
APPENDIX M

Slater-Condon Rules

The Slater determinants represent something like the “daily bread” of quantum chemists. Our
goal is to learn how to use the Slater determinants when they are involved in calculation of
the mean values or the matrix elements of some important operators. We will need that in the
Hartree-Fock method, as well as in other important methods of quantum chemistry.

Most important are only the final results of the derivations presented in this appendix
(p. e119).

Antisymmetrization Operator

The antisymmetrization operator is defined as

Â = 1

N !
∑

P

(−1)p P̂, (M.1)

where P̂ represents a permutation operator of N objects (electrons, in our case), while (−1)p

stands for the parity of the permutation P , “even” (“odd”), if a given permutation P can be
created from an even (odd) number p of the transpositions (i.e., exchanges) of two elements.

The operator Â has some nice features. The most important one is that when applied to any
function, it produces either a function that is antisymmetric with respect to the permutations of
N elements, or zero.1 This means that Â represents a sort of magic wand: whatever it touches
becomes antisymmetric or disappears! The antisymmetrizer is also idempotent; i.e., it does not
change any function that is already antisymmetric, which means Â2 = Â.

Let us check that Â is indeed idempotent. First, we obtain

Â2 = (N !)−1
∑

P

(−1)p P̂(N !)−1
∑

P

(−1)p P̂ = (N !)−2
∑
P P ′

(−1)p+p′
P̂ P̂ ′. (M.2)

Of course, P̂ P̂ ′ represents a permutation operator,2 which is then multiplied by its own parity
(−1)p+p′

, and there is a sum over such permutations at a given fixed P̂ ′. Independent of what

1 In the near future, these elements will be identified with the electronic coordinates (one element will be represented
by the space and spin coordinates of a single electron: x, y, z, σ ).

2 The permutations form the permutation group.
Note this excerpt from “Solid State and Molecular Theory, Wiley, London (1975) by John Slater on the

permutation group: “(...) It was at this point that Wigner, Hund, Heitler, and Weyl entered the picture, with their
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P̂ ′ is, we obtain the same result3 N ! times, and therefore Â2 = (N !)−2 N !∑P (−1)p P̂ = Â.
This is what we wanted to show.

The operator Â is Hermitian. Since P̂ represents a (permutational) symmetry operator, it
conserves the scalar product. This means that for the two vectors ψ1 and ψ2 of the Hilbert
space, we obtain4

〈
ψ1(1, 2, . . . , N )| Âψ2(1, 2, . . . , N )

〉

= (N !)−1
∑

P

(−1)p
〈
P̂−1ψ1(1, 2, . . . , N )|ψ2(1, 2, . . . , N )

〉
.

The summation over P̂ can be replaced by the summation over P̂−1:

(N !)−1
∑
P−1

(−1)p
〈
P̂−1ψ1(1, 2, . . . , N )|ψ2(1, 2, . . . , N )

〉
.

Since the parity p of the permutation P̂−1 is the same as that of P̂ , hence (N !)−1 ∑
P−1 (−1)p

P̂−1 = Â, what shows that Â is Hermitian:
〈
ψ1| Âψ2

〉
=

〈
Âψ1|ψ2

〉
, or 5

Â† = Â. (M.3)

‘Gruppenpest’: the pest of the group theory, as certain disgruntled individuals who had never studied group
theory in school described it. (...) The authors of the ‘Gruppenpest’ wrote papers, which were incomprehensible
to those like me who had not studied group theory (...). The practical consequences appeared to be negligible, but
everyone felt that to be in the mainstream of quantum mechanics, we had to learn about it. (...) It was a frustrating
experience, worthy of the name of a pest.”

3 Of course, P̂ P̂ ′ = P̂ ′′ has the parity (−1)p+p′
, because this is how such a permutation parity is to be calculated:

first, we make p transpositions in order to get P̂ , and next, making p′ transpositions, we obtain the permutation
P̂ P̂ ′. Note, that when keeping P̂ ′ fixed and taking P̂ from all possible permutations, we are running with P̂ P̂ ′
over all possible permutations as well. This is because the complete set of permutations is obtained independently
of what the starting permutation looks like (i.e., independent of P̂ ′).

