

PHYSICAL REVIEW LETTERS 120, 110501 (2018)

Quantum Simulation of Electronic Structure with Linear Depth and Connectivity

Ian D. Kivlichan,l'2 Jarrod McClean,l Nathan Wiebe:,3 Craig Gidney,4 Alan Aspuru—Guzik,2
Garnet Kin-Lic Chan,” and Ryan Babbush"’
lG()ogle Inc., Venice, California 90291, USA
2Departmenr of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
3Mic‘rms‘q}"t Research, Redmond, Washington 98052, USA
i “Google Inc., Santa Barbara, California 93117, USA
*Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA

» “Linear-scaling” algorithms for Trotter propagation --
FFFT replaced by fermonic swap gates

* Fermonic swap network/linear depth Trotter/linear
depth preparation of Slater determinants.

 We hope that in the end the 4 papers would provide a
unified view of QC in Q. Chem.



Electronic Structure Problem

* Solving the electronic structure problem is a major
challenge in quantum chemistry.

* For more details, see
https://ceiba.ntu.edu.tw/course/0d5091/index.htm
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Schrodinger Equation

H:Tn_I_Te_I_Vnn_I_Vee_l_Vne H\P:E\P

T N, 1 V2 . . .
n =7 oM. - Kinetic energy of nuclei
N, 1

T, = —2 Evf Kinetic energy of electrons

N, N, Z Z ' .
Vin = E Z ;ab > Coulombic energy between nuclei
N, N
& & 1 )
V. = E —  Coulombic energy between electrons
I I>] rz]
N, N,
n € Z ) .
V. = E E ¢ Coulombic energy between nucle1 and electrons
< 7



Approximations

To solve the Schrodinger equation approximately, assumptions
are made to simplify the equation:

*Born-Oppenheimer approximation allows separate
treatment of nuclei and electrons. (m, >> m,)

Hartree-Fock independent electron approximation
allows each electron to be considered as being affected by
the sum (field) of all other electrons.

LCAO Approximation represents molecular orbitals as
linear combinations of atomic orbitals (basis functions).



Born-Oppenheimer Approximation

*Nucle1 are much heavier than electrons (m,/ m, > 1836) and

move much slower.
«Effectively, electrons adjust themselves instantaneously to

nuclear configurations.
*Electron and nuclear motions are uncoupled, thus the energies

of the two are separable.

Energy |
. For a given nuclear
configuration, one calculates
electronic energy.
. As nuclei move continuously,
the points of electronic energy
joint to form a potential energy
surface on which nuclei move.

Elec. Schrodinger equation: H(R)¥Y(R)=E(R)¥Y(R)

nternuclear
Distance




Basic Quantum Mechanics

Schrodinger equation: HY =FEY

H

Variational principle: E=<‘P ‘P>2E

Y=%(x,x,...,xy)

The N-electron wave function is a function with 3N
dimensions, this is too complicated to even “think
about” practically for systems with > 3 electrons -
must simplify the functional form of the wave
function.

exact



Many-electron Wave function

Hartree product: All electrons are independent, each in its own orbital.

l//HP(Xsza'“aXN) — ﬁ(xl)fz(XZ)'”fN(XN)

Pauli principle: Two electrons can not have all quantum
number equal.

This requires that the total (many-electron) wave function
1s anti-symmetric whenever one exchanges two electrons’

coordinates.
V(X,,X,5,.0Xy) = —W(X,,X,..,Xy )
Slater determinant satisfies the Pauli exclusion principle.

fl(Xl) fz(xl) fN(Xl)
fl(Xz) fz(Xz) fN(X2)

1
I/I(Xl,Xz,...XN)IW .
fl(XN) f2(XN) fN(XN)




Many-electron Wave function (2)
Example: A two-electron system.
Hartree product: Both electrons are independent.

WHP (X1 axz) — f1 (Xl )fz (Xz)

Slater determinant satisfies the Pauli principle.

