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We investigate biased and nonbiased aging continuous time random walks~ACTRW!, using fractal
renewal theory. For example, a biased ACTRW process describes a Montroll–Weiss CTRW process
which starts at time2ta and then at timet50 a bias is added to the random walk~i.e., an external
field is switched on!. Statistical behaviors of the displacement of the random walkerr5r (t)
2r (0) in the time interval (0,t) are obtained, after aging the random walk in the time interval
(2ta,0). In ACTRW formalism, the Green functionP(r ,ta ,t) depends on the age of the random
walk ta and the forward timet. We derive a generalized Montroll–Weiss equation, which yields an
exact expression for the Fourier double Laplace transform of the ACTRW Green function.
Asymptotic long timesta and t behaviors of the Green function are shown to be related to the
arc–sine distribution and Le´vy stable laws. In the limit oft@ta , we recover the standard
nonequilibrium CTRW behaviors, while the important regimest!ta and t.ta exhibit interesting
aging effects. Convergence of the ACTRW results towards the CTRW behavior, becomes extremely
slow when the diffusion exponent becomes small. In the context of biased ACTRW, we investigate
an aging Einstein relation. We briefly discuss aging in Scher–Montroll type of transport in
disordered materials. ©2003 American Institute of Physics.@DOI: 10.1063/1.1559676#
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I. INTRODUCTION

Diffusion and relaxation in strongly disordered syste
exhibits in many cases anomalous behaviors.1–3 For example
the diffusion of a test particle may become anomalo
namely the mean square displacement behaves like^r 2&
;ta andaÞ1. A random walk framework, widely applied t
describe anomalous diffusion is the Montroll–Weiss contin
ous time random walk~CTRW!.4–6 CTRWs are used to
model many physical and chemical processes, for exam
charge transport in disordered systems,7 protein folding
dynamics,8–10 transport in low-dimensional chaoti
systems,11–14 anomalous diffusion in a metallic supercoole
liquid,15 the chemical reaction of CO binding t
myoglobin,16 and blinking behavior of single quantum
dots.17

Anomalous diffusion processes may exhibit aging,18–23

where vaguely speaking the age of the process controls
statistical properties of the random walk. Aging in diffusio
processes yields an interesting insightful perspective on
namics in disordered medium, and more generally is use
a tool to probe complex systems such as blinking quan
dots,24 spin glasses, Anderson insulators, and colloidal s
pensions~see Ref. 25 for a brief review!.

Monthus and Bouchaud26 introduced a CTRW frame
work, which exhibits aging behaviors. In what follows w
call this generalized CTRW, aging continuous time rand
walk ~ACTRW!. The standard non-Markovian CTRW a
sumes that jumping transitions begin at timet50, hence the
CTRW describes a nonstationary process, where time ho

a!Electronic mail: jbarkai@nd.edu
6160021-9606/2003/118(14)/6167/12/$20.00
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geneity is destroyed at timet506. ACTRW describes a
CTRW process which begun at time2ta . Whenta becomes
long we show that a type of an equilibrium process emer
which still depends on time scaleta . Thus generally
ACTRW and CTRW exhibit different behaviors.

In this paper, we use Dynkin’s27 and Feller’s28 results on
fractal renewal theory to investigate properties of biased
nonbiased ACTRW~and see also a very useful investigatio
of fractal renewal theory by Gordeche and Luck29!. In par-
ticular, we obtain a generalized Montroll–Weiss equati
yielding an exact expression for the Fourier double Lapla
transform of the Green function. Asymptotic behaviors
ACTRW are shown to be related to the arc–sine distribut
as well as to Le´vy stable laws.

ACTRW might yield a phenomenological description
aging self-diffusion dynamics in glasses,26 below the glass
transition temperatureTc and thena5T/Tc is temperature
dependent ~and see Refs. 30–34 for related work!.
Recently35 showed that ACTRW describes dynamics of
intermittent chaotic system. We note that other stochastic
proaches to aging dynamics are based on a nonlinear d
sion equation36 ~however this equation does not always yie
a normalized Green function!, and a generalized Langevi
equation.37,38

Investigation of ACTRW seems important for sever
reasons:~i! Consider a random walk process which starts
time 2ta , then at timet50 we break the symmetry of th
random walk by applying a uniform external field on th
system. The response for any non-Markovian process to
external field will depend both on the forward timet and the
aging periodta . Since the response depends on two time
7 © 2003 American Institute of Physics
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contains more information than the standard treatmen
CTRW theory which assumesta50. It is not known yet if
ACTRW can be used to describe transport in complex s
tems when aging conditions are applied. However due to
large number of application of the nonequilibrium CTRW w
may expect that also ACTRW has a certain domain of va
ity in the physical world, when aging initial conditions a
satisfied. ~ii ! Consider now nonbiased random walks.
some physical situations we may not know what ista , since
particles in a solution do not carry a birth certificate. Thus
we make an observation of location of random walkers
time t50 ~assume we cannot identify wether a transiti
occurred at timet502) and then ask for example what is th
mean square displacement of such particles, the answe
cording to ACTRW depends on how old is the random w
process. Nonequilibrium CTRW yields an answer which
independent of age of the processes. We see that anom
behavior of a particle is very sensitive to the measurem
procedure. If one can identify start of measurementt50
with a jumping event nonequilibrium CTRW is a more su
able framework, while ACTRW is more suitable for an o
going process. ~iii ! Recently fractional kinetic
equations2,39–41 where suggested as a stochastic tool to
vestigate anomalous transport, these equations are bas
nonequilibrium CTRW and thus they are not suited to d
scribe an ongoing process.42,43 Our work points out to the
limitations of these equations, and yields a way to corr
their solution when aging conditions are included.