4 The conservation of the scalar product 〈ψ1|ψ2〉 =
〈
P̂ψ1|P̂ψ2

〉
means that the lengths of the vectors ψ1 and

P̂ψ1 are the same (similarly with ψ2), and that the angle between the vectors is also conserved. If P̂ is acting

on ψ2 alone and ψ1 does not change, the angle resulting from the scalar product
〈
ψ1|P̂ψ2

〉
is of course different

because only one of the vectors (ψ2) has been transformed (which means a rotation of a unit vector in the Hilbert
space). The same angle would be obtained if its partner ψ1 were transformed in the opposite direction; i.e.,

when the operation P̂−1ψ1 had been performed. Hence, from the equality of the angles, we have
〈
ψ1|P̂ψ2

〉
=〈

P̂−1ψ1|ψ2

〉
.

5 Â† stands for the adjoint operator with respect to Â; i.e., for arbitrary functions belonging to its domain, we have〈
ψ1| Âψ2

〉
=

〈
Â†ψ1|ψ2

〉
. There is a subtle difference (ignored in this book) among the self-adjoint ( Â† = Â)

and Hermitian operators in mathematical physics (they differ by definition of their domains).
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Slater-Condon Rules

The Slater-Condon rules serve for expressing the matrix elements involving the Slater determi-
nants (they are many-electron wave functions):

� = 1√
N !

∣∣∣∣∣∣∣∣

φ1(1) φ1(2) · · · φ1(N )
φ2(1) φ2(2) · · · φ2(N )
· · · · · · · · · · · · · · · · · · · · · · · ·
φN (1) φN (2) · · · φN (N )

∣∣∣∣∣∣∣∣
. (M.4)

The normalized Slater determinant has the form: � = √
N ! Â(φ1φ2 · · ·φN ), where

φ1φ2 · · ·φN represents a product φ1(1)φ2(2) · · ·φN (N ), and therefore, the normalization
constant before the determinant itself det[φ1(1)φ2(2) · · ·φN (N )] is equal to (N !)−1/2.

Quantum chemists love the Slater determinants because they are built of the one-electron
“bricks” φi called spinorbitals (we assume them to be orthonormal) and because any Slater
determinant is automatically antisymmetric with respect to exchange of the coordinates of any
two electrons (shown as arguments of φi ), the factor 1√

N ! ensures the normalization. At the
same time, any Slater determinant automatically satisfies the Pauli exclusion principle, because
any attempt to use the same spinorbitals results in two rows being equal, and as a consequence,
in having � = 0 everywhere.6

Using the Slater determinants give quantum chemists some comfort since all the integrals
that appear when calculating the matrix elements of the Hamiltonian are relatively simple. The
most complicated ones contain the coordinates of two electrons.

What Kind of Operators we will be Dealing with?

1. The sum of one-electron operators F̂ = ∑
i ĥ(i)

2. The sum of two-electron operators Ĝ = ∑
i< j ĝ(i, j)

In both cases, the summation goes over all the electrons. Note that ĥ has the identical form
independent of the particular electron; and the same pertains to ĝ.

The future meaning of the F̂ and Ĝ operators is obvious; the first pertains to the non-
interacting electrons (electronic kinetic energy with ĥ(i) = −1

2�i or the interaction of the elec-
trons with the nuclei), the second operator deals with the electronic repulsion, with ĝ(i, j) = 1

ri j
.

6 This is a kind of catastrophe in theory: because our system is somewhere and can be found there with a certain
nonzero probability.
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What the Slater-Condon Rules are all About?
The Slater-Condon rules show how to express the matrix elements of many-electron oper-
ators F̂ and Ĝ with the Slater determinants by the matrix elements of the operators ĥ and
ĝ computed with the orthonormal spinorbitals φi .

