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We investigate biased and nonbiased aging continuous time randoma&k&W), using fractal
renewal theory. For example, a biased ACTRW process describes a Montroll-Weiss CTRW process
which starts at time-t, and then at timé=0 a bias is added to the random wdille., an external

field is switched oh Statistical behaviors of the displacement of the random walker(t)

—r(0) in the time interval (@) are obtained, after aging the random walk in the time interval
(—140). In ACTRW formalism, the Green functio®(r,t,,t) depends on the age of the random
walk t, and the forward timé. We derive a generalized Montroll-Weiss equation, which yields an
exact expression for the Fourier double Laplace transform of the ACTRW Green function.
Asymptotic long times, andt behaviors of the Green function are shown to be related to the
arc—sine distribution and ‘g stable laws. In the limit oft>t,, we recover the standard
nonequilibrium CTRW behaviors, while the important reginteg, andt=t, exhibit interesting

aging effects. Convergence of the ACTRW results towards the CTRW behavior, becomes extremely
slow when the diffusion exponent becomes small. In the context of biased ACTRW, we investigate
an aging Einstein relation. We briefly discuss aging in Scher—Montroll type of transport in
disordered materials. @003 American Institute of Physic§DOI: 10.1063/1.1559676

I. INTRODUCTION geneity is destroyed at time=0°. ACTRW describes a
CTRW process which begun at timet, . Whent, becomes

Diffusion and relaxation in strongly disordered systemsI how that ¢ Jibri
exhibits in many cases anomalous behaviorszor example ong we show that a type 07 an equiiibnium process emerges
which still depends on time scale,. Thus generally

the diffusion of a test particle may become anomalous,

namely the mean square displacement behaves (kg ~~CTRW and CTRW exhibit dif-fre%rgent beha\’i?ég'
~t*“anda# 1. Arandom walk framework, widely applied to In this paper, we use DynkirfSand Feller’s®results on

describe anomalous diffusion is the Montroll=Weiss continu-fractal renewal theory to investigate properties of biased and
ous time random walKCTRW).#=% CTRWs are used to nonbiased ACTRWand see also a very useful investigation
model many physical and chemical processes, for exampl@f fractal renewal theory by Gordeche and L&bkIn par-
Charge transport in disordered Systgmprotein fo|d|ng ticular, we obtain a generalized Montroll-Weiss equation
dynamic€£1° transport in low-dimensional chaotic Yielding an exact expression for the Fourier double Laplace
systemsl,l_14 anomalous diffusion in a metallic supercooled transform of the Green function. Asymptotic behaviors of
liquid,*®> the chemical reaction of CO binding to ACTRW are shown to be related to the arc—sine distribution
myoglobin!® and blinking behavior of single quantum as well as to Ley stable laws.
dots?’ ACTRW might yield a phenomenological description of
Anomalous diffusion processes may exhibit agific?®>  aging self-diffusion dynamics in glass&sbelow the glass
where vaguely speaking the age of the process controls theansition temperatur@. and thena=T/T. is temperature
statistical properties of the random walk. Aging in diffusion dependent (and see Refs. 30-34 for related wprk
processes yields an interesting insightful perspective on dyRecently® showed that ACTRW describes dynamics of an
namics in disordered medium, and more generally is used datermittent chaotic system. We note that other stochastic ap-
a tool to probe complex systems such as blinking quantunproaches to aging dynamics are based on a nonlinear diffu-
dots?* spin glasses, Anderson insulators, and colloidal sussion equatio? (however this equation does not always yield

pensiongsee Ref. 25 for a brief review a normalized Green functignand a generalized Langevin
Monthus and Bouchadll introduced a CTRW frame- equatior?”*
Work, which exhibits aging behaviors. In what follows we |nvestigati0n of ACTRW seems important for several

call this generalized CTRW, aging continuous time randofmyeasons(i) Consider a random walk process which starts at
walk (ACTRW). The standard non-Markovian CTRW as- time —t,, then at timet=0 we break the symmetry of the

sumes that jumping transitions begin at titee0, hence the  random walk by applying a uniform external field on the
CTRW describes a nonstationary process, where time homystem. The response for any non-Markovian process to the
external field will depend both on the forward tinend the
dElectronic mail: jparkai@nd.edu aging periodt, . Since the response depends on two times it
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contains more information than the standard treatment of 20 ' T y - T
CTRW theory which assumeag=0. It is not known yet if
ACTRW can be used to describe transport in complex sys-
tems when aging conditions are applied. However due to the iso
large number of application of the nonequilibrium CTRW we
may expect that also ACTRW has a certain domain of valid-

ity in the physical world, when aging initial conditions are ..} .
satisfied. (i) Consider now nonbiased random walks. In
some physical situations we may not know whatis since
particles in a solution do not carry a birth certificate. Thus if ;| i
we make an observation of location of random walkers at
time t=0 (assume we cannot identify wether a transition r
occurred at timeé=0") and then ask for example what is the ) | , | ) 0
mean square displacement of such particles, the answer a( %0 -2000 9 2000
cording to ACTRW depends on how old is the random waIkFIG 1. Number of jumps in a renewal process with(t) = m- -1
process. Nonequilibrium CTRW yields an answer which is =/ #72% 7 JThepproceSS s a;’_ta with 1.2 4000, Observa-
independent of age of the processes. We see that anomal of the process begins at time=0. t; is the time elapsing between
behavior of a particle is very sensitive to the measuremento and first jump event in the forward time interval t)0,in the figure.
procedure. If one can identify start of measuremen t;=2553.