This paper is organized as follows: In Sec. II CTRW a
ACTRW are introduced. We then derive an exact express
for the Fourier–double Laplace transform of the ACTR
Green functionP(r ,ta ,t), thus generalizing the Montroll–
Weiss equation to include the effect of the age of the rand
walk ~see Sec. III!. In Sec. IV we derive asymptotic behav
iors of the Green functionP(r ,ta ,t) which are analyzed in
detail. We then consider biased ACTRWs~Sec. V! and dis-
cuss an aging Einstein relation. Finally we briefly consid
aging in Scher–Montroll type of transport as a possible
plication of this work. Note that a small part of our resu
was reported in Ref. 35, in the context of aging in chao
transport.

II. CTRW AND ACTRW

One of the best well-known random walk models is t
CTRW introduced by Montroll and Weiss.4 It describes a
large class of random walks, both normal and anomalous
can be described as follows: Suppose a particle perform
random walk in such a way that the individual jumpr in
space is governed by a probability density function~PDF!
f (r ), and that all jump vectors are independent and ide
cally distributed. The characteristic function of the positi
of the particle relative to the origin aftern jumps is f n(k),
where f (k) is the Fourier transform off (r ). Unlike discrete
time random walks, the CTRW describes a situation wh
the waiting timet between jumps is not a constant. Rath
the waiting time is governed by the PDFc(t) and all waiting
times are mutually independent and identically distribut
Thus, number of jumpsn is a random variable.
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Let PMW(r ,t) be the Green function of the CTRW, th
Montroll–Weiss equation yields this function in Fourier
Laplace (k,u) space,

PMW~k,u!5
12c~u!

u

1

12 f ~k!c~u!
. ~1!

All along this work we will use the convention that the a
guments in the parentheses define the space we are wo
in, thusc(u) is the Laplace transform ofc(t). Properties of
PMW(r ,t) based on the Fourier–Laplace inversion of Eq.~1!
are well investigated, see Refs. 5 and 40 and Referen
therein. In particular, it is well known that asymptotic beha
ior of PMW(r ,t) depends on the long time behavior ofc(t).
Two classes of processes are usually considered. The fir
the case when all moments ofc(t) are finite, the second
class is the case wherec(t) is momentless, corresponding t
a situation wherec(t)}t2(11a) and 0,a,1.

An important assumption made in the derivation of E
~1! is that the random walk begun at timet50. More pre-
cisely, it is assumed that the PDF of the first waiting tim
i.e., the time elapsing between start of the process att50
and the first jump event isc(t). Thus the Montroll–Weiss
CTRW approach describes a particular choice of initial co
ditions, called nonequilibrium initial conditions. The limita
tion of CTRW theory to a very particular choice of initia
conditions, was an issue for debates in the early 1970s.44

Monthus and Bouchaud26 introduced a CTRW for an on
going process, where the random walk process is assume
start at some timet52ta , long before start of observation a
time t50. In Fig. 1 a stochastic realization of number
jumps in such a process is shown. For such a random w
the Green function is denoted withP(r ,ta ,t) and r is the
displacement in the time interval (0,t). Using scaling
analysis,26 have investigated basic properties of this rand
walk, mainly the behavior of the Fourier transform of th
Green function. Fora,1 the random walk exhibits interes
ing aging effects, hence as mentioned we call it ACTRW

FIG. 1. Number of jumpsi in a renewal process withc(t)5p21t21/2(1
1t)21, i.e., a51/2. The process starts att52ta with ta54000. Observa-
tion of the process begins at timet50. t1 is the time elapsing betweent
50 and first jump event in the forward time interval (0,t), in the figure.
t152553.
CE license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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There exist several methods to investigate aging. O
method is to start a dynamical process at timet52ta , then
at time t50 add a small perturbation to the system. O
eventually measures the response at some timet.0. This
type of aging is investigated here in the context of bias
ACTRW. Alternatively one can measure displacement o
random walker during a time interval (0,t), after aging the
process in the interval (2ta,0) ~i.e., now no external field is
switched on at timet50). We investigate this behavior i
the context of nonbiased ACTRW and will show later th
under certain conditions the two approaches are rela
through a generalized aging Einstein relation. A system
hibits aging if its dynamical properties depend ont and ta

even in the limit when both are long. Of course many s
tems do not exhibit aging, namely whent.t, wheret is a
characteristic time scale of the problem, dynamical prop
ties of the process are independent of the aging timeta .

III. ACTRW: GENERALIZED
MONTROLL–WEISS EQUATION

The ACTRW describes the following process, a parti
is trapped on the origin for timet1 , it then jumps tor 1 , the
particle is then trapped onr 1 for time t2 , and then it jumps to
a new location; the process is then renewed. Thus,
ACTRW process is characterized by a set of waiting tim
$t1 , . . . ,tn , . . . % and displacements$r 1 ,...,r n ,...%. The time
elapsing between start of observation att50, and the first
jump event is denoted byt1 . Here we denote the PDF of th
first waiting time t1 with hta

(t1). In ACTRW the random
walk started att52ta , before the start of observation att
50, thereforehta

(t1) depends on age of the processta . The
waiting times$tn%, with n.1 are independent and ident
cally distributed with a common probability densityc(t).
The jump length$r 1 ,...,r n ,...%, are independent identicall
distributed random variables, described by the probab
density f (r ).

In contrast, in the Montroll–Weiss nonequilibrium
CTRW, the age of the process is zerota50. And, for that
casehta

(t1)5c(t1).
Recently, Gordeche and Luck29 investigated statistica

properties of fractal renewal processes, among other th
they obtainhta

(t1). Let hs(u) be the double Laplace trans
form of hta

(t1)

hs~u!5E
0

`

dt1E
0

`

dta hta
~ t1!e2tas2t1u, ~2!

then according to Ref. 29,

hs~u!5
1

12c~s!

c~s!2c~u!

u2s
. ~3!

In the Appendix we rederive Eq.~3! using a method which
slightly differs from the one used in Ref. 29.