The operators F̂ and Ĝ are invariant with respect to any permutation of the electrons
(Chapter 2). In other words, the formulas for F̂ and Ĝ do not change before and after any
relabeling of the electrons. This means that any permutation operator commutes with F̂ and
Ĝ. Since Â is a linear combination of such commuting operators, then ÂF̂ = F̂ Â and
ÂĜ = Ĝ Â.

A Simple Trick Used in the Proofs

All the proofs given here are based on the same simple trick. First, the integral under consider-
ation is transformed into a sum of the terms

〈φ1(1)φ2(2) · · ·φN (N )| Â X̂ |φ1(1)φ2(2) · · ·φN (N )〉,

where X̂ = ĥ(i) or ĝ(i, j). Then, we recall that Â is a linear combination of the permutation
operators, and that in the integral 〈φ1(1)φ2(2) · · ·φN (N )|X̂ |φn1(1)φn2(2) · · ·φnN (N )〉, only a
few terms will survive.

• In case X̂ = ĥ(i), we obtain a product of one-electron integrals:

〈φ1(1)φ2(2) · · ·φN (N )|X̂ |φn1(1)φn2(2) · · ·φnN (N )〉
= 〈
φ1(1)|φn1(1)

〉 〈
φ2(2)|φn2(2)

〉 · · · 〈φi (i)|ĥ(i)|φni (i)
〉
· · · 〈φN (N )|φnN (N )

〉
.

Since the spinorbitals are orthonormal, then only one term will survive, the one that has
(n1, n2, . . . , ni−1, ni+1, . . . nN ) = (1, 2, . . . , i − 1, i + 1, . . . N ). All the overlap integrals
that appear there are equal to 1. Only one of the one-electron integrals will give something else:〈
φi (i)|ĥ(i)|φni (i)

〉
, but also in this integral, we have to have ni = i because of the abovemen-

tioned overlap integrals that force the matching of the indices.

• If X̂ = ĝ(i, j), we make the same transformations, but the rule for survival of the integrals
pertains to the two-electron integral that involve the coordinates of the electrons i and j (not
one-electron as before). Note that this time we will have some pairs of the integrals that are
going to survive, because the exchange of the indices i j → j i also makes an integral that
survives.
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I Slater-Condon Rule

If ψ represents a normalized Slater determinant, then

F = 〈ψ |F̂ |ψ〉 =
N∑

i=1

〈i |ĥ|i〉, (M.5)

G = 〈ψ |Ĝ|ψ〉 = 1

2

∑
i, j

(〈i j |i j〉 − 〈i j | j i〉), (M.6)

where

〈i |ĥ|r〉 ≡
∑
σ1

∫
φ∗

i (1)ĥ(1)φr (1)dV1 (M.7)

〈i j |kl〉 ≡
∑
σ1

∑
σ2

∫∫
φ∗

i (1)φ
∗
j (2)g(1, 2)φk(1)φl(2)dV1dV2, (M.8)

where the summation pertains to two spin coordinates (for electrons 1 and 2).

Proo f :
Operator F̂

F = 〈ψ |F̂ |ψ〉 = N !〈 Â(φ1φ2 · · ·φN )|F̂ | Â(φ1φ2 · · ·φN )〉
Using ÂF̂ = F̂ Â, Â† = Â and Â2 = Â, one gets

F = N !〈φ1φ2 · · ·φN | Â[(ĥ(1)φ1φ2 · · ·φN )+ · · · (φ1φ2 · · · ĥ(N )φN )]〉
= N !

N ! 〈φ1φ2 · · ·φN |1̂[(ĥ(1)φ1φ2 · · ·φN )+ · · · (φ1φ2 · · · ĥ(N )φN )]〉,

because what gives a nonzero contribution from the antisymmetrizer Â = (N !)−1 (1+other
permutations) is only the first term with the operator of multiplication by 1. Other terms disappear
after any attempt of integration. As a result, we have

F = 〈φ1|ĥ|φ1〉 + 〈φ2|ĥ|φ2〉 + · · · 〈φN |ĥ|φN 〉 =
∑

i

hii , (M.9)

which we wanted to show.