Lx) o LX)
Li(x) LX)

V(X,.X,)= %

w(x,,%,)=1/2)"?[£,(x)f,(x,) - £, (x)fi(x,)]
w(x,,x)=1/2)"[£,(x) L&) - L)L) =-w(x,,x,)

The total (many-electron) wavefuntion is anti-symmetric when one
exchanges two electrons’ coordinates x; and x,.



Molecular Orbital & Slater Determinant

. Single-electron wavefunction (orbital!!):
- X.(X,): spin orbital
- X, : electron variable
M — N-electron wavefunction: Slater determinants
orbitals
______________________________ X)) e (X))
% XXy x(%) o (X))
. W(X,,..xy) = (ND2"02 20 oo
occupie ; ; :
orbitals $ 2:(Xy) %j(XN) e (Xy)
- Given a basis, Hartree-Fock theory provides a
" variational groundstate & molecular orbitals within
" the single determinant approximation = mean-field,

no electron correlations



Molecular Orbital & Slater Determinant

. Single-electron wavefunction (orbital!!):
- X.(X,): spin orbital
- X, : electron variable
vitual - __ N-electron wavefunction: Slater determinants
orbitals
______________________________ Xi(x) o x(x) X (X))
y % P(X,,....x, ) = (N’ %i(.xz) X"(.Xz) %"(.XN)
occupie ; : :
orbitals $ 2:(Xy) %j(XN) 2.(X,)

. Electron configuration: a many-electron wave

" function constructed from a single slater determinant




LCAO = Basis Functions

» Use a form that describes hydrogenic
orbitals well
— Slater functions (STO): physical, but difficult to
calculate two-electron integrals

— Gaussians (GTO): analytical two-electron
iIntegrals, but wrong behavior at
nucleus and decays too fast with r

—

3 2 3/4 )
0, (F:6)) = C—IGXP(—CJ) gs(r;o‘):(%) exp(—ar”)

T

Slater function Gaussian

Distance/a,



Gaussian Basis Functions

 GTOs have many advantages, most
importantly, product of two Gaussians
remains a Gaussian — analytical integrals




Basis Functions

Hydroden-like atomic orbitals

2s
1s
2 6 8 10
2 4 6 8 10
2p
3s

o -
Sl
e e e M B B 55— A
] 4 6 8 10

3p 3d
ll"l Il[llllllllll’ y
i 5 10 03
I I T 10
5 10 15
w 0
10 -
20

R ERaaas e e s

2 w o W 2
x



ADb initio Jargons: Basis Set

« STO-nG: use n Gaussians to approach a Slater-type

orbital (minimal basis set)

 Many basis sets with
different sizes and
characteristics: STO-nG,
3-21G, 4-31G, 6-31G*,
6-311G**, cc-pVD/Z,
cc-pVTZ, aug-cc-pVDZ...

* Choose wisely according
to the problem at hand

Amplitude

STO-3G for 1s

1 2 3 4 5
Distance/a



Limitations of HF-SCF

* The Hartree-Fock SCF method is limited
by the single Slater determinant
approximation

« HF-SCF calculation does not include the
effects of electron correlation

E =E__—-E,.

Ccorr exact

E., correlation energy



Excited Configurations

Hartree-Fock groundstate is a good reference state that generates
excited determinants (excited configurations)

= —
SR A A

HF GS  Single excitations Double excitations

W) vl i)



Configuration Interaction

Since the HF method yields the best single determinant
wavefunction and provides about 99% of the total electronic
energy, it is commonly used as the reference on which

subsequent improvements are based.
As a starting point, consider as a trial function a linear combination of

Slater determinants:

Y = aOCI)HF + E ai(l)l, Multi-determinant wavefunction
=]

a, is usually close to 1 (~0.9).
* M basis functions yield M molecular orbitals.