with a jumping event nonequilibrium CTRW is a more suit-

able framework, while ACTRW is more suitable for an on-

cqUationk® L where suggested 45 a stochastc tool o in-,, L€t Puw(r ) be the Green function of the CTRW, the
q 99 Montroll-Weiss equation yields this function in Fourier—

vestigate anomalous transport, these equations are based on

g . Lapl

nonequilibrium CTRW and thus they are not suited to de- aplace k.u) space,

scribe an ongoing proce$s*® Our work points out to the 1— y(u) 1
limitations of these equations, and yields a way to correct Py(k,u)= U T 1K) g0

their solution when aging conditions are included.
All along this work we will use the convention that the ar-

This paper is organized as follows: In Sec. Il CTRW and
ACTRW are introduced. We then derive an exact expressmaumemS in the parentheses define the space we are working
in, thusy(u) is the Laplace transform af(t). Properties of

for the Fourier—double Laplace transform of the ACTRW
Puw(r,t) based on the Fourier—Laplace inversion of Eg.

Green functionP(r,t,,t), thus generalizing the Montroll—
Weiss equation to include the effect of the age of the randonare well investigated, see Refs. 5 and 40 and References
therein. In particular, it is well known that asymptotic behav-

walk (see Sec. I)l. In Sec. IV we derive asymptotic behav-
ior of Pyw(r,t) depends on the long time behavior ft).

iors of the Green functiof(r,t,,t) which are analyzed in
Two classes of processes are usually considered. The first is

4000

()

detail. We then consider biased ACTRWSec. Vj and dis-
cuss an aging Einstein relation. Finally we briefly consider,[he case when all moments @i(t) are finite, the second
aging in Scher—Montroll type of transport as a possible aPtlass is the case whergt) is momentless cor’responding to
plication of this work. Note that a small part of our results '

) , - > a situation wheraj(t)oct~ "9 and 0< a<1.
was reported in Ref. 35, in the context of aging in chaotic An important assumption made in the derivation of Eq.
transport.

(1) is that the random walk begun at tinhe-0. More pre-
cisely, it is assumed that the PDF of the first waiting time,
Il. CTRW AND ACTRW i.e., the ti_me_elapsing be_tween start of the procesﬁa_l
and the first jump event ig/(t). Thus the Montroll-Weiss

One of the best well-known random walk models is theCTRW approach describes a particular choice of initial con-
CTRW introduced by Montroll and Weiéslt describes a ditions, called nonequilibrium initial conditions. The limita-
large class of random walks, both normal and anomalous aniion of CTRW theory to a very particular choice of initial
can be described as follows: Suppose a particle performs eonditions, was an issue for debates in the early 19%0s.
random walk in such a way that the individual jumpn Monthus and Bouchad@lintroduced a CTRW for an on-
space is governed by a probability density functi®DF)  going process, where the random walk process is assumed to
f(r), and that all jump vectors are independent and identistart at some time= —t,, long before start of observation at
cally distributed. The characteristic function of the positiontime t=0. In Fig. 1 a stochastic realization of number of
of the particle relative to the origin after jumps isf"(k), jumps in such a process is shown. For such a random walk
wheref (k) is the Fourier transform off(r). Unlike discrete the Green function is denoted witR(r,t,,t) andr is the
time random walks, the CTRW describes a situation wherealisplacement in the time interval (), Using scaling
the waiting timet between jumps is not a constant. Rather,analysis?® have investigated basic properties of this random
the waiting time is governed by the PDKt) and all waiting ~ walk, mainly the behavior of the Fourier transform of the
times are mutually independent and identically distributedGreen function. Forr<<1 the random walk exhibits interest-
Thus, number of jumps is a random variable. ing aging effects, hence as mentioned we call it ACTRW.
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There exist several methods to investigate aging. One Thyt)dt
method is to start a dynamical process at time—t,, then lim h;_(ty)= Of. (4)
at timet=0 add a small perturbation to the system. One  ta—= )

eventually measures the response at some tim@. This Thi ¢ initial dition i lled ibrium initial
type of aging is investigated here in the context of biased ' type of initial condition is called equilibrium Initial con-

ACTRW. Alternatively one can measure displacement of adltlon, it was investigated previously in the context of CTRW

—46 8 ;

random walker during a time interval (), after aging the and _related modef8.~“ Feller® derived Eq.(4_) from the
process in the interval{t,,0) (i.e., now no external field is re_quwer_nent that_the renewal process be statlonary._ Here we
switched on at time¢=0). We investigate this behavior in Will mainly consider the second case corresponding to a
the context of nonbiased ACTRW and will show later thatPOWer law waiting time PDF,

under certain conditions the two approaches are related ()t~ with 0<a<1, (5)
through a generalized aging Einstein relation. A system ex-

hibits aging if its dynamical properties depend bandt,  whent is long. In Laplace—u space Eq(5) reads
even in the limit when both are long. Of course many sys-

tems do not exhibit aging, namely whém 7, wherer is a Y(u)~1—Au“, (6)
characteristic time scale of the problem, dynamical proper- ) ] N
ties of the process are independent of the aging time whereu is small, andA is a positive parametéf. For ex-

ample the one sided Mg PDFs whose Laplace pair is

P(u) =exp(—AuY), or (u)=1/(1+Au®) discussed below,

belong to the class of functions described by Efsand(6).
IIl. ACTRW: GENERALIZED For this casdt)= and Eq.(4) is not valid. According to
MONTROLL-WEISS EQUATION Dynkin’s limit theorem?”:?8in the limit of long aging times,

The ACTRW describes the following process, a particleth€se kind of probability densities yield

is trapped on the origin for timg, it then jumps tory, the
particle is then trapped an for timet,, and then it jumps to h, (t1)~ - )
a new location; the process is then renewed. Thus, the  ° T it tty)
ACTRW process is characterized by a set of waiting time
{t1,... tn,...} and displacements,,... r,,...}. The time

sin(ma) tg

)