Two types of behaviors are found forhta
(t1). The first

case corresponds to a situation when average waiting
^t&5*0

`tc(t)dt is finite, and then in the long aging time lim
one obtains28
Downloaded 05 Nov 2008 to 128.32.144.88. Redistribution subject to AS
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ta→`

hta
~ t1!5

*0
t1c~ t !dt

^t&
. ~4!

This type of initial condition is called equilibrium initial con
dition, it was investigated previously in the context of CTR
and related models.44–46 Feller28 derived Eq.~4! from the
requirement that the renewal process be stationary. Here
will mainly consider the second case corresponding to
power law waiting time PDF,

c~ t !}t2(11a) with 0,a,1, ~5!

when t is long. In Laplacet→u space Eq.~5! reads

c~u!;12Aua, ~6!

whereu is small, andA is a positive parameter.47 For ex-
ample the one sided Le´vy PDFs whose Laplace pair i
c(u)5exp(2Aua), or c(u)51/(11Aua) discussed below,
belong to the class of functions described by Eqs.~5! and~6!.
For this casê t&5` and Eq.~4! is not valid. According to
Dynkin’s limit theorem,27,28 in the limit of long aging times,
these kind of probability densities yield

hta
~ t1!;

sin~pa!

p

ta
a

t1
a~ t11ta!

. ~7!

Note that this expression is independent of the exact form
c(t), except for the exponenta. Whena→1 the mass of the
PDF hta

(t1) is concentrated in the vicinity oft1→0, as ex-
pected from a normal process. Equation~7! shows that as age
of the process becomes older, we have to wait longer for
jumping event to occur. In a physical process, this may c
respond to a particle in a disordered system which searc
for a local energy minima in time interval (2ta,0). In this
case the longer the search takes place the deeper the m
found, hence in statistical sense the release time beco
longer as the process is older. In what follows, we will al
use the double Laplace transform of Eq.~7!:

hs~u!;
ua2sa

sa~u2s!
. ~8!

This equation can be derived by inserting the smallu ands
expansion ofc(u) and c(s) given in Eq. ~6!, in Eq. ~3!.
Feller28 discusses the relation of Eq.~7! to the so-called arc–
sine distribution~see the Appendix for some details!.

Let P(r ,ta ,t) be the Green function of the random
walker, where as mentioned

r[r ~ t !2r ~0! ~9!

is the displacement in the time interval (0,t). Hence, clearly
initially r50 at timet50. Let ~i! pn(ta ,t) be the probability
of makingn steps in the time interval (0,t) and~ii ! P(k,s,u)
be the double-Laplace–Fourier transform (r→k,ta→s,t
→u) of P(r ,ta ,t). Then

P~k,s,u!5 (
n50

`

pn~s,u! f n~k!, ~10!
CE license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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wherepn(s,u) is the double Laplace-transform ofpn(ta ,t).
As mentioned,f n(k) in Eq. ~10! is the characteristic function
of a random walk with exactlyn steps. Using the convolu
tion theorem of Laplace transform we obtain

pn~s,u!5H 12shs~u!

su
, n50,

hs~u!cn21~u!
12c~u!

u
, n>1.

~11!

Hence inserting Eq.~11! in Eq. ~10!, using Eq.~3!, and sum-
ming overn, we find the exact result

P~k,s,u!5
1

su
1

@c~u!2c~s!#@12 f ~k!#

u~u2s!@12c~s!#@12c~u! f ~k!#
.

~12!

Equation ~12! is a generalization of the Montroll–Weis
equation~1! for ACTRW. Note thatP(k50,s,u)51/(su) as
expected from the normalization condition.

It is useful to rewrite Eq.~12! in terms of the Montroll–
Weiss Eq.~1!, andp0(s,u) in the first line of Eq.~11!:

P~k,s,u!5p0~s,u!1hs~u! f ~k!PMW~k,u!. ~13!

The first term on the right-hand side of this equation, d
scribes random walks where the particle does not leave
origin ~i.e., n50). The second term describes random wa
where number of steps is greater than zero, it is given
terms of a convolution ofhs(u) f (k) with the Montroll–
Weiss equation. This is expected since the only differe
between ACTRW and the nonequilibrium CTRW, is the fi
waiting time distribution.

If the process is Poissonian,c(t)5exp(2t), the Green
function P(r ,t,ta) is independent of the age of the rando
walk ta . To show this we insert

c~u!5
1

11u
, c~s!5

1

11s
~14!

in Eq. ~12! and find

P~k,s,u!5
1

s

1

u112 f ~k!
. ~15!

Inverting to the double time domain

P~k,ta ,t !5e2[12 f (k)] t. ~16!

This result is independent ofta as expected from a Markov
ian process. Assume thatf (k)512mmukum1¯ for small
values ofk and m<2, implying that the random walks i
nonbiased. In the long time limit P(k,ta ,t)
;exp(2mmukumt), and either a Le´vy behavior (m,2) or a
Gaussian behavior (m52) is found, as expected from th
Gauss–Le´vy central limit theorem.28 In what follows, we
investigate cases when this standard behavior does not

IV. ASYMPTOTIC BEHAVIORS: NONBIASED ACTRW

Let us now consider basic properties of nonbias
ACTRWs. While Eq.~12! is valid for a large class of random
walks, including Le´vy flights (m,2), we will assume that
Downloaded 05 Nov 2008 to 128.32.144.88. Redistribution subject to AS
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variance off (r ) is finite (m52). Special emphasis will be
given to the case whenc(t) is momentlessa,1, since this
regime exhibits interesting aging behaviors.

A. Mean square displacement

By differentiating Eq.~12! with respect tok and setting
k50, we obtain the moments of the random walk in a sta
dard way. Assuming a nonbiased symmetrical random w
we obtain

^r 2~s,u!&5
hs~u!m2

u@12c~u!#
, ~17!

wherem25*r 2f (ur u)dr is assumed to be finite. We consid
power law waiting time PDFs as in Eqs.~5! and ~6!, in the
limit where bothu ands are small, their ratio being arbitrary
we find

^r 2~s,u!&;
~ua2sa!m2

sa~u2s!Au11a . ~18!