» For N electrons, N/2 orbitals are occupied in the RHF wavefunction.
* M-N/2 are unoccupied or virtual (anti-bonding) orbitals.

Courtesy of Sourav Pal, National Chemical Laboratory



Generate excited Slater determinants by promoting up
to N electrons from the N/2 occupied to M-N/2 virtuals:

9 —T b — —t b —Tb
vﬁtSaCIMgs 8§ T —a —~+a Hab— a — a
6 — : — — — c 4+ c,d
s H = = =k —kl
LR i —if i
k. = O = = = = H —
occupied MOs 2 -T—l— -T—l- 'T_j H 'T_f 'T—./
LR H B B B H
Vo W0WR WP wE W

Excitation level — Ref. Single Double Triple Quadruple...



Represent the space containing all N-fold excitations by W(N).
Then the COMPLETE CIl wavefunction has the form

¥, =Cd,, +®"+0?+dY +. +0ON + .

Where D, = Hartree — Fock
0 occ virt . Linear combination of Slater

o = E 2 C'W¥ determinants with single
i excitations
occ virt

d? = E C;bq!;b Doubly excitations
L,j a
occ Vvirt

P = Cla:‘fq;f:c Triples
”Eka j j

virt

™) _ abe.yypabe... N- ot
() ; C,Jk qjl]k N-fold excitation
i,j.k...a

The complete W, expanded in an infinite basis yields the exact
solution to the Schrodinger eqn. (Non-relativistic, Born-
Oppenheimer approx.), often used as benchmark.




The various coefficients, Cii-" , may be obtained in a variety of ways.
A straightforward method 1s to use the Variation Principle.

VY. IHIY
cr = Yo 1) Expectation value of H,.
<\PCI ll{’CI>
JE
“ 9O be =0 Energy is minimized
k... wrt coeff

. In a fashion analogous to the HF
HC, =E.C, eqns, the Cl Schrodinger equation
can be formulated as a matrix
eigenvalue problem.

The elements of the vector, C, , are the coefficients, Cjy-~
And the eigenvalue, E,, approximates the energy of the K" state.

E, = E., for the lowest state of a given symmetry and spin.
E, = 15t excited state of the same symmetry and spin, and so on.



Electron Correlation & Configuration
Interaction

All these determinants form a new & complete basis

S Jrst \Jqsrstu H \Ij — li ‘I‘
\Pfa LP.IM‘ \{ abc } abced —

W) IS D T Q)
(Wol [¢Wo|#|¥, 0 Y. |#|D 0 0
‘S S\H S S|A# 1D ‘SIAH|T 0
(D| (D|#|D) <(D|#|T) <(D|#|Q)
(T TI#|T> (T|#|Q)
Q (Q|#|Q)
L S

NEZIDESXE HE AL Sov
DI D) — (Yapl # [ Fea) full Cl matrix
« Eigenfunctions are now superpositions of determinants

« Constructing & diagonalizing the matrix to obtain Cl ground &
excited-states with electron correlation effects

« Full CI (FCI) is generally impossible, one must truncate at some
level - CIS, CISD, CISD(T), ..., FCI

« CIS describes a large array of low-lying excitations Szabo & Ostlund



METHODS TO TREAT ELECTRON CORRELATION

e Form of exact wavefunction and configuration interaction (CI) methods

N N,
U= DO\IJO + Z Z DIV" + Z Z Dy Wy + . . . N-excitations

7

WV
a=1 r=N+1 , a<b r<s Full CI, FCI

CI Slngles

CI Singles Doubles

O correlation energy 3 5 : |
@ cxcited states: A “'D =E, D, “ : s } by
RTINS TR
e Variants of CIl-type methods LM by ! ¢ H
v | wd fer vl 8

e MCSCF and CASSCF (vary amplitudes and orbitals)

e Coupled Cluster (CC) methods: |V = exp(Tl Ty TN) Uy
N——

CCS

A 7

-
CCSD

~
Full CI

HOMO->LUMO
transition

e Non-variational: Mgller-Plesset perurbation theory (MP2, MP3, ...)