ﬁ\lote that this expression is independent of the exact form of
elapsing between start of observationtatO, and the first ¢(1), except for the exponent Whena— 1 the mass of the

jump event is denoted bty . Here we denote the PDF of the PDFh, (t) is concentrated in the vicinity df, —0, as ex-

first waiting timet, with h, (t;). In ACTRW the random pected from a normal process. Equati@hshows that as age

walk started at= —t befc?re the start of observation &t of the process becomes older, we have to wait longer for first
=—t,,

— 0, thereforeh, (t,) depends on age of the procass The jumping event to occur. In a physical process, this may cor-
. tal . . . respond to a particle in a disordered system which searches
waiting times{t,}, with n>1 are independent and identi-

. . " ; for a local energy minima in time intervaHt4,0). In this
caIIy_d|str|buted with & common probablhty deT‘S'W)- case the longer the search takes place the deeper the minima
The jump length{r,...,r,,...}, are independent identically

L . ) Y found, hence in statistical sense the release time becomes
distributed random variables, described by the pmbab'“t%nger as the process is older. In what follows, we will also

densityf(r). . . I use the double Laplace transform of E@):
In contrast, in the Montroll-Weiss nonequilibrium
CTRW, the age of the process is zde=0. And, for that ue—s®
Casehta(tl) = lﬂ(tl) hs(u)N sa(u—_s) (8)

Recently, Gordeche and Lutkinvestigated statistical
properties of fractal renewal processes, among other thingbhis equation can be derived by inserting the sradinds
they obtainh; (t;). Let hy(u) be the double Laplace trans- expansion ofy(u) and ¢(s) given in Eq.(6), in Eq. (3).

form of h, (t,) Feller® discusses the relation of EY) to the so-called arc—
: B B sine distribution(see the Appendix for some details
(W)= f 0 dtlf 0 ota hta(tl)e_tas_tlu' @ walll_eert, vljr(ureyrtea eil rgintt?oene?jreen function of the random
then according to Ref. 29, r=r(t)—r(0) 9)
hg(u) S L) : (3) s the displacement in the time interval {)0,Hence, clearly

1=id(s) u=s initially r=0 at timet=0. Let (i) p,(t,,t) be the probability
In the Appendix we rederive Eq3) using a method which of makingn steps in the time interval (0, and(ii) P(k,s,u)
slightly differs from the one used in Ref. 29. be the double-Laplace—Fourier transform—k,t,—s,t
Two types of behaviors are found fb(a(tl). The first —u) of P(r,t;,t). Then
case corresponds to a situation when average waiting time

(t)=f5°t¢(t)dt is finite, and then in the long aging time limit P(k,s,u)= > p,(s,u)f"(k), (10)
one obtainé n=0
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wherep,(s,u) is the double Laplace-transform pf(t,,t).

As mentionedf"(k) in Eqg. (10) is the characteristic function
of a random walk with exactlyy steps. Using the convolu-

tion theorem of Laplace transform we obtain

1-shy(u) n=0
su '

Pn(s,u)= 1- y(u) (11
hs(U)l//nfl(U)T, n=1.

Hence inserting Eq11) in Eq. (10), using Eq.(3), and sum-
ming overn, we find the exact result
1 [(u)— () ][1—F(K)]
Pl U= S0t W 9 eI v (0]
(12)

Equation (12) is a generalization of the Montroll-Weiss

equation(1) for ACTRW. Note thatP(k=0,s,u)=1/(su) as
expected from the normalization condition.

It is useful to rewrite Eq(12) in terms of the Montroll—
Weiss Eq.(1), andpg(s,u) in the first line of Eq.(11):

P(k,s,u)=pg(s,u) +hg(u)f(k)Pyw(k,u). (13

E. Barkai and Y.-C. Cheng

variance off(r) is finite (u=2). Special emphasis will be
given to the case wheii(t) is momentlessyr<<1, since this
regime exhibits interesting aging behaviors.

A. Mean square displacement

By differentiating Eq.(12) with respect tdk and setting
k=0, we obtain the moments of the random walk in a stan-
dard way. Assuming a nonbiased symmetrical random walk,
we obtain

hs(u)m,
ufl-y¢(u)]’
wherem, = [r2f(|r|)dr is assumed to be finite. We consider
power law waiting time PDFs as in Eq&) and (6), in the

limit where bothu ands are small, their ratio being arbitrary,
we find

(ré(s,u))= (17

(U*=s")m,
s*(u—s)Autte

As shown below one can invert this equation exactly to the
double time domain. However it is instructive to consider

(ré(s,u))~ (18)

The first term on the right-hand side of this equation, de+yq limits first. If u<s, corresponding té>t,, we have
scribes random walks where the particle does not leave the

origin (i.e.,n=0). The second term describes random walks (r(s,u))~ u=tm, (19
where number of steps is greater than zero, it is given in ’ As
terms of a (_:onvolu_no_n ohs(u)f(k) .W'th the Montr_oll— While for s<u, corresponding td,>t, we have
Weiss equation. This is expected since the only difference
between ACTRW and the nonequilibrium CTRW, is the first 2 m; 20
waiting time distribution. (ri(s,u))~ Auss® (20
If the process is Poissoniagy(t) =exp(-t), the Green . .
function P(r,t,t,) is independent of the age of the random Inverting Eq.(19) and Eq.(20), we obtain
walk t,. To show this we insert myt“ >t
1 1 ) Ar(1+a)’ é
'ﬂ(U):m, l//(S):lTS (14 (ré(ta,t))~ mptte 2 (22)
L t<t,.
in Eq. (12) and find ATl'(a)
1 1 This result is valid provided that botht,> A, In the limit
P(k,s,u)=— IR (15  t>t, we recover standard behavior found in nonequilibrium
su (k) CTRW? In the aging regimet<t, we find an interesting
Inverting to the double time domain behavior. Independent of the exponentthe mean square
P(k.t, t)=e 11~ (It (16) displacement increases linearly with respect to the forward
stas - .