As shown below one can invert this equation exactly to
double time domain. However it is instructive to consid
two limits first. If u!s, corresponding tot@ta , we have

^r 2~s,u!&;
u212am2

As
. ~19!

While for s!u, corresponding tota@t, we have

^r 2~s,u!&;
m2

Au2sa . ~20!

Inverting Eq.~19! and Eq.~20!, we obtain

^r 2~ ta ,t !&;H m2ta

AG~11a!
, t@ta

m2tta
a21

AG~a!
, t!ta .

~21!

This result is valid provided that botht,ta@A1/a. In the limit
t@ta we recover standard behavior found in nonequilibriu
CTRW.5 In the aging regime,t!ta we find an interesting
behavior. Independent of the exponenta, the mean square
displacement increases linearly with respect to the forw
time t, as found in normal diffusion processes. In addition,
the diffusion is slowed down as the age of the random w
ta is increased. This behavior is expected, due to statistic
longer release times, from the initial position of the partic
as the age of the random walk is increased.

We now consider a specific choice of waiting time d
tribution,

c~u!5
1

11Aua , ~22!

corresponding to Ref. 48,

c~ t !5
ta21

A
Ea,aS 2

ta

A D , ~23!

whereEa,a(x) is the generalized Mittag–Leffler function.49

Inserting Eq.~22! in Eq. ~17! we have
CE license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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^r 2~s,u!&5
m2

A

ua2sa

sa~u2s!

1

u11a . ~24!

Hence for this choice of waiting times, Eq.~18! is exact and
not limited to the asymptotic regime. Inverting to the tim
domain using Eq.~7! we find

^r 2~ ta ,t !&5
m2

A

sin~pa!

p

1

taS t

ta
D aS 11

t

ta
D ^

ta

G~11a!
,

~25!

where^ is the Laplace convolution operator with respect
the forward timet. We rewrite Eq.~25! as

^r 2~ ta ,t !&5ta
a m2

AG~11a!

sin~pa!

p E
0

t/ta ~ t/ta2y!a

ya~11y!
dy. ~26!

The solution of the integral is readily obtained, we find

^r 2~ ta ,t !&5
m2

A

1

G~11a!
@~ t1ta!a2ta

a#. ~27!

The right-hand side of Eq.~27! describes the long timet,
long timeta , behavior of a large class of random walks wi
waiting time PDF satisfyingc(t)}t2(11a) @i.e., since the
right-hand side of Eq.~27! is the double inverse Laplac
transform of Eq.~18!#. Note that if a51 in Eq. ~27!, the
random walk does not exhibit aging, this is expected si
for a51 the generalized Mittag–Leffler function is an exp
nential and then the process has no memory.

B. Green function

In this section we investigate asymptotic properties
the Green functionP(r ,ta ,t), by considering the continuum
approximation of Eq.~12!. This approximation is expected t
work in the limit where both the forward timet and the aging
time ta are long. A proof of the validity of this approach,
given in Sec. IV D, for the one-dimensional ACTRW. W
assume a symmetric random walk, hence for smalluku, the
following expansion is valid:

f ~k!;12
1

2
uku2

m2

d
, ~28!

whered is the dimensionality of the problem. We also u
the small Laplace variableu expansionc(u);12Aua in
Eq. ~6!. Inserting these expansions in Eq.~12!, we obtain

P~k,u,s!;
sau2sua

sa11u~u2s!
1

~ua2sa!

sa~u2s!

Aua21

Aua1uku2
m2

2d

. ~29!

For convenience, and without loss of generality, we cho
now to work in units whereA51 andm2 /(2d)51.

Inverting Eq.~29! to the double time (ta ,t)—real space
r domain, we find

P~r ,ta ,t !;p0~ ta ,t !d~r !1
sin~pa!

p

1

taS t

ta
D aS 11

t

ta
D

^ PAMW~r ,t !, ~30!
Downloaded 05 Nov 2008 to 128.32.144.88. Redistribution subject to AS
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where^ in Eq. ~30! is the Laplace convolution operator wit
respect to the forward timet, and in this limit

p0~ ta ,t !;
sin~pa!

p E
t/ta

` dx

xa~11x!
. ~31!

In Eq. ~30! PAMW(r ,t) is the long time solution of the
Montroll–Weiss equation, i.e., the Green function of t
fractional diffusion equation,2

PAMW~r ,t ![L 21F 21H ua21

ua1uku2J , ~32!

whereL 21F 21 is the inverse Laplaceu→t inverse Fourier
k→r operator.

The Green function Eq.~30!, is a sum of two terms. The
first term on the right-hand side of Eq.~30! is a singular term
@i.e., thed~r ! term#. This term corresponds to random walk
where number of steps in time interval (0,t) is zero. Unless
t@ta , this term cannot be neglected, since without it t
Green function in Eq.~30! is not normalized. Thus ACTRW
exhibits a behavior different than ordinary CTRWs, whe
realizations of random walks where number of steps is z
do not contribute to the asymptotic behavior.

In one dimension, we have

PAMW~r ,t !5
t

auxu112/a l a/2S t

uxu2/aD , ~33!

where l a/2(t) is the one sided Le´vy stable PDF, whose
Laplace pair is exp(2ua/2). Hence the Green function solu
tion of the ACTRW is

P~x,ta ,t !;p0~ ta ,t !d~x!1
sin~pa!

p

1

taS t

ta
D aS 11

t

ta
D

^
tuxu2(112/a)

a21/a l a/2S tuxu2(2/a)

21/a D . ~34!