Slide of Peter Saalfrank



Cost of Methods in Computational Chemistry

Quality Size dependence
e Ab initio MO Methods
- CCSD(T) quantitative (1~2 kcal/mol) but expensive ~N°©
- MP2 semi-quantitative and doable ~N4
- HF qualitative ~N2-3

* Density Functional Theory
- DFT semi-quantitative and cheap ~N23

 Semi-empirical MO Methods
- AM1, PM3, MNDO semi-qualitative ~N23

e Molecular Mechanics Force Field

-  MMS3, Amber, Charmm semi-qualitative (no bond-breaking) ~N1-2

Using a quantum computer??



Hamiltonian in Second Quantization

The| Cl  |Hamiltonian in the second-quantized form is

1
H\P — E\P H = thq pﬂq + z prqrsﬂ;ﬂ;ﬂrﬂs,

qu'S
p, q, r, s are orbital indecies

Cl basis states (Slater determinants) can be compactly encoded
In a quantum computer = occupation number states

—_ L - :> l) =10100)

X X2 X3 Xa

M spin orbitals > M qubits > 2M Fock states (0 - M electrons)

FCI classically requires M choose N determinants for N-electron
states



Quantum Advantage?

H = Z/ypq ay,d, + = Z/?Mm&l a ﬂ,fﬂs

qu'S

« Classical computer: explicitly construct the FCI
matrix with exponentially-large number of matrix
elements - not possible

« Quantum computer: implement H (N4 terms) with
parameters (h,, & h,,.s provided by a classical HF
calculation), then quantum mechanics takes care of
the matrix elements = needs only M qubits

* Construction based on “state and matrix
elements” versus that based on “operators”



Quantum Computation of Quantum Chemistry

Classical Preparation

l.e. FULL ClI

Real Space
Molecular
Hamiltonian

Born-Oppenheimer
Approximation

Compute Orbitals,

Hartree-Fock State Write in

Second Quantized
Orbital Basis

Bravyi-Kitaev
Transform

Entangle Ancilla _
with Trotterized Parameterized

Propagator Unitary
Repeat Until Compute
Ground State New Parameters

Phase Estimation Algorithm Variational Quantum Eigensolver

Apply

Measure Measure
Ancilla Expectation
Phase Values

FIG. 5. A flow chart describing steps required to quantum
(paper #2) compute molecular energies using both PEA and VQE.



Table 1 Comparison of second- and first-quantization approaches to quantum simulation

Wave-function
encoding

Molecular
Hamiltonian

Quantum gates
required for
simulation

Advantages

(paper #1)

Second quantized First quantized
Fock state in a given basis: On a grid of SEmmaasssasmmmes;
2" sites per ssess L ssans
T dimension: aa ‘ ==
d & & 1 Ww=2al)  F i
X - —a—{
) =10100)

R R

.
-
.
b4
by s
-1
41
4t
bt s

b+
-
-
b

Coefficients precomputed classically:

1
t — iyt
thqapaq+ > thq,sapaqa,as
Pq pars

Interaction calculated on the fly:

2
p; q,4;
Z 2m; +Z r.

i i<j ij

O(M?3) with number of basis states

O(B?) with number of particles

- Compact wave-function representation
(requires fewer qubits)

- Takes advantage of classical electronic-
structure theory to improve performance

« Already experimentally implemented

« Better asymptotic scaling (requires
fewer gates)

« Treats dynamics better

« Can be used for computing reaction rates
or state-to-state transition amplitudes




Table 1 Comparison of second- and first-quantization approaches to quantum simulation

Second quantized

First quantized

Wave-function
encoding

Fock state in a given basis:

1

X X2 X3 X4

) =10100)

