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To characterize the crossover from bandlike transport to hopping transport in molecular crystals, we
study a microscopic model that treats electron-phonon interactions explicitly. A finite-temperature
variational method combining Merrifield’s transformation with Bogoliubov’s theorem is developed
to obtain the optimal basis for an interacting electron-phonon system, which is then used to calculate
the bandlike and hopping mobilities for charge carriers. Our calculations on the one dimensional
�1D� Holstein model at T=0 K and finite temperatures show that the variational basis gives results
that compared favorably to other analytical methods. We also study the structures of polaron states
at a broad range of parameters including different temperatures. Furthermore, we calculate the
bandlike and hopping mobilities of the 1D Holstein model in different parameters and show that our
theory predicts universal power-law decay at low temperatures and an almost temperature
independent behavior at higher temperatures, in agreement with experimental observations. In
addition, we show that as the temperature increases, hopping transport can become dominant even
before the polaron state changes its character. Thus, our result indicates that the self-trapping
transition studied in conventional polaron theories does not necessarily correspond to the bandlike
to hopping transition in the transport properties in organic molecular crystals. Finally, a comparison
of our 1D results with experiments on ultrapure naphthalene crystals suggests that the theory can
describe the charge-carrier mobilities quantitatively across the whole experimental temperature
range. © 2008 American Institute of Physics. �DOI: 10.1063/1.2894840�

I. INTRODUCTION

Recently, advances in preparing ultrapure single crystals
of organic molecular materials have opened a new research
area for material scientists. Novel electronic devices based
on organic materials, such as organic light-emitting diodes,
organic solar cells, and organic field-effect transistors, have
been realized and proven to offer as potential substitutes for
their inorganic counterparts.1–3 In addition, these new experi-
mental results have renewed the interest in developing theo-
retical models to better understand the intrinsic charge trans-
port mechanisms in organic molecular crystals.4 The
temperature dependence of charge-carrier mobilities in or-
ganic molecular crystals exhibits a universal power-law be-
havior �resembling the band transport found in conventional
silicon-based semiconductors� at low temperatures and an
almost temperature independent or slightly thermally acti-
vated behavior �resembling the hopping transport found in
disordered materials� at high temperatures. The crossover
from bandlike to hopping transport in the intrinsic mobilities
of ultrapure organic aromatic molecular crystals occurs
around room temperature.2,5–9 Because having high mobili-
ties is essential for the efficiencies and fast response times of
electronic devices, finding organic materials with high intrin-
sic charge mobilities at room temperature has been the focus
of recent developments in optimizing the performance of
organic-based devices.4,10,11 In order to describe the experi-
mental temperature dependence of charge mobilities and de-

vise design rules that facilitate the development of organic
electron devices, a theoretical model that describes both the
bandlike regime and the hopping regime of charge mobilities
in organic crystals is essential.

It is well known that electron-phonon interactions play a
central role in the intrinsic transport properties of organic
molecular crystals �OMCs�. Generally speaking, the exciton
and charge-carrier transport in OMC are governed by �1� the
width of the electronic band ��, determined by resonance
transfer integrals between electronic states�, �2� the mecha-
nisms and strength of electron-phonon couplings �g�, �3� the
characteristics of the phonon bands �e.g., phonon frequency
�0 and widths of phonon bands�, and �4� temperature �T�.
The complexity of the vibrations and the absence of any
clear ordering of the parameters make the description of
charge-carrier transport in OMC a extremely complicated
problem. The situation is more complex for wide-band ma-
terials because the effective bandwidth � of the charge car-
riers can crossover from ���0 at low temperatures to �
��0 at high temperatures due to the polaronic band narrow-
ing effect.12–14 Therefore, the development of wide-band ma-
terials has necessitated the development of a unified theory
that is applicable in all parameter regimes.

Theories constructed for a particular picture of transport
have been successful in specific regimes of electron-phonon
coupling strengths; however, a general description that is ap-
plicable in all parameter regimes is still unavailable. Early
phenomenological transport theories, including band
theory,15 stochastic Liouville equation model,16–19 and po-
laron effective mass model,9 have been successfully applieda�Electronic mail: silbey@mit.edu.
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to many related problems, but all of them were restricted in
scope and failed to provide a complete description in the
light of the recent discoveries in experiments on ultrapure
crystals.2,6,9 Recently, Troisi and Orlandi20 and Hultell and
Stafstrom21 considered charge transport in OMC by treating
the vibrations classically and then numerically solving the
time-dependent Schrödinger equation. Their calculations
successfully reproduced the trend of temperature dependent
charge-carrier mobility in OMC. However, because the vi-
brations are treated classically, both of their theories have the
same limitations as the semiclassical stochastic Liouville
approach,18,19,22 and can only be valid at high temperatures
where the thermal energy is larger than the average phonon
frequency. Clearly, a complete understanding of the problem
of charge transport in OMC can be obtained only from a
microscopic theory that treats the whole Hamiltonian self-
consistently.

Microscopic models that explicitly include the electron-
phonon interactions in the Hamiltonian seem to offer more
promising results. In particular, a microscopic model first
given by Holstein23 has been examined extensively by many
authors to describe charge-carrier and exciton transport,24–28

and to consider energy transfer between molecules embed-
ded in a lattice.29 These models are capable of reproducing
both weak-coupling and strong-coupling results, but their ap-
plicability in the intermediate coupling regime is still not
clear. Generally speaking, all theoretical calculations have so
far failed to provide the correct magnitudes and temperature
dependence of the charge-carrier mobilities in organic mo-
lecular crystal systems.5,9,30

Yarkony–Silbey’s �YS� variational approach25,31 to exci-
ton transport in OMC offered a promising direction to the
solution of the problem because, in principle, the variational
method can provide the optimal partition between the zeroth-
order Hamiltonian and the perturbation, hence making the