Scaling Eq.~34! with t[t/ta and q[uxu/ta/2 we obtain a
scaled form of the Green function

P~x,ta ,t !;p0~ ta ,t !d~x!1
sin~pa!

pa
t2a/2

1

tq112/a

3E
0

t

dt8
t8

~t2t8!a~11t2t8!
l a/2S t8

q2/at D . ~35!

Below we analyze this expression in some detail.
In d space dimensions we have50

PAMW~r ,t !5a21p2d/2r 2d

3H12
20S 222/ar 2/at21U ~1,1!

~d/2,1/a!,~1,1/a! D , ~36!

Besides thed51 case, the Fox function solutionH12
20 is not

generally tabulated, hence this solution is rather form
though asymptotic behaviors of Eq.~36! are well
investigated.40,50A practical method of obtaining the solutio
of PAMW(r ,t) Eq. ~36!, using the inverse Le´vy transform, is
given in Ref. 40. Using this method, we find the integr
representation of the aging Green function ind dimension
CE license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 2. Three-dimensional plot of the scaled nonsing
lar Green function vst5t/ta and q5uxu/ta/2 for a
51/2 and one dimension. Notice a smooth transiti
from aging behaviort!1 to Montroll–Weiss CTRW
behavior found whent@1.
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P~r ,ta ,t !;p0~ ta ,t !d~r !1
1

t

sin~pa!

2dpd/211a
t2ad/2

3E
0

`

dsE
0

t

dt8
~t2t8!

s111/a1d/2 l aF ~t2t8!

ts1/a G
3

e2q2/(4s)

t8a~11t8!
, ~37!

whereq5r /ta/2 andt5t/ta . Similar to the one-dimensiona
case, this solution shows the precise relation betw
ACTRWs, Lévy stable laws and Dynkin’s limit theorem.

To conclude, Eq.~30! shows that the asymptotic solutio
of ACTRW is a sum of two terms. The first is a singul
term, and the second is a convolution of the distribution
the first waiting time and the asymptotic Green function
the non equilibrium CTRW.
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C. Graphic examples

In order to better understand the asymptotic behavio
the ACTRW, we perform numerical calculations to obtain t
nonsingular part of the Green function for different values
a in one dimension. The one sided Le´vy stable probability
density in Eq.~33! was obtained using a numerical inver
Laplace transformation method.51,52The calculated PDF was
then used to evaluate the convolution integral numerically
obtain the nonsingular part of the Green function accord
to Eq. ~35!. For mathematical details on one sided Le´vy
stable laws, see Appendix in Ref. 40, and references the

In Figs. 2–5, we present the calculated nonsingular p
of the Green function for differenta. Figure 2 shows a three
dimensional plot of the scaled nonsingular Green functi
P(q,t)•ta/2, versus scaling variables,t5t/ta and q
5uxu/ta/2, for a51/2. A smooth transition from the agin
.
ion
W

FIG. 3. The scaled nonsingular Green function vsq
5uxu/ta/2 for a51/6 and for five differentt5t/ta : t
50.1 ~dotted!, t51 ~dashed!, t510 ~dot–dashed!, t
510 000~dashed!, andt5` ~solid!. The solid curve is
the asymptotic behavior of the nonequilibrium CTRW
Notice the non-Gaussian shape of the Green funct
and the slow convergence towards the nonaging CTR
behavior ~the solid line!, compared with the casesa
51/2 anda55/6 shown below.
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FIG. 4. Same as Fig. 3 fora51/2.
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behavior whent!1 to the nonequilibrium CTRW behavio
whent@1 can be clearly seen in this figure, where the tim
ratio t5t/ta is changed continuously. In addition, we o
serve a monotonic increase of the nonsingular Green fu
tion as the scaled timet increases. Note that as the scaledt
is increased the singular term is decreasing, hence we
think of this aging process, as if the singular part of t
Green function, is feeding the nonsingular part.

Figures 3–5 show the scaled nonsingular Green func
versusq5uxu/ta/2 for a51/6, a51/2, anda55/6, respec-
tively. In each figure, the scaled Green functions at sev
differentt’s are shown. A few general features can be see
these figures. First, the Green function is clearly no
Gaussian for all cases, as we expected. A comparison
tween the shape of the Green function fora51/6 in Fig. 3
and fora55/6 in Fig. 5 clearly demonstrates that the dev
tions from Gaussian behavior are stronger for smallera. In
the limit of a→1 ~not shown!, we obtain a Gaussian Gree
function. Second, fort@ta ~i.e., t@1), we recover the usua
Downloaded 05 Nov 2008 to 128.32.144.88. Redistribution subject to AS
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nonequilibrium CTRW behavior shown as the solid curves
Figs. 3–5. Finally, asa becomes small, the convergence t
wards the nonaging behavior whent/ta5` becomes ex-
tremely slow. For example, the case fora51/6 in Fig. 3
shows a significant deviation from the nonequilibriu
CTRW behavior~solid line! when t/ta510 000. As a result,
the Green function exhibits aging behavior even whent/ta is
large, and an ACTRW treatment for dynamics in this regim
will be essential.

D. Proof of asymptotic behavior for one dimension

We now prove the validity of Eq.~30! using a method
developed in Ref. 53. The main idea is to show that mome
of the ACTRW, are in the asymptotic limit described well b
Eq. ~30!. For simplicity we assume a one-dimensional sy
metric random walk.

The moment generating functionf (k) is expanded
FIG. 5. Same as Fig. 3 fora55/6.
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f ~k!512m2

k2

2
1m4

k4

24
2m6

k6

720
1¯ . ~38!

Wherem2 , m4, etc., are the moments of the jumps. Inserti
this expansion in Eq.~12! we obtain the smallk expansion of
the ACTRW moment generating function:

P~k,s,u!5
1

su
2

hs~u!

u H @11V~u!#m2

k2

2

2@11V~u!#~m416V~u!m2
2!

k4

24

1@11V~u!#@m6230V~u!m2m4

190V2~u!m2
3#

k6

720
1¯ , ~39!

where

V~u!5c~u!/@12c~u!#. ~40!