BB
1

4
-
r4-1
v 41

111
31

On a grid of

R

2" sites per
dimension:

T

T

IITTTTTIT ]

11l

W)= a,|x)

Ll

I EEEESEEEEEEN]

+
'

aasess.

by
b4
am
11
T
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Qubits required
to represent the
wave function

One per basis state (spin-orbital):

o 300 C,Hy cc-pVTZ e

Y 250

3_200 | CHy 6-31G* 4

2 150

£ 100 " H,0, cc-pVTZ

S oL C,H, 6-31G*

o *"H,0,6-31G*
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0 50 100 150 200 250 300

Basis set size

3n per particle (nuclei and electrons):

300
©
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3200
v | o
£ 100 -
= 00 He
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3
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eO

N oI
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Number of particles

10

Molecular
Hamiltonian

Coefficients precomputed classically:

1
tg + — tqt
thqapaq+ > thq,sapaqa,aS
Pq pars

Interaction calculated on the fly:

2
p; q,9;
Z2m +Z r

i i<y i

(paper #1)




Critical Review of QCoQC

* Quantum supremacy?

8 300~ CH,, cc-pVTZ e
Y 250

3 200} CH,, 6-31G*,

2 150

v

X 100 * H,0, cc-pVTZ

o *H,0,6-31G*

o | | | | | |

0 50 100 150 200 250 300
Basis set size
* Doing FCIl on 6-31G* water would be (almost)
Impossible on classical computers... But this does not
mean QC has an absolute advantage here

* Very accurate classical first-principle simulation of C4H,
IS possible with the right approximations



Critical Review of QCoQC

« Experimental simulation

optical quantum computer:

of H, energy curve on a linear

exact FCl results??

0.3
d g 02| .
E 01l = 0's M 1's
[} .
3 < | g % the optical elements
; . 06 25 .
5 o - 2 2 used to implement the
c Y 4
25 P E1s quantum gates on
. g : o
T 2 3 4 5 g photonic polarization
—_ Atomic separation (a.u.) s 5 .
g 2 S, qubits. () The
- 5 10 15 20 .
£ Bits computed potential
13 energy surfaces of the
g 1 . = = i
Wl e e T Third excited state (E3) minimal-basis set. The
............................. results are the exact (in
0.5 .‘0 ‘AAAA“‘AAAAAAAAAAAAAAAAAAAA::::::::’!!!!’!’.IIl llllllllllllllllllllll )
....... Second excited state (E2) the baSIS) full'
0.‘. .
L e, configuration-
0 First excited state (E1) e "“““"“““':::::::::::mmmmm...m. ............ . gu‘ .
llllllllllllllllllllllllllllllllllllllll lnteractlon energles, tO
Ground state (G) 20 bits of precision.
BT 1 15 2 25 3 35 4 45 5

Atomic separation (a.u.)

Exact assuming minimal basis set

(paper #1)

— this Is not acceptable!!!



Accuracy of ab initio Quantum Chemistry Methods

Basis Electron Correlation —»
Set E A
Type MP2 MP3 MP4 QciIsop(T) Full CI

Hinfmal //// . -320
sl
Polarized //// L -360

-308.4 kJ/mol STO-3G

-322.8 kd/mol 3-21G* 1s1s’

— | Bdgisrseterror!!

I 9 kJ/ 6-31G*
-347.7 kd/mol 6-311G"™ 1s1s'1s" & p

-368.0 kdJ/mol MP2 3-21G(*)

Diffuse - -380
High
Ang . 400
Moment
-420 -420.6 kJ/mol MP2 6-311G**
-440 ¥ -441 9 kJ/mol CCSD 6-311G**
; -450.9 kd/mol MP4 cc-pVTZ
.
oo HF _. | Schroedinger -452.5 kJ/mol CCSD cc-pVTZ
Limit Equation -460 -458.1 kJ/mol experimental

T 1T 17T 1717 1T 1T T 1T T 7T T 17T 1T T

The minimal basis results are not accurate enough
to be compared to experiments!!