Operator Ĝ
Now let us consider the expression for G:

G = N !〈 Â(φ1φ2 · · ·φN )|Ĝ Â|φ1φ2 · · ·φN )〉,
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where once again N ! comes from the normalization of ψ . Taking (similarly as above) into
account that Â† = Â, Â2 = Â, Ĝ Â = ÂĜ, we get

G = N !〈(φ1φ2 · · ·φN )| Â|[ĝ(1, 2)φ1φ2 · · ·φN + ĝ(1, 3)φ1φ2 · · ·φN + · · · ]〉
= 〈φ1(1)φ2(2)|ĝ(1, 2)|φ1(1)φ2(2)〉 − 〈φ1(1)φ2(2)|ĝ(1, 2)|φ2(1)φ1(2)〉

+ 〈φ1(1)φ3(3)|ĝ(1, 3)|φ1(1)φ3(3)〉
− 〈φ1(1)φ3(3)|ĝ(1, 3)|φ3(1)φ1(3)〉 + · · · (M.10)

This transformation needs some explanation. The factor N ! before the integral is annihilated
by 1/N ! coming from the antisymmetrizer. The remainder of the antisymmetrizer permutes the
electrons in the ket |[ĝ(1, 2)φ1φ2 · · ·φN + ĝ(1, 3)φ1φ2 · · ·φN + · · · ]〉. In the first term [with
ĝ(1, 2)], the integrals with only those permutations of the electrons 3, 4, . . . , N will survive that
perfectly match the permutation φ1(1)φ2(2) · · ·φN (N ), because otherwise the overlap integrals
of the spinorbitals (over the coordinates of the electrons 2, 3, . . . N ) will make them zero. This
is why the first term will give rise to only two permutations that result in nonzero integrals:
we will have on the first two positions φ1(1)φ2(2), and the other one will have φ1(2)φ2(1). Of
course, they will differ by sign, which is why we have the minus sign in the second surviving
integral. A similar reasoning may be done for the term with ĝ(1, 3), as well as other terms.

Thus, we have shown that

G =
∑
i< j

(〈i j |i j〉 − 〈i j | j i〉) = 1

2

∑
i, j

(〈i j |i j〉 − 〈i j | j i〉), (M.11)

where the factor 1
2 takes care of the fact that there is only N (N−1)

2 interelectronic interactions
g(i, j) (the upper triangle of the table N × N ). There is no restriction in the summation over
i, j = 1, 2, . . . N , because any attempt of taking the “illegal” self-interaction (corresponding to
i = j) gives zero due to the identity of the Coulomb (〈i j |i j〉) and exchange (〈i j | j i〉) integrals.
This is the formula that we wanted to prove.

Special Case: Double Occupation

The integrals in the expressions for F and G contain spinorbitals, and the integration goes over
the electronic space-and-spin coordinates. When the spinorbitals are expressed by the orbitals
and the spin functions, we may perform the summation over spin coordinates. The most popular
and the most important is the double occupation case, when every orbital is used to form two
spinorbitals7:

φ1(1) = ϕ1(1)α(1)

7 The functions here are written as if they were dependent on the coordinates of electron 1. The reason is that we
want to stress that they all are one-electron functions. The electron 1 serves here as an example (and when needed
may be replaced by other electron). The symbol “1” means (x1, y1, z1, σ1) if it is an argument of a spinorbital,
(x1, y1, z1) if it corresponds to an orbital, and σ1 if it corresponds to a spin function.
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φ2(1) = ϕ1(1)β(1)

φ3(1) = ϕ2(1)α(1)

φ4(1) = ϕ2(1)β(1) (M.12)

. . . (M.13)

or

φ2i−1(1) = ϕi (1)α(1)

φ2i (1) = ϕi (1)β(1), (M.14)

where i = 1, 2, . . . , N/2.
Thus, the one electron spinorbitals that represent the building blocks of the Slater determinant

are products of a spatial function (orbital ϕ) and one of the two simple functions of the spin
coordinate σ (α or β functions, cf. p. 400).