time t, as found in normal diffusion processeéa addition,

the diffusion is slowed down as the age of the random walk
t, is increased. This behavior is expected, due to statistically
longer release times, from the initial position of the particle,

This result is independent of as expected from a Markov-
ian process. Assume thdtk)=1—m,|k|*+-- for small
values ofk and u=<2, implying that the random walks is
nonbiased. In the long time limit P(k,t,,t) as the age of the random walk is increased.
~exp(—mﬂ|k|/‘t), and either a Ley behavior @<2) or a We now consider a specific choice of waiting time dis-
Gaussian behaviori{=2) is found, as expected from the tribution,

Gauss—Ley central limit theorenf® In what follows, we

investigate cases when this standard behavior does not hold. (u)= TFAGE (22
corresponding to Ref. 48,
IV. ASYMPTOTIC BEHAVIORS: NONBIASED ACTRW te-1 te
PO="73"Eaal % (23

Let us now consider basic properties of nonbiased
ACTRWs. While Eq(12) is valid for a large class of random whereE, ,(x) is the generalized Mittag—Leffler functidn.
walks, including Ley flights (u<2), we will assume that Inserting Eq.(22) in Eq. (17) we have
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) m, u*—s* 1 where® in Eqg. (30) is the Laplace convolution operator with
(re(s,u))= A sf(u—s) ul e (24 respect to the forward time and in this limit
Hence for this choice of waiting times, E(.8) is exact and Do(ta,t)~ sin(7a) f“’ dx 31)
not limited to the asymptotic regime. Inverting to the time ot a T X (LX)

domain using Eq(7) we find
g Eal?) In Eq. (30) Pauw(r,t) is the long time solution of the

21+ _ M sin(7a) 1 o t Montroll-Weiss equation, i.e., the Green function of the
(r(ta,0) = A T t) t Fl+a)’ fractional diffusion equatiof,
ta E 1 E a1
(25) PAMW(r,t)Eﬁ_lf_l Ua+—|k|2 , (32
where® is the Laplace convolution operator with respect to g ) ) )
the forward timet. We rewrite Eq.(25) as where L ~*F "~ is the inverse Laplace—t inverse Fourier
) N k—r operator.
(r2(t, ) =12 m;  sin(ma) f”ta (t/ta—y) dy. (26) The Green function Eq30), is a sum of two terms. The
a aAl'(l+a) = o Y41+y) first term on the right-hand side of EO) is a singular term

[i.e., thed(r) term|. This term corresponds to random walks
where number of steps in time interval {0is zero. Unless

) m, 1 o e t>t,, this term cannot be neglected, since without it the
(ré(ta, 1)) = A m“”ta) —tal (27) Green function in Eq(30) is not normalized. Thus ACTRW
exhibits a behavior different than ordinary CTRWSs, where
realizations of random walks where number of steps is zero
do not contribute to the asymptotic behavior.

In one dimension, we have

The solution of the integral is readily obtained, we find

The right-hand side of Eq27) describes the long timg,
long timet,, behavior of a large class of random walks with
waiting time PDF satisfyingy(t)oct~ ("9 [i.e., since the
right-hand side of Eq(27) is the double inverse Laplace
transform of Eq.(18)]. Note that ifa=1 in Eq. (27), the
random walk does not exhibit aging, this is expected since Pamw(r.t) = a|x|1+2/ﬂ|“/2
for a=1 the generalized Mittag—Leffler function is an expo-
nential and then the process has no memory.

t
|X|2/a)! (33)

where | ,5(t) is the one sided lwy stable PDF, whose
Laplace pair is exptu®?). Hence the Green function solu-
tion of the ACTRW is

B. Green function

sin(wa) 1

In this section we investigate asymptotic properties ofP(X.ta,t)~Po(ta,t) 6(X)+ —— e n
the Green functiorP(r,t,,t), by considering the continuum ta(—) 1+ —
approximation of Eq(12). This approximation is expected to ta ta
work in the limit where both the forward tinmteand the aging tx| ~(1+2) t|x| (/)
time t, are long. A proof of the validity of this approach, is ®— ot aIZ( > Ta ) (34
given in Sec. IVD, for the one-dimensional ACTRW. We
assume a symmetric random walk, hence for sikdlithe  Scaling Eq.(34) with 7=t/t, and q=|x|/t%? we obtain a
following expansion is valid: scaled form of the Green function

1 m, sin(ma)

f(k)~1— §|k|277 (28 P(X,ty,t)~po(ta,t)8(x)+ prp o2 R
whered is the dimensionality of the problem. We also use T 7' 7'
the small Laplace variable expansiony(u)~1-Au® in X fo dT'(T_ PO E— Ia/2<q2/a7_ . (39
Eq. (6). Inserting these expansions in E@2), we obtain

S*U—sU® (U~ s%) Ayl Below we analy;e thls.expressmn in some detail.