Critical Review of QCoQC

Experimental H, bond length = 1.4 a.u.,
bond dissociation energy = 0.1744 a.u.

Energy (hartrees)

;
0.3 004 |- /
. /
002 | /
0.2 QCOQC - 500 i\ O [ 4 18 2 2 6 3&“
E RHF / |
0.1 = 0.02 | ’\ @ 6 ) ‘ s
;i:: - : / UHF , /
W -004 \ . . /
O 4V | J,u‘//
| -0.06 I\ GVB (:,('/
“a i &7
- 2 el b7 N
-0.1 - = -008 - | / /..f/ Exact
. Ll \ / /- 7/ (Kolos-Wolniewicz)
-0.10 | \\ \\ // ‘v,:ﬁ'//
- \' //
0.2 ozl \‘\:\ JofFull CI
1 2 3 4 5 S
. . 014 \'. /
Atomic separation (a.u.) 014 \ 4
\;“ N 7 /
0.16 |- \ 7
(paper #1 ) Figure 4.4 6-31G** potential energy curves for H,.




Critical Review of QCoQC

1 2 3 4 5
Atomic separation (a.u.)




Critical Review of the State-of-the-Art

a b c
0.4 : r T - -6.6 m  -12.0
100 40
0.2 % E 20 125}
H 50
]
o1 li w 0 0 -13.0 f
C
— ! 2
[ [
% 0.2 | @7) Q2, -13.5 |
£ 04} i H H i
3 i H -14.0 } |
g -0.6 {
w i | -1451%
-08}| | |
t - . ol 150t
PPN F._,_-:.-- |
g 155}
-1.2 . : : : - :
0 1 2 3 4 5 1 2 3 4 5

Interatomic distance (A) Interatomic distance (A) Interatomic distance (A)

Figure 3 | Application to quantum chemistry. a-c, Experimental results
(black filled circles), exact energy surfaces (dotted lines) and density plots
(shading; see colour scales) of outcomes from numerical simulations,

for several interatomic distances for H, (a), LiH (b) and BeH, (c). The
experimental and numerical results presented are for circuits of depth

d = 1. The error bars on the experimental data are smaller than the

size of the markers. The density plots are obtained from 100 numerical

outcomes at each interatomic distance. The top insets in each panel
highlight the qubits used for the experiment and the cross-resonance
gates (arrows, labelled CR._; where ‘¢’ denotes the control qubit and ‘t’ the
target qubit) that constitute Ugnt. The bottom insets are representations
of the molecular geometry (not to scale). For all the three molecules,

the deviation of the experimental results from the exact curves is well
explained by the stochastic simulations.

« Also minimal basis - “exact” not actually “exact”
« Generally speaking, the results are qualitatively poor---

Kandala et al., Nature 549, 242, 2017.



Critical Review of the State-of-the-Art
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FIG. 1. (Color online) This figure shows the energy of the water
molecule as a function of bond angle and bond length for an STO-3G
basis obtained from a restricted HF calculation.

In Fig. 1, we show the energy of a water molecule as a
function of bond length and bond angle as obtained from our
simulated QFCI calculation. Figure 2 shows the dependence

STO-3G basis
Again, comparison
to “exact” results is
also claimed

What will be the
equilibrium
geometry of this
water molecule?

Wecker et al., PRA 90, 022305, 2014.



Remarks

Doing quantum chemistry on a quantum computer
might be useful, but the current software and
hardware must be upgraded - research challenges
for innovative ones

Classical computers still outperform quantum ones,
significantly!!

We need to: increase size, reduce circuit depth, go
beyond the minimal basis set model, and utilize

classical computers

Paper #1 & paper #2: check the current status
Paper #3 & paper #4: ideas for going beyond

There is still much to learn... but haste is essential!!