The first Slater-Condon rule [Eq. (M.9)] may be transformed as follows (for the definition of
the integrals, see p. 399):

F =
N∑

i=1

〈i |ĥ|i〉 =
M O∑
i=1

∑
σ

〈iσ |ĥ|iσ 〉 = 2
M O∑

i

(i |ĥ|i) ≡ 2
M O∑

i

hii , (M.15)

where the summations denoted by MO go over the occupied orbitals (their number being N/2),
the factor 2 results from the summation over σ , which gives the same result for the two values
of σ (because of the double occupation of the orbitals).

Let us make a similar operation with G. The formula for G is composed of two parts:

G = I − II. (M.16)

The first part reads as

I = 1

2

MO∑
i

∑
σi

MO∑
j

∑
σ j

〈i σi , j σ j |i σi , j σ j 〉,

where i σi , . . . etc. stands for the spinorbital composed of the orbital ϕi and a spin function that
depends on σi . For any pair of the values of σi , σ j , the integral yields the same value (at a given
pair of i, j) and therefore (cf., p. 399)

I = 1

2

MO∑
i

MO∑
j

4(i j |i j) = 2
MO∑

i

MO∑
j

(i j |i j).

The fate of part II will be a little different:

II = 1

2

MO∑
i

∑
σi

MO∑
j

∑
σ j

〈i σi , j σ j | j σ j , i σi 〉 = 1

2

MO∑
i

MO∑
j

2(i j | j i) =
MO∑

i

MO∑
j

(i j | j i),
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because this time the summation over σi and σ j gives the nonzero result in half of the cases
when compared to the previous case. The pairs (σi , σ j ) = (1

2 ,
1
2

)
,
(−1

2 ,−1
2

)
give a nonzero

(and the same) result, while
(1

2 ,−1
2

)
,
(−1

2 ,
1
2

)
end up with zero (recall that by convention in

the integral, the electrons have the order 1 2 1 2). Finally, the double occupation leads to

G =
MO∑
i, j

[2(i j |i j)− (i j | j i)]. (M.17)

II Slater-Condon Rule

Suppose that we are interested in two matrix elements: F12 ≡ 〈ψ1|F̂ |ψ2〉 and G12 ≡ 〈ψ1|Ĝ|ψ2〉
and the two Slater determinants ψ1 and ψ2 differ only by that spinorbital φi in ψ1 has been
replaced by φ′

i (orthogonal to all other spinorbitals) in ψ2. Then the Slater-Condon rule states
that

F12 = 〈i |ĥ|i ′〉 (M.18)

G12 =
∑
j=1

(〈i j |i ′ j〉 − 〈i j | j i ′〉) (M.19)

Proo f :
Operator F̂
Using F̂ Â = ÂF̂, Â† = Â, and Â2 = Â, we obtain Â† F̂ Â = ÂF̂ Â = Â ÂF̂ = ÂF̂ , and
therefore

F12 = N !〈φ1 · · ·φi · · · | ÂF̂ |φ1, . . . φ
′
i . . . φN 〉.

F12 = N !〈φ1φ2 · · ·φi · · ·φN | Â
|[ĥ(1)φ1, . . . φ

′
i · · ·φN + φ1ĥ(2)φ2 · · ·φ′

i · · ·φN + · · ·φ1, . . . φ
′
i · · · ĥ(N )φN ]〉

=
∑

P

(−1)p〈φ1φ2 · · ·φi · · ·φN |

P̂[ĥ(1)φ1, . . . φ
′
i · · ·φN + φ1ĥ(2)φ2 · · ·φ′

i · · ·φN + · · ·φ1, . . . φ
′
i · · · ĥ(N )φN ]〉.