P(k,u,s)~ s (29 In d space dimensions we hafe

+
u(u—s) s%u-—s) L

PAMw(r,t):a7 a l’fd

m,
@ 2

Au®+ K| 2d
(1,1

For convenience, and without loss of generality, we choose (36)
(d/2,1e),(1,1)ex) )’

now to work in units wheréd=1 andm,/(2d)=1.
Inverting Eq.(29) to the double timet(, ,t)—real space
r domain, we find

—2lay 2lat—1
2 r<<t

X HZ

Besides thel=1 case, the Fox function solutidt23 is not
generally tabulated, hence this solution is rather formal,
in(ma) 1 though asymptotic behaviors of EQq(36) are well
t\« t investigated®*°A practical method of obtaining the solution
ta(a) 1

of Payw(r,t) Eq. (36), using the inverse lwy transform, is
® P amw(r,1), (30 representation of the aging Green functiordiimension

P(,ta )~ Polta.) 5(1) +

given in Ref. 40. Using this method, we find the integral
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o T, (T— T,) (7'_ 7',)
X . ds odT Sl+l/a+d/2|a I
g a’l(49)
e
T,a(1+T[)Y (37)

whereq=r/t*? and r=t/t,. Similar to the one-dimensional

case, this solution shows the precise relation betweel?

ACTRWS, Levy stable laws and Dynkin’s limit theorem.

To conclude, Eq(30) shows that the asymptotic solution

E. Barkai and Y.-C. Cheng

FIG. 2. Three-dimensional plot of the scaled nonsingu-
lar Green function vsr=t/t, and q=|x|/t*? for a
=1/2 and one dimension. Notice a smooth transition
from aging behaviorr<1 to Montroll-Weiss CTRW
behavior found wherr>1.

C. Graphic examples

In order to better understand the asymptotic behavior of
the ACTRW, we perform numerical calculations to obtain the
nonsingular part of the Green function for different values of
« in one dimension. The one sided westable probability
density in Eq.(33) was obtained using a numerical inverse
Laplace transformation methd#>2The calculated PDF was
then used to evaluate the convolution integral numerically to
obtain the nonsingular part of the Green function according
Eq. (35. For mathematical details on one sidedvie

stable laws, see Appendix in Ref. 40, and references therein.

In Figs. 2—5, we present the calculated nonsingular part

of ACTRW is a sum of two terms. The first is a singular of the Green function for different. Figure 2 shows a three-
term, and the second is a convolution of the distribution ofdimensional plot of the scaled nonsingular Green function,
the first waiting time and the asymptotic Green function ofP(q,7)-t*?, versus scaling variablesy=t/t, and q

the non equilibrium CTRW.

0.5 T T

=|x|/t%"2, for «=1/2. A smooth transition from the aging

0.45 |

0.4

0.35

0.3

0.25

P2

0.2

0.15

0.1

0.05

FIG. 3. The scaled nonsingular Green function /s
=|x|/t*"2 for a=1/6 and for five differentr=t/t,: 7
=0.1 (dotted, r=1 (dashed, r=10 (dot—dasheq 7
=10 000(dashed, andr=< (solid). The solid curve is
the asymptotic behavior of the nonequilibrium CTRW.
Notice the non-Gaussian shape of the Green function
and the slow convergence towards the nonaging CTRW
behavior (the solid ling, compared with the cases
=1/2 anda=5/6 shown below.
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a=1/2
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0.3

0.25

P(a,nt"*

FIG. 4. Same as Fig. 3 fax=1/2.
0.2

0.15
0.1

0.05

behavior whenr<1 to the nonequilibrium CTRW behavior nonequilibrium CTRW behavior shown as the solid curves in

when >1 can be clearly seen in this figure, where the timeFigs. 3-5. Finally, agxr becomes small, the convergence to-

ratio r=t/t, is changed continuously. In addition, we ob- wards the nonaging behavior whefi, = becomes ex-

serve a monotonic increase of the nonsingular Green fundremely slow. For example, the case fer=1/6 in Fig. 3

tion as the scaled timeincreases. Note that as the scated shows a significant deviation from the nonequilibrium

is increased the singular term is decreasing, hence we mayTRW behavior(solid line) whent/t,=10000. As a result,

think of this aging process, as if the singular part of thethe Green function exhibits aging behavior even whigpis

Green function, is feeding the nonsingular part. large, and an ACTRW treatment for dynamics in this regime
Figures 3—5 show the scaled nonsingular Green functiomwill be essential.

versusq=|x|/t*? for a=1/6, a=1/2, anda=5/6, respec-

tively. In each figure, the scaled Green functions at several

different 7s are shown. A few general features can be seen irb Proof of ic behavior di )

these figures. First, the Green function is clearly non-—" roof of asymptotic behavior for one dimension

Gaussian for all cases, as we expected. A comparison be- We now prove the validity of Eq(30) using a method

tween the shape of the Green function tor1/6 in Fig. 3  developed in Ref. 53. The main idea is to show that moments

and fora=5/6 in Fig. 5 clearly demonstrates that the devia-of the ACTRW, are in the asymptotic limit described well by

tions from Gaussian behavior are stronger for smallein Eq. (30). For simplicity we assume a one-dimensional sym-

the limit of a—1 (not shown, we obtain a Gaussian Green metric random walk.

function. Second, for>t, (i.e., 1), we recover the usual The moment generating functidifk) is expanded

0.5 T T T T

0.45 |

0.4

0.35 | E

0.3

0.25

P(qm)t>"?