The momentŝ xn(s,u)& of the ACTRW are defined in the
usual way

P~k,s,u!5 (
n50

`

^xn~s,u!&
~ ik !n

n!
. ~41!

Comparing Eq.~39! with Eq. ~41! we have

^x0&5
1

su
, ~42!

which means that normalization is conserved. For the sec
moment we obtain

^x2~s,u!&5
hs~u!

u
@11V~u!# ~43!

which is the same as Eq.~17!. The fourth moment is more
interesting,

^x4~s,u!&5
hs~u!

u
@11V~u!#@m416V~u!m2

2#. ~44!

Higher order moments are obtained in a similar way, for
sake of space they are not included here. Odd moments
ish due to the symmetry of the random walk.

One can easily see that the ACTRWnth moment
^xn(s,u)& depends on the microscopic jump momen
$m2 , ¯ ,mn%. However, in the limitu→0,

^xn~s,u!&;
hs~u!

u

1

~Aua!n/2m2
n/2 n!

2n/2 , ~45!

which depends onm2 but not on the higher order jump mo
mentsm4 ,m6 , etc. Thus, the momentsmn with n.2 are the
irrelevant parameters in this problem. Inserting Eq.~45! in
Eq. ~41! we have

P~k,u,s!; (
n50

`
hs~u!

u
~ ik !nS m2

2AuaD n/2

. ~46!

Since we are interested in the limit wheret and ta are large,
the ratiot/ta being arbitrary, the corresponding Laplace va
ablesu ands must approach zero their ratio being arbitra
Thereforehs(u) in Eq. ~46! is given by its asymptotic form
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in Eq. ~8!. Inserting this expression forhs(u) into Eq. ~46!,
settingm251, and then summing overn, we find an expres-
sion for P(k,u,s) that is the same as Eq.~29!. Equation~29!
when transformed yields Eq.~30!. To conclude we showed
that Eq.~29! describes the smalls,u behavior of the ACTRW
moments, hence it follows that Eq.~30! describes the long
time t andta behavior of the ACTRW Green function, the s
of momentsm4 ,m6 , etc., are unimportant in this limit.

E. Behavior on the origin

Using Eq.~33! we investigate the nonsingular part of th
ACTRW on the origin. Ford51, we find

P~x,ta ,t !ux505t2a/2gS t

ta
D , ~47!

where

g~z!5za/2
sin~pa!

2pG~12a/2!
E

0

z

dy
~z2y!2a/2

~11y!ya . ~48!

Hence

P~x,ta ,t !ux50;H t2a/2

2G~a!G~223a/2! S t

ta
D 12a

, t!ta,

t2a/2

2G~12a/2!
, t@ta .

~49!

In the limit t@ta we recover standard CTRW behavior.5

In Fig. 6, we present the behavior of the ACTRW on t
origin. The ratio of the scaled nonsingular ACTRW Gre
function to the Montroll–Weiss nonequilibrium CTRW
Green function on the origin,P(x,t,ta)ta/2ux50 /2G(1
2a/2), is plotted versus the scaled dimensionless timet/ta .
This ratio approaches one in the limitt@ta , showing that the
ACTRW process will converge to the standard nonequil
rium CTRW behavior whent@ta . It can be clearly seen in
Fig. 6 that for a.1/2, the ACTRW process has rough
converged to the nonequilibrium CTRW limit whent/ta

.1, while for a→0, the crossover to CTRW limit become
extremely slow. For example, whena51/12, large devia-
tions from the CTRW limit are clearly observed even wh
t/ta5108. Since the limit a→0 is important for severa
systems,19,20,54 it becomes clear that whena is small, the
convergence towards the standard CTRW results beco
extremely slow, and the aging effect is of importance ev
when t.ta .

From Eq.~49!, we see that fort!ta the nonsingular part
of P(x,ta ,t)ux50 increases with timet when a,2/3. This
unusual behavior is not unphysical, because the sing
delta function term is a decreasing function of time, and
total probability of finding the random walker in a sma
vicinity of the origin is decreasing monotonically with tim
as expected.

V. BIASED ACTRW

We now consider one-dimensional biased ACTRW. W
therefore use the smallk expansion off (k):
CE license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 6. The behavior of the nonsingular Green functio
on the origin normalized by the long time solution o
the Montroll–Weiss nonequilibrium CTRW. The con
vergence of ACTRW towards the CTRW result is e
tremely slow whena→0.
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f ~k!511 ikm12
k

2
m2¯ , ~50!

where m1.0 is the averaged jump length. Differentiatin
Eq. ~12! once with respect tok and takingk50 we find the
mean displacement of the random walker ins,u space,

^x~s,u!&5
m1hs~u!

u@12c~u!#
, ~51!

wherehs(u) is defined in Eq.~3!. Differentiating Eq.~12!
twice with respect tok, we find the second moment of th
biased random walk

^x2~s,u!&5
hs~u!

u@12c~u!# F2m1
2 c~u!

12c~u!
1m2G . ~52!

A. Aging Einstein relation

We now derive a relation between the mean square
placement in the absence of bias, and the mean displace
of the particle in the presence of bias, reflecting t
fluctuation–dissipation relation valid within linear respon
theory ~see Refs. 38, 55–58 for related work!. The case of
zero agingta50 was discussed in Ref. 59, where some c
ceptual problems of linear response theory for systems
hibiting anomalous type of diffusion was discussed~e.g., the
nonstationarity of the process, the dependence ofa on exter-
nal field!.

We assume that the random walk is on a on
dimensional lattice with lattice spacinga, therefore

f ~x!5PLd~x2a!1PRd~x1a!. ~53!