Note first that the only integral to survive should involve φi and φ′
i in such a way that it leads

to the one-electron integral 〈φi |ĥ|φ′
i 〉. This however happens only if the i th term in the square

bracket intervenes [that with ĥ(i)]. Indeed, let us take an integral that is not like that (i 	= 1):
〈φ1φ2 · · ·φi · · ·φN |P̂ ĥ(1)φ1φ2 · · ·φ′

i · · ·φN 〉. Whatever permutation P̂ is, ĥ will always go with
φ1, while φ′

i will be therefore without ĥ. When integrating over the electronic coordinates, we
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obtain a product of one-electron integrals (for subsequent electrons), and in this product, one
always pinpoints the overlap integral of φ′

i multiplied by one of the spinorbitals φ1, φ2, .., .φN .
This integral (and therefore the whole product) is equal to 0 because φ′

i is orthogonal to all the
spinorbitals. An identical reasoning can be given for ĥ(2), ĥ(3), . . ., but not for ĥ(i), and we
obtain: F12 = ∑

P (−1)p〈φ1φ2 · · ·φi · · ·φN |P̂[φ1φ2 · · · ĥ(i)φ′
i · · ·φN ]〉.

The only integral to survive is that which corresponds to P̂ = 1, because in other cases, the
orthogonality of the spinorbitals will make the product of the one-electron integrals equal zero.
Thus, finally, we prove that

F12 = 〈i |h|i ′〉. (M.20)

Operator Ĝ
From Â† = Â, ÂĜ Â = Â ÂĜ = ÂĜ, we obtain the following transformation:

G12 = N !〈 Â(φ1φ2 · · ·φN )| ÂĜ|φ1, . . . φ
′
i · · ·φN 〉〉

= N !〈 Â(φ1φ2 · · ·φN )|{[ĝ(1, 2)|φ1, . . . φ
′
i · · ·φN 〉] + [ĝ(1, 3)|φ1, . . . φ

′
i · · ·φN 〉] + · · · }〉

= 1

2

′∑
k,l

∑
P

(−1)p〈P̂
(
φ1 · · ·φi · · ·φN

) |ĝ(k, l)|φ1, . . . φ
′
i · · ·φN 〉.

The number of g terms is equal to the number of the interelectronic interactions. The prime
in the summation k, l = 1, 2, . . . , N over interactions ĝ(k, l) means that k 	= l (we count the
interactions twice, but the factor 1

2 takes care of that). Note that, due to the orthogonality of the
spinorbitals, for a given ĝ(k, l), the integrals are all zero if k 	= i and l 	= i . Thus, the integrals
to survive have to have k = i or l = i . Therefore (prime in the summation means the summation
index i to be excluded),

G12 = 1

2

′∑
l

∑
P

(−1)p〈P̂
(
φ1 · · ·φi · · ·φN

) |ĝ(i, l)|φ1, . . . φ
′
i · · ·φN 〉

+1

2

′∑
k

∑
P

(−1)p〈P̂
(
φ1 · · ·φi · · ·φN

) |ĝ(k, i)|φ1, . . . φ
′
i · · ·φN 〉

= 1

2

′∑
l

[〈φiφl |φ′
iφl〉 − 〈φiφl |φlφ

′
i 〉

] + 1

2

′∑
k

[〈φiφk |φ′
iφk〉 − 〈φiφk |φkφ

′
i 〉

]

=
′∑
j

[〈φiφ j |φ′
iφ j 〉 − 〈φiφ j |φ jφ

′
i 〉

]
,

because only those two-electron integrals will survive that involve both φi and φ′
i , and two other

spinorbitals involved are bound to be identical (and have either the index k or l depending on
whether l = i or k = i). The difference in the square brackets results from two successful
permutations P̂ in which we have the order i, j or j, i (in the last term). Finally, leaving for the
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sake of simplicity only the indices for the spinorbitals, we obtain

G12 =
∑
j(	=i)

[〈i j |i ′ j〉 − 〈i j | j i ′〉], (M.21)

and after adding 0 = 〈i i |i ′i〉 − 〈i i |i i ′〉, we have8

G12 =
∑

j

{〈i j |i ′ j〉 − 〈i j | j i ′〉}. (M.22)

This is what had to be demonstrated.

