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Most algorithms in ab initio electronic structure theory compute quantities in terms of one- and
two-electron integrals. Let us consider the form of these integrals and their permutational sym-
metries. Here we find it helpful to employ the notation of Szabo and Ostlund, Modern Quantum

Chemistry.

Let us start with molecular spin orbitals, χ(x), which describe the motion of a single electron
as a function of spatial coordinates and a spin coordinate, denoted collectively by x, where x =
{x, y, z, ω} or x = {r, θ, φ, ω}, with ω being a formal “spin coordinate” used by Szabo and Ostlund.
Typically, a spin orbital is written as a product of a spatial part times a spin function (usually just
α or β), i.e., χ(x) = φ(r)α(ω) or χ(x) = φ(r)β(ω), where φ(r) is a spatial orbital that depends
only on the spatial coordinates such as r = {x, y, z} or r = {r, θ, φ}.

There are two standard notations for integrals in terms of molecular spin orbitals, denoted
“physicists’ notation” and “chemists’ notation.” The physicists’ notation lists all complex-conjugate
functions to the left, and then non-complex-conjugate functions to the right. For two-electron in-
tegrals, within a pair of complex-conjugate functions (or non-complex-conjugate functions), the
orbital for electron 1 would be listed first, followed by the orbital for electron 2. In chemists’
notation, by contrast, one lists the functions for electron 1 on the left, followed by functions for
electron 2 on the right. Within each pair, one lists the complex-conjugate functions first, followed
by the non-complex-conjugate functions.

The one-electron integrals are the easiest. One-electron integrals over spin orbitals in physicist’s
notation are defined as

〈i|h|j〉 =
∫

dx1χ
∗

i (x1)ĥ(r1)χj(x1) (1)

where the one-electron Hamiltonian operator ĥ(r1) is defined as

ĥ(r1) = −
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It is immediately obvious that
〈i|h|j〉 = 〈j|h|i〉∗. (3)

Szabo and Ostlund use square brackets to distinguish spin-orbital integrals in chemists’ notation
from those in physicists’ notation as given above. For the case of one-electron integrals, there is
in fact no distinction between physicists’ notation and chemists’ notation, and so the chemists’
notation one-electron spin-orbital integral,

[i|h|j] =
∫

dx1χ
∗

i (x1)ĥ(r1)χj(x1) (4)

is identical to the physicists’ notation 〈i|h|j〉. Thus we also know that

[i|h|j] = [j|h|i]∗. (5)

If the orbitals are real, then
〈i|h|j〉 = 〈j|h|i〉 (6)

[i|h|j] = [j|h|i] (7)

If spin is integrated out, we are left with integrals in terms of spatial orbitals only. It is customary
to denote integrals over spatial orbitals by parentheses, i.e.,

(i|h|j) =
∫

dr1φ
∗

i (r1)ĥ(r1)φj(r1). (8)

Note again that there is no actual distinction between physicists’ and chemists’ notation for one-
electron spatial orbital integrals. The above permutational symmetries hold for spatial orbital
one-electron integrals also, namely,

(i|h|j) = (j|h|i)∗ (9)

for complex orbitals, and
(i|h|j) = (j|h|i) (10)

for real orbitals.

Permutational symmetries in the two-electron integrals are somewhat more interesting. The
two-electron integral in physicists’ notation is

〈ij|kl〉 =
∫

dx1dx2χ
∗

i (x1)χ
∗

j(x2)
1

r12

χk(x1)χl(x2) (11)

while in chemists’ notation it is written

[ij|kl] =
∫

dx1dx2χ
∗

i (x1)χj(x1)
1

r12

χ∗

k(x2)χl(x2) (12)
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Clearly the integral is unchanged if the dummy indices of integration are permuted. This leads
to the symmetry

〈ij|kl〉 = 〈ji|lk〉 (13)

Furthermore, the complex conjugate of the integral is

〈ij|kl〉 = 〈kl|ij〉∗ (14)

Combining these two symmetries leads to one further equality, namely

〈ij|kl〉 = 〈lk|ji〉∗ (15)

Therefore, in the general case we have

〈ij|kl〉 = 〈ji|lk〉 = 〈kl|ij〉∗ = 〈lk|ji〉∗ (16)

or
[ij|kl] = [kl|ij] = [ji|lk]∗ = [lk|ji]∗ (17)

For the case of real orbitals, we can clearly remove the complex conjugations in the equations
above, leading to a four-fold permutational symmetry in the two-electron integrals. However, an
additional symmetry arises if the orbitals are real: in that case, the same integral is obtained if
i and k (or j and l) are swapped in 〈ij|kl〉. It is trivial to verify that this leads to an overall
eightfold permutational symmetry,

〈ij|kl〉 = 〈ji|lk〉 = 〈kl|ij〉 = 〈lk|ji〉 = (18)

〈kj|il〉 = 〈li|jk〉 = 〈il|kj〉 = 〈jk|li〉

or

[ij|kl] = [kl|ij] = [ji|lk] = [lk|ji] = (19)

[ji|kl] = [lk|ij] = [ij|lk] = [kl|ji]

Finally, it is worthwhile to consider the permutational symmetries in the antisymmetrized
two-electron integral, 〈ij||kl〉, defined as

〈ij||kl〉 = 〈ij|kl〉 − 〈ij|lk〉 (20)

= [ik|jl] − [il|jk] (21)

In the general case, the permutational symmetries are

〈ij||kl〉 = 〈ji||lk〉 = 〈kl||ij〉∗ = 〈lk||ji〉∗ = (22)

−〈ij||lk〉 = −〈ji||kl〉 = −〈lk||ij〉∗ = −〈kl||ji〉∗
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One consequence of these relationships is that

〈ii||jk〉 = 〈ij||kk〉 = 0 (23)

If we integrate out spin, we are left again with integrals over spatial orbitals φ(r). Most
frequently, two-electron integrals over spatial orbitals are written in chemists’ notation as,

(ij|kl) =
∫

dr1dr2φ
∗

i (x1)φj(x1)
1

r12

φ∗

k(x2)φl(x2) (24)

These integrals have the same permutational symmetries as the two-electron integrals over spin
orbitals in chemists’ notation, namely,

(ij|kl) = (kl|ij) = (ji|lk)∗ = (lk|ji)∗ (25)

for complex orbitals, and

(ij|kl) = (kl|ij) = (ji|lk) = (lk|ji) = (ji|kl) = (lk|ij) = (ij|lk) = (kl|ji) (26)

for real orbitals.
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