Here PL1PR51, hence the jump moments in Eq.~50! are
m15(PR2PL)a and m25a2. We assume that the proce
obeys local detailed balance, namelyPL /PR

5exp(2aF/kbT), where T is the temperature. Using thes
conditions, and the assumption of weak fieldaF/kbT!1, we
havem1.a2F/2kbT. Using Eqs.~17! and ~51!, we find
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^x~s,u!&F5
F

2kbT
^x2~s,u!&0 . ~54!

The subscriptF in Eq. ~54! indicates the presence of extern
field F. ^x2(s,u)&0 is the mean square displacement in t
absence of a field, i.e., Eq.~52! with m150 and m25a2.
Since the equation holds for thes,u domain, it holds also for
the ta ,t domain

^x~ ta ,t !&F5
F

2kbT
^x2~ ta ,t !&0 . ~55!

Thus the mean square displacement of the particle in
absence of the field~the fluctuation! yields the mean dis-
placement in the presence of a weak field. When the wai
times are exponentially distributed, we obtain the usual E
stein relation between mobility and diffusion constant, whi
is independent of the age of the processta . For experimental
verification of Eq.~54! in the nonaging regimeta50 and
with a,1, see Refs. 60–62.

B. Asymptotic behavior of biased ACTRW

From Eq.~51! we can derive the behavior of the mea
displacement in exactly the same way as done in Sec. IV
and find

^x~ ta ,t !&;H m1ta

AG~11a!
, t@ta

m1tta
a21

AG~a!
, t!ta .

~56!

For the second moment we use the smalls,u behavior of Eq.
~52! and find

^x2~s,u!&;
1

Au11a

ua2sa

sa~u2s!
F2m1

2

uaA
1m2G . ~57!
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Inverting this equation using Eq.~56!, we investigate now
the dispersion

s~ ta ,t !;A^x2~ ta ,t !&2^x~ ta ,t !&2. ~58!

Considering first theu!s limit corresponding tot@ta

we recover Shlesinger’s result63

s~ ta ,t !;Am1
2t2a

A2 F 2

G~112a!
2

1

G2~11a!G1
m2ta

AG~11a!
,

~59!

hence ifm1Þ0 anda,1, one finds

s~ ta ,t !;
m1ta

A
A 2

G~112a!
2

1

G2~11a!
. ~60!

For t@ta the dispersion of the biased CTRW grows like t
mean Eq.~56!, a behavior very different than normal Gaus
ian diffusion.

Considering thes!u limit of Eq. ~57! and using Eq.
~56!, we find for aging limitt!ta

s~ ta ,t !;Am2tta
a21

AG~a!
1

2m1
2

A2

ta
a21t11a

G~a!G~21a!
2

m1
2t2ta

2a22

A2G2~a!
.

~61!

Hence ifm1Þ0 anda,1, one finds

s~ ta ,t !;
m1

A
A 2

G~a!G~21a!

t ~11a!/2

ta
~12a!/2 , ~62!

which is valid for ta@t@A1/a. As expected the dispersio
decreases as age of the processes becomes older. Note
a→0, the first term in Eq.~61! becomes important.

For a51 one finds

s~ t !;Am2t

A
, ~63!

where in this caseA has the meaning of the mean time b
tween jumps. The dispersion in this case is independen
the age of the systemta , as expected from normal diffusion
We see that the dispersion in normal diffusion processe
controlled by the second moment of jump lengthsm2 ~even
when m1Þ0), while for CTRW and ACTRWm1Þ0 is the
relevant parameter.

VI. POSSIBLE APPLICATION:
SCHER–MONTROLL TRANSPORT

In this section we briefly point out one possible applic
tion of ACTRW. Scher and Montroll7 modeled transport in
disordered medium based on CTRW theory. The fundam
tal reasons of why and when their approach is valid, wh
being the subject of much theoretical research,64,65 are not
totally solved. What is clear is that on a phenomenologi
level, one can use the Scher–Montroll approach to fit beh
iors of charge currents in a large number of experiments
very different systems. For example, transport of charge
riers in organic photorefractive glasses,66 nanocrystalline
TiO2 electrodes,67 conjugated polymer system pol
p-phenylene,68,69 and liquid crystalline xinc octakis.70

Scher and Montroll model such transport processes
ing nonequilibriumbiased CTRW theory with an effectiv
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waiting time distribution. In experiments, this corresponds
charge transport which is started at timet50, for example,
by a short photo flash applied on the system. After the ini
triggering of the process, the charge carriers are transpo
using an external bias. For such initial conditions, we kn
that it is useful to assume that the physical transport proc
is described by the nonequilibrium biased CTRW.

In an aging experiment one would start the process,
an external impulse~e.g., a photo flash!, then wait for an
aging periodta , and only after that period add the extern
bias. In this case, biased aging CTRW might become a us
tool describing the aging transport. At this time it is still a
open question if ACTRWs can be used to describe aging
real systems. Further it is not clear if aging in the abov
mentioned systems66–70 is measurable, and if so do thes
very different systems exhibit any common aging effects
their transport?

In the nonaging experiments66–70 one measures the cur
rent of charge carriers, which according to the predictions
Scher and Montroll exhibit a universal behavior:I (t)}ta21

for short times andI (t)}t2a21 for long times. The transition
time tL between these two behaviors depends among o
things on the length of the system. The short time behav
corresponds toI (t)} (d/dt) ^x&, with the nonequilibrium
CTRW behavior ^x&}ta, which yields immediatelyI (t)
}ta21. The long time behavior is more complicated, and
due to absorbing boundary condition.

In this paper we have calculated the mean displacem
of the biased ACTRW, without including the influence of th
boundary. Thus we provide the aging corrections to the sh
time behavior of Scher–Montroll transport. According to E
~56!, the Scher–Montroll behaviorI (t)}ta21 is replaced
with I (t)}ta

a21 when t!ta!tL . This behavior is indepen
dent of t, similar to behavior of normal currents. In th
aging regime, the current decreases asta is increased, while
in the nonaging case the current is decreasing when the
ward time t is increased. The assumption made is that
dispersion of the probability packet during the aging perio
is small compared with the length of the system. A detai
investigation of aging in Scher–Montroll transport syste
will be given elsewhere.