FIG. 5. Same as Fig. 3 fax=5/6.
0.2

0.15
0.1

0.05
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k2 k4 k6 in Eqg. (8). Inserting this expression fdrs(u) into Eq. (46),
fk)=1—my = +my 57 —Mezmot---. (38  settingm,=1, and then summing over, we find an expres-
sion for P(k,u,s) that is the same as E(9). Equation(29)
Wherem;,, my, etc., are the moments of the jumps. Insertingwhen transformed yields E§30). To conclude we showed
this expansion in Eq12) we obtain the smak expansion of  that Eq.(29) describes the smadlu behavior of the ACTRW

the ACTRW moment generating function: moments, hence it follows that E¢B0) describes the long
hy(u) K2 timet andt, behavior of the ACTRW Green function, the set
P(k,s,u)= su U [1+Q(u)]m2§ of momentsm,,mg, etc., are unimportant in this limit.
4
—[1+Q(u)](my+ GQ(u)mg) 24 E. Behavior on the origin
Using Eq.(33) we investigate the nonsingular part of the
+[1+Q(u)J[me—30Q (u)mymy ACTRW on the origin. Fod=1, we find
+9002(u)m3 i 4o 39 ~aizg !
(Wm3] =55+, (39) P(xta D-0=t" 0| {- . (47)
where where
Q)= (/1= $(w)]. (40 o, sinma) [z (zoy) R 4s
The momentgx"(s,u)) of the ACTRW are defined in the 9(2)=2 27 (1—al2) Jo y (1+y)yy*” (48)
usual way
Hence
- (ik)" —al2 1-a
P(ks,u)= 2 (x"(s,)) =~ (41) ¢ t tt,,
n=0 : 2I'(a)['(2—3al2) \ 1, '
Comparing Eq(39) with Eqg. (41) we have P(X.ta,t)]x=0~ t- a2
_ t>t,.
o 1 2l (1-al2)’ 2
=gy (42) (49)

. N In the limit t>t, we recover standard CTRW behavior.

which means that normalization is conserved. For the second . .

moment we obtain In Fig. 6, we present the behavior of the ACTRW on the
origin. The ratio of the scaled nonsingular ACTRW Green

(u) function to the Montroll-Weiss nonequilibrium CTRW

g (1] 43 Green function on the origin,P(x,t,t)t*?,_ /2" (1

—al2), is plotted versus the scaled dimensionless tife

This ratio approaches one in the lin# t,, showing that the

hs

(X3(s,u))=

which is the same as E@Ll7). The fourth moment is more

interesting, ACTRW process will converge to the standard nonequilib-
4 hg(u) ) rium CTRW behavior when>t,. It can be clearly seen in
(X(su))=——[1+QW]Ims+6Q(um]. (44  Fig. 6 that fora>1/2, the ACTRW process has roughly

. ] ) o converged to the nonequilibrium CTRW limit whetit,
Higher order moments are obtained in a similar way, for the~ 1 \yhile for «— 0, the crossover to CTRW limit becomes

sake of space they are not included here. Odd moments vagstremely slow. For example, whem=1/12, large devia-

ish due to the symmetry of the random walk. tions from the CTRW limit are clearly observed even when
_One can easily see that the ACTRWh moment /¢ =1¢%. Since the limita—0 is important for several

(X"(s,u)) depends on the microscopic jump momentssysiemd?2054it pecomes clear that whea is small, the

{m,, ---,my}. However, in the limitu—0, convergence towards the standard CTRW results becomes
] hg(u) 1 o Nl extremely slow, and the aging effect is of importance even
(X"(s,u))~ . sz S (45) whent>t,.

From Eq.(49), we see that fot<t, the nonsingular part
which depends om, but not on the higher order jump mo- of P(x,t,,t)|,=, increases with time¢ when a«<2/3. This
mentsm,, Mg, etc. Thus, the moments, with n>2 are the  unusual behavior is not unphysical, because the singular
irrelevant parameters in this problem. Inserting E4p) in  delta function term is a decreasing function of time, and the

Eq. (41) we have total probability of finding the random walker in a small
= hy(u) m, |2 vicinity of the origin is decreasing monotonically with time
P(K,u,8)~ > ——(ik)" 2a) (46)  as expected.
n=0 u ZAU

Since we are interested in the limit whearandt, are large,
the ratiot/t, being arbitrary, the corresponding Laplace vari-
ablesu ands must approach zero their ratio being arbitrary. We now consider one-dimensional biased ACTRW. We
Thereforehg(u) in Eqg. (46) is given by its asymptotic form therefore use the smaill expansion off (k):

V. BIASED ACTRW
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08 .

3
Zo6f .
o= FIG. 6. The behavior of the nonsingular Green function
\j ) on the origin normalized by the long time solution of
g: /./ the Montroll-Weiss nonequilibrium CTRW. The con-
go4r e 7 . vergence of ACTRW towards the CTRW result is ex-
= R tremely slow whemnx—0.
a -

ke a=5/6

-

0.2

2
f(k)=1+ikm1—k?m2---, (50 (X(s,u))g=

F 2
2kb_|_<x (s,u))g- (54

wherem;>0 is the averaged jump length. Differentiating The subscripF in Eq. (54) indicates the presence of external
Eq. (12) once with respect t& and takingk=0 we find the  field F. (x?(s,u)), is the mean square displacement in the

mean displacement of the random walkeisjo space, absence of a field, i.e., E452) with m;=0 andm,=a?.
myhy(u) Since the equation holds for tiseu domain, it holds also for
S .
X(S,U))= ——————, 51 thet,,t domain
(X(SW)= G )] (51 a
. . . . . F

where hg(u) is defined in Eq.(3). Differentiating Eq.(12) X(ty 1)) e==—(x2(t,,1))o. (55)
twice with respect tk, we find the second moment of the (xlta ) 2ka< a D)o

biased random walk Thus the mean square displacement of the particle in the

5 hs(u) , () absence of the fieldthe fluctuation yields the mean dis-
(XA(s,u))= ——=— 2my—— +my. (52)  placement in the presence of a weak field. When the waiting
uf1—(u)] 1-y(u) : . o . ;
times are exponentially distributed, we obtain the usual Ein-
stein relation between mobility and diffusion constant, which
. _ _is independent of the age of the processFor experimental
We now derive a relation between the mean square disyerification of Eq.(54) in the nonaging regimé¢,=0 and
placement in the absence of bias, and the mean displacemeagith o<1, see Refs. 60—62.

