Appendix 7.A Derivation of the Quantum Master

Equation

It is instructive to formally derive the quantum master equation [Eq. (7.4)] and
see how the irreversible dynamics of the reduced system emerges from the reversible
dynamics generated by the Hamiltonian of a macroscopic total system. In this ap-
pendix, we provide such a derivation and explicitly show the approximations involved

in deriving the quantum master equation.

We start from the quantum Liouville equation (h = 1) that describes the density

matrix p(t) of a total system with Hamiltonian H

p(t) = —ilH, p(t)]

= —ilp(t), (7.17)

where we have defined the Liouville superoperator as the commutator of the Hamil-
tonian with an arbitrary operator O, LO = [H, O]. In the Laplace space (¢t — s), the

Liouville equation is

sp(s) = p(0) —iLp(s), (7.18)

where p(s) is the Laplace transform of p(t), and p(0) is the initial condition of the

total system. Equation (7.18) provides the formal solution of the Liouville equation

1

in the Laplace space, p(s) = =z

p(0). Note that ﬁ is a superoperator and should
be interpreted as the inverse of (s +iL).

In most physical applications, we are only interested in properties that are deter-
mined by states in a subspace of the total Hilbert space. Using a projection operator
P, we divide the density matrix of the total system into a relevant part p;(t) = Pp(t),
and an irrelevant part po(t) = (1 —P)p(t) = Qp(t), so that p(t) = p1(t) + pa2(t). Note
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that by definition, projectors P and Q must satisfy PP... P =P, QQ...Q = Q,
and PQ = QP = 0. Applying P and Q to both sides of Eq. (7.18), we obtain two

coupled linear equations:

spi(s) = p1(0) = —iPL[p1(s) + p2(s)],
spa(s) = p2(0) = —iQL[A(s) + pa(s)].

These equations can be solved to obtain the formal solution for the relevant part of

the density matrix in the Laplace space,

o l0) = PL—— QLA (). (7.19)

sps(s) — ps(0) = —iPLps(s) —iPL —ToYs

The inverse Laplace transform of Eq. (7.19) yields the following differential-integral

equation that describes the time evolution of p;(¢):

pr(t) = —iPLe™F py(0) — iPLpy () — /0 drIC(m)p1(t — 1), (7.20)

where we have defined the memory kernel

K(r) = PLe QL. (7.21)

The first term in the right hand side of Eq. (7.20) explicitly depends on the initial
condition of the irrelevant part of the total system p2(0). However, by choosing an
initial condition so that Pp(0) = p(0), we can make po(0) = 0, and the p5(0) term will
vanish identically. For example, the projection operator defined in Eq. (7.1) and the
product state initial condition defined in Eq. (7.3) satisfy the this condition. Hence,
by selecting a proper combination of projector and initial conditions, Eq. (7.20) can

be simplified to

279



plt) = =iPLoi(t) = [ ark(r)p(t =) (7.22)

Equation (7.22) has a non-Markovian memory kernel, and is in the form of a gener-
alized Fokker-Planck equation. The first term in Eq. (7.22) represents the unitary
evolution governed by the Hamiltonian of the system, and the second term represents
the dissipative dynamics of the relevant part of the total system. Note that total
system still undergoes unitary evolution [Eq. (7.17)], it is the reduced system degrees
of freedom (after tracing out the environment degrees of freedom) that have to be
described by a non-unitary evolution. Clearly, the non-unitary evolution is a result

of the separation of the total system into the system part and the bath part.

To derive the dynamics of a reduced system, we separate the total Hamiltonian
H into the system part Hg, the bath part Hp, and the system-bath interaction part
AHgp. We also require that Hg and Hp operate in two different Hilbert spaces, so
that their commutator vanishes, [Hg, Hg| = 0. The corresponding Liouville operator

can be decomposed accordingly:

L = Ls+Lp+Msp. (7.23)

In addition, we also define the projection operators P and Q =1 — P using

Pp = pyiTrpp. (7.24)