III Slater-Condon Rule

If ψ1 and ψ2 differ by two spinorbitals, say, in ψ1 are φi and φs , and in ψ2, we have φ′
i and

φ′
s (normalized and orthogonal to themselves and to all other spinorbitals)–i.e., φ′

i replaces φi

while φ′
s replaces φs (all other spinorbitals are in the same order)–then

F12 = 0 (M.23)

G12 = 〈is|i ′s′〉 − 〈is|s′i ′〉 (M.24)

Proo f :
Operator F̂

F12 = N !〈(φ1φ2 · · ·φN )| ÂF̂(φ′
1φ

′
2 · · ·φ′

N )〉
= N !〈(φ1φ2 · · ·φN )| Â{(ĥ(1)φ′

1φ
′
2 · · ·φ′

N )+ (φ′
1ĥ(2)φ′

2 · · ·φ′
N )

+ · · · (φ′
1φ

′
2 · · · ĥ(N )φ′

N )}〉
= 0,

where the spinorbitals in ψ2 have been labeled additionally by primes (to stress they may differ
from those of ψ1). In each term, there will be N − 1 overlap integrals between spinorbitals
and one integral involving the ĥ. Therefore, there always will be at least one overlap integral
involving different spinorbitals. This will produce zero.

8 With this formula, we may forget that the integration has been carried out over the coordinates of the electrons i
and j . It does not matter what is the symbol of the coordinate over which an integration is performed in a definite
integral. When in the future we will have to declare which coordinates we are going to integrate over in 〈i j |i ′ j〉,
then absolutely safely we can put any electrons, in the present book it will be electron 1 and electron 2.



Slater-Condon Rules e119

Fig. M.1. Four Slater-Condon rules (I,II,III,IV) for easy reference. On the left side, we see pictorial representations of matrix
elements of the total Hamiltonian Ĥ . The squares inside the brackets represent the Slater determinants. Vertical lines in bra stand
for those spinorbitals, which are different in bra and in ket functions. On the right side, we have two square matrices collecting the
hi j and 〈i j |i j〉 − 〈i j | j i 〉 for i, j = 1, . . . , N . The gray circles in the matrices symbolize nonzero elements.
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Operator Ĝ
Something will survive in G12. Using the previous arguments, we have

G12 = N !〈(φ1φ2 · · ·φN )| Â(g(1, 2)φ′
1φ

′
2 · · ·φ′

N )+ (g(1, 3)φ′
1φ

′
2 · · ·φ′

N )+ · · · 〉
= 〈φ1φ2|g(1, 2)|φ′

1φ
′
2〉 − 〈φ1φ2|g(1, 2)|φ′

2φ
′
1〉

+ 〈φ1φ3|g(1, 3)|φ′
1φ

′
3〉 − 〈φ1φ3|g(1, 3)|φ′

3φ
′
1〉 + · · ·

= 〈φ1φ2|φ′
1φ

′
2〉 − 〈φ1φ2|φ′

2φ
′
1〉

+ 〈φ1φ3|φ′
1φ

′
3〉 − 〈φ1φ3|φ′

3φ
′
1〉

+ · · ·
Note that N ! cancels 1/N ! from the antisymmetrizer, and in the ket we have all possible per-
mutations. The only term to survive has to engage all four spinorbitals: i, i ′, s, s′; otherwise,
the overlap integrals will kill it. Therefore, only two terms will survive and give

G12 = 〈is|i ′s′〉 − 〈is|s′i ′〉. (M.25)

IV Slater-Condon Rule

Using the above technique, it is easy to show that if the Slater determinants ψ1 and ψ2 differ
by more than two (orthogonal) spinorbitals, then F12 = 0 and G12 = 0. This happens because
the operators F̂ and Ĝ represent a sum of at most two-electron operators, which will involve
at most four spinorbitals and there will be always an extra overlap integral over orthogonal
spinorbitals.9

The Slater-Condon rules are schematically depicted in Fig. M.1.

9 If the operators were more than two-particle ones, then the result would be different.
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