of the particle in the presence of bias, reflecting the
fluctuation—dissipation relation valid within linear response
theory (see Refs. 38, 55-58 for related wprkhe case of
zero aging,=0 was discussed in Ref. 59, where some con
ceptual problems of linear response theory for systems ex- From Eq.(51) we can derive the behavior of the mean
hibiting anomalous type of diffusion was discusgedy., the  displacement in exactly the same way as done in Sec. IVA,
nonstationarity of the process, the dependence af exter- and find

A. Aging Einstein relation

B. Asymptotic behavior of biased ACTRW

nal field). N
We assume that the random walk is on a one- Myt >t,
dimensional lattice with lattice spaciray therefore X(ta.0) Al'(1+a)’ 56)
X(ta, b))~ .
f(x)= P, 8(x—a) + Prd(x+a). (53) 2 mittg
_ta a.
Al'(a)’

Here P_+Pgr=1, hence the jump moments in EGO) are
m;=(Pg—P.)a and my;=a®. We assume that the process For the second moment we use the sreall behavior of Eq.
obeys local detailed balance, namelyP, /Pg (52) and find

=exp(—aF/k,T), whereT is the temperature. Using these 5
conditions, and the assumption of weak fiale/k,T<1, we ) 1 u%=s"|2mp
havem;=a?F/2k,T. Using Eqgs.(17) and(51), we find OA(s,up~ AulT e s¥(u—s)|u“A +m;

(57)
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Inverting this equation using Eq56), we investigate now waiting time distribution. In experiments, this corresponds to

the dispersion charge transport which is started at tie0, for example,
by a short photo flash applied on the system. After the initial
~ 2 _ 2
o (ta, )~ VO (ta, 1))~ (X(ta 1)" (58 triggering of the process, the charge carriers are transported
Considering first thau<<s limit corresponding tat>t,  using an external bias. For such initial conditions, we know
we recover Shlesinger’s restit that it is useful to assume that the physical transport process

is described by the nonequilibrium biased CTRW.

2:2a a
o(ty )~ \/m1t22 2 S 1 + Myt , In an aging experiment one would start the process, by
A® [I'(1+2a) TI'(1+a)] Al'(l+a) an external impulsée.g., a photo flagh then wait for an
(59 aging periodt,, and only after that period add the external
hence ifm;#0 anda<1, one finds bias. In this case, biased aging CTRW might become a useful
" tool describing the aging transport. At this time it is still an
oty 1)~ m;t \/ 2 S 1 _ (60) open question if ACTRWSs can be used to describe aging in
' A I'(1+2a) I'“(1+a) real systems. Further it is not clear if aging in the above-

For t>t, the dispersion of the biased CTRW grows like thementloned systerfi&"" is measurable, and if so do these

mean Eq(56), a behavior very different than normal Gauss- very different systems exhibit any common aging effects in
ian diffusion. their transport?

Considering thes<u limit of Eq. (57) and using Eq. In the nonaging experimerifs ™ one measures the cur-
(56), we find for aging limitt<t, rent of charge carriers, YVhICh aqcordmg to thg predlctlons of
Scher and Montroll exhibit a universal behavibgt) <ct®*
\/mzttg‘l 2m? o Itite  m2t2e? for short times andl(t)«ct~*~* for long times. The transition
o(ta,t)~ Al (a) * Az L) T(2+a) AT a) - time t, between these two behaviors depends among other
(61)  things on the length of the system. The short time behavior
corresponds tol (t)o (d/dt) (x), with the nonequilibrium
CTRW behavior(x)et®, which yields immediatelyl (t)

m, 2 t(1+ 2 «t*" 1, The long time behavior is more complicated, and is
o(ta,)~ A VT(a)T(2+a) (I 62 dueto absorbing boundary condition.

o _ N _ _ In this paper we have calculated the mean displacement
which is valid fort,>t>A"". As expected the dispersion of the biased ACTRW, without including the influence of the
decreases as age of the processes becomes older. Note thaggsndary. Thus we provide the aging corrections to the short

Hence ifm;#0 anda<1, one finds

a—0, the first term in Eq(61) becomes important. time behavior of Scher—Montroll transport. According to Eq.
For a=1 one finds (56), the Scher—Montroll behavior(t)ct*~! is replaced
m,t with I(t)octgf‘l whent<t,<t . This behavior is indepen-

a(t)~\/ A (63)  dent oft, similar to behavior of normal currents. In this

aging regime, the current decreases ais increased, while
where in this casé has the meaning of the mean time be- in the nonaging case the current is decreasing when the for-
tween jumps. The dispersion in this case is independent ofiard timet is increased. The assumption made is that the
the age of the systei, as expected from normal diffusion. dispersion of the probability packet during the aging period,
We see that the dispersion in normal diffusion processes is small compared with the length of the system. A detailed
controlled by the second moment of jump lengths (even  investigation of aging in Scher—Montroll transport systems
whenm; #0), while for CTRW and ACTRWm;#0 is the  will be given elsewhere.
relevant parameter.