Note that the projector in Eq. (7.24) not only defines the relevant part of the total
system by tracing out the irrelevant part, it also provides a definition for the tem-
perature of the system. Eq. (7.24) is a convenient choice of projector, but this form
is not required. Other projection operators can be chosen [23, 24]. With the defini-
tion in Eq. (7.24), the projector P and the Liouville operators satisfy the equalities
LgP =PLg =0, PLsQA = QLsP =0, and PLspP = 0. The last equality is true

if the thermal average of Hgp over the equilibrium bath states is zero, (Hsp)e, = 0
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(where (...)., denotes Trp{...p;*}). Note that for any Hamiltonian with (Hgg)., # 0,
we can always absorb the average into Hg and obtain a new interaction term with
vanishing average, Hip = Hgp — (Hgp)eq, therefore, the condition to establish the
equality PLspP = 0 can always be achieved. For simplicity, we assume (Hgp)e, = 0
hereafter. Plugging Eq. (7.23) into Eq. (7.22) and applying the equalities, we obtain
the equation of motion for the reduced system after tracing out the irrelevant bath

degrees of freedom:

O'(t) = Terl (t)

¢ . (7.25)
= —iLlso(t) — )\2/ dr'Trg {Esge_ZQETQESszq} o(t—1).
0

Equation (7.25) describes the dynamics of the reduced system under the initial condi-
tion p(0) = 0(0) ® py?, and is often called the “generalized master equation” [3]. Note
that Eq. (7.22) is still exact, provided that the proper projectors and equilibrium
bath initial conditions are used. In fact, up to this point we did nothing but refor-
mulating the Liouville equation. Equation (7.25) is of little use because solving the

—iQL7 in the memory kernel is as difficult as solving the original Liouville

propagator e
equation, but this equation is a convenient starting point for the derivations of many

useful quantum master equations.

To derive Eq. (7.4), we need to apply two approximations. The first one is to

—iQLT in the memory kernel with the zeroth order propa-

replace the full propagator e
gator e QLsTLB)T which effectively neglects terms beyond second order in A in K(7).
This approximation is similar to the Born approximation usually used in the scatter-
ing theory. The second one is to replace o(t — 7) in the integral with e!#s7g (t)e s,
which makes the integral time-convolutionless and is effectively the partial ordering
prescription (POP) used in the generalized cumulant expansion methods |5, 6]. If
the second approximation is not made, then the integral retains the time-convolution

p(t—7) term, which is sometimes called the chronological ordering prescription (COP)

[4, 6]. Note that the two approximations both assume weak system-bath interactions,
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i.e. A < 1. In the A < 1 limit, both approximations are valid and we obtain from

Eq. (7.25)

o(t) = —ilHg,o(t)] — )\2/0 drTrp{[Hsp, [Hsp(—T),0(t) @ p;?]]}. (7.26)

To explicitly evaluate the trace over the bath degrees of freedoms, we consider a

generic product form for Hgp:
Hsp =Y S, ® Ba,

where S, are an system operators, and B, are bath operators, so that [S,, B,] = 0.

Substitution of Hgp in Eq. (7.26) yields

ot) = —i[Hs,o(t)]
_%)‘2/0 dr Z {[<Ba’(_7)Ba>eq + (BaBa/ (—T))eq [Sn, [e_iHSTSn’eiHSTa o(t)]]
— [(Bar(=T)Ba)eg = (BaBa/(—T))eq] [9n, e 1578 et sT, U(t)]-i-]} : (7.27)

where [...], denotes the anticommutator.

Finally, we define bath correlation functions

Cara(T) = (Bar(T) Ba)eg = Fg/a(T) + Z'F?,Q(T), (7.28)

where I'*'®(7)and I'¢"®(7) are real functions representing the real part and the imagi-
nary part of the correlation functions, respectively. Using the definitions in Eq. (7.28)

and the symmetry properties of quantum correlation functions,

(BaBu(T))eq = <Ba’(T)Ba>:q = Fg/a(T) - iF?IQ(T)v

we obtain
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o(t) = —i[Hg,a(t)]—)\z/O dr Z {Ffflo‘(—T)[Sn,[e_iHSTSn/eiHST,U(t)]]

U !
n,n' oo

Y1) [Sn, [T G e ST a(t)]+]} , (7.29)

which is the non-Markovian quantum master equation shown in Eq. (7.4). This is
an equation for o(t) along, and the influence of the bath on the system is formulated
through the bath correlation functions. The bath correlation functions, which are
equilibrium properties of the bath, determine the non-equilibrium dynamics of the
system. Note that no fast bath relaxation time has been assumed yet; the only
assumptions made in deriving Eq. (7.4) are the equilibrium bath at the initial time

and the weak system-bath interaction.
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