VII. SUMMARY

We have derived an exact expression for the Green fu
tion of ACTRW in Fourier–double Laplace space. This ge
eralized Montroll–Weiss equation describes dynamics o
large class of random walks. Since the CTRW describe
large class of physical and chemical systems, mainly dis
dered systems, we expect that ACTRW will be a valua
tool when aging effects are investigated in these syste
Interesting aging behaviors are found when the system tu
nonergodic, namely when the mean waiting time diverg
a,1. We note that also when the mean waiting time is fin
aging behaviors may be observed, however only within
certain time window.

In many cases anomalous diffusion is characteriz
based on an anomalous behavior of the mean square
placement̂ x2&;ta. However, for nonbiased ACTRWs w
CE license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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showed that whent!ta ^x2&;t/ta
12a , hence the random

walk exhibits a normal behavior with respect to forward tim
t. Thus if one measures the displacement of CTRW partic
in time interval (0,t), for some fixedta , and considers the
mean square displacement, one may reach the wrong co
sion that the anomalous process is normal. The anoma
behavior, with respect to the forward timet, is more easily
observed in the behavior of the Green function, orp0(ta ,t).

We showed that asymptotic behavior of the Green fu
tion is related to a few parameters of the underlying w
a,A, and m2 , while other informations contained inc(t)
and f (r ) are irrelevant. The Green function behavior is no
Gaussian whena,1, it is related to Le´vy’s generalized cen-
tral limit theorem and to Dynkin’s limit theorem. Unlike
standard random walks or nonequilibrium CTRWs, t
asymptotic Green function is a sum of two terms: a singu
term corresponding to random walks where number of jum
is zero and a nonsingular term corresponding to rand
walks where number of jumps is one or more. Finally,
note that the fractional Fokker–Planck equati
framework,2,39,71 developed based on CTRW concepts,42,53

can be modified based on the results obtained in this pap
include aging effects. The fractional kinetic equations d
scribing ACTRWs will be a subject for a future publicatio
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APPENDIX: DERIVATION OF EQ. „3…

In this Appendix, we derive Eq.~3! using a method
which is slightly different then the one used in Ref. 29. Co
sider a nonequilibrium renewal process which starts at t
t50 ~in the ACTRW this initial time is2ta). Let t̄ i i
51, . . . ,N, be dots on the time axis on which jumpin
events occur. Lett̄ N11 denote the time on which the firs
jump event occurred which is larger thanta , namely t̄ N

,ta, t̄ N11 . Note thatN itself is not fixed, it is a random
variable. The time intervals between jumps events are
noted byt i[ t̄ i 112 t̄ i .

The random variable we are interested in ist1 , where
t1[ t̄ N112ta . In the context of renewal theoryt1 is called
residual waiting time.28 Sinceta is a parameter in the prob
lem, knowledge of statistical properties oft̄ N11 yields the
distribution of t1 . Hence letPta

( t̄ N11) denote the PDF of

the random variablet̄ N11 . It is given by

Pta
~ t̄ N11!5 (

N50

` K dS t̄ N112 (
i 51

N11

t i D I ~ t̄ N,ta, t̄ N11!L
N

.

~A1!

Here I ( t̄ N,ta, t̄ N11)51 if t̄ N,ta, t̄ N11 , otherwise it is
zero. The average in Eq.~A1! is

^¯&N5K P i 51
N11 E

0

`

c~t i !dt i¯L . ~A2!
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We consider the double Laplace transformta→s and
t̄ N11→u of Pta

( t̄ N11) Eq. ~A1!, Ps(u). Using t̄ N

5( i 51
N t i , we have

E
0

`

e2tasI ~ t̄ N,ta, t̄ N11!dta

5
e2 t̄ Ns2e2 t̄ N11s

s
5

e2s( i 51
N t i2e2s( i 51

N11t i

s
, ~A3!

and

E
0

`

e2u t̄N11dS t̄ N112 (
i 51

N11

t i D dt̄ N115e2u( i 51
N11t i. ~A4!

Using Eqs.~A3! and ~A4!, we have from Eq.~A1!,

Ps~u!5 (
N50

` K expS 2u (
i 51

N11

t i D
3

exp~2s( i 51
N t i !2exp~2s( i 51

N11t i !

s L . ~A5!

Using the fact that the random variablest i are independen
and identically distributed, we have

Ps~u!5
1

s (
N50

`

@cN~u1s!c~u!2cN11~u1s!#, ~A6!

where c(u1s)5*0
` exp@2(u1s)t#c(t)dt. Summing Eq.

~A6! we find

Ps~u!5
c~u!2c~u1s!

s

1

12c~u1s!
. ~A7!

Now the PDFhta
(t1) is obtained fromPta

( t̄ N11) using

t15 t̄ N112ta . According to definition of Laplace transform
we can write

hta
~ t1!5L u→t1 ,s→ta

21 H E
0

`

dta e2staE
0

`

dt1 e2ut1hta
~ t1!J ,

~A8!

whereL 21 is the double inverse Laplace transform. We u
t15 t̄ N112ta and find

hta
~ t1!5L u→t1 ,s→ta

21 H E
0

`

dta e2staE
ta

`

dt1 e2u( t̄ N112ta)

3Pta
~ t̄ N11!J . ~A9!

Hence it is easy to see that

hs~u!5Ps2u~u!. ~A10!

Inserting Eq.~A7! in Eq. ~A10!, we find Eq.~3!.
Remark:The timeta2 t̄ N is called the spent time,28 and

in the limit of long ta Feller shows that this time is distrib
uted according to the arc–sine law.
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