VI. POSSIBLE APPLICATION: VIl. SUMMARY

SCHER-MONTROLL TRANSPORT We have derived an exact expression for the Green func-

In this section we briefly point out one possible applica-tion of ACTRW in Fourier—double Laplace space. This gen-
tion of ACTRW. Scher and Montrdlimodeled transport in eralized Montroll-Weiss equation describes dynamics of a
disordered medium based on CTRW theory. The fundamenarge class of random walks. Since the CTRW describes a
tal reasons of why and when their approach is valid, whildarge class of physical and chemical systems, mainly disor-
being the subject of much theoretical resedft¥,are not dered systems, we expect that ACTRW will be a valuable
totally solved. What is clear is that on a phenomenologicatool when aging effects are investigated in these systems.
level, one can use the Scher—Montroll approach to fit behavinteresting aging behaviors are found when the system turns
iors of charge currents in a large number of experiments imonergodic, namely when the mean waiting time diverges,
very different systems. For example, transport of charge cara<1. We note that also when the mean waiting time is finite,
riers in organic photorefractive glas€snanocrystalline aging behaviors may be observed, however only within a
T,0, electrode$’ conjugated polymer system poly certain time window.
p-phenylené®%® and liquid crystalline xinc octaki€ In many cases anomalous diffusion is characterized

Scher and Montroll model such transport processes udased on an anomalous behavior of the mean square dis-
ing nonequilibriumbiased CTRW theory with an effective placement(x?)~t®. However, for nonbiased ACTRWs we
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showed that wheni<t, (x?)~t/t}~®, hence the random We consider the double Laplace transfotgi-s and
walk exhibits a normal behavior with respect to forward tlmetNH_)u of P, (tN+1) Eq. (A1), Pg(u). Using t_N
t. Thus if one measures the displacement of CTRW partlcle&EN
in time interval (Ot), for some fixedt,, and considers the
mean square displacement, one may reach the wrong conclli-jeftasl (T <t <ty q)dt
sion that the anomalous process is normal. The anomalo N N+l
behavior, with respect to the forward timgis more easily — — N N1
observed in the behavior of the Green functionpgft, ,t). e INS—gTINt1S @ SEin1Ti— @ SH=L T

We showed that asymptotic behavior of the Green func-  — S - s ' (A3)
tion is related to a few parameters of the underlying walk
a,A, andm,, while other informations contained ig(t) and
andf(r) are irrelevant. The Green function behavior is non- %
Gaussian whemr< 1, it is related to Ley’s generalized cen- f
tral limit theorem and to Dynkin’s limit theorem. Unlike
standard random walks or nonequilibrium CTRWSs, theUsing Eqgs.(A3) and(A4), we have from Eq(Al),

1T, We have

- N+1
GUtN“5(tN+1_2 Ti>dtN+1—e usfti, (Ad)
=1

0 i=

asymptotic Green function is a sum of two terms: a singular o N+1

term corresponding to random walks where number of jumps P(u)= 2 <ex;{ —u E Ti)

is zero and a nonsingular term corresponding to random N=0 i=1

walks where number of jumps is one or more. Finally, we N+1

note that the fractional Fokker—Planck equation Xexp( SZiLy7) —exp(—sEiT n) (A5)
framework?3%"* developed based on CTRW concefsts® S '

can be modified based on the results obtained in this paper
include aging effects. The fractional kinetic equations de-
scribing ACTRWs will be a subject for a future publication.

@smg the fact that the random variablgsare independent
‘and identically distributed, we have

P(U)=EE [N (u+s)g(u)— g Hu+s)],  (A6)
ACKNOWLEDGMENTS s(W=35& ¥ Plu)— o :

One of the authorgE.B.) thanks J. P. Bouchaud for where #(u+s)= [y exd—(u+9s)7]¥(ndr. Summing Eq.
pointing out Ref. 29. Discussions with L. Levitov and A. (A6) we find
Heuer motivated this work.
(U)—h(u+s) 1

Po(u)= 1—y(u+s)’

s
In this Appendix, we derive Eq(3) using a method EOW the PDFh, (ty) is obtained fromP (ty. 1) using

which is slightly different then the one used in Ref. 29. Con-t; =ty 1—t,. According to definition of Laplace transform,
sider a nonequilibrium renewal process which starts at timave can write

t=0 (in the ACTRW this initial time is—t,). Let t; i - -
=1,... N, be dots on the time axis on which jumping h (t1)= Euﬂt st {f dtae’S‘af dtle“‘lhta(tl)],
events occur. Let_N+1 denote the time on which the_first ° ° (A8)
jump event occurred which is larger thagp, namely ty

<t <t_N+l Note thatN itself is not fixed, it is a random
variable. The time intervals between jumps events are de
noted byr,—t,H ti.

The random variable we are interested intj$ where
tlzt_NH—ta. In the context of renewal theoty is called
residual waiting timé® Sincet, is a parameter in the prob- X P, (t_l\l-#l)]- (A9)
lem, knowledge of statistical properties b, yields the :
distribution oft;. Hence IetPta(t_NH) denote the PDF of Hence it is easy to see that

(A7)
APPENDIX: DERIVATION OF EQ. (3)

where£ ~ ! is the double inverse Laplace transform. We use
ty= tN+1 t, and find

hta(tl)zﬁuitl,sﬁta{ J'o dt, efstaJt dt; e U(tne1ta)

the random variablﬁ+1. It is given by he(u)=P4_,(u). (A10)
% N+1 . . .
— — — — Inserting Eq.(A7) in Eq. (A10), we find Eq.(3).
Pta(tNH)_NE:O < 5( tyer 2 T') H(ty<t <tN*1)> " Remark:The timet,— ty is called the spent tim&,and

(A1) in the limit of longt, Feller shows that this time is distrib-
_ _ _ _ uted according to the arc—sine law.
Here | (ty<t,<tni1)=1 if ty<t,<tny1, Otherwise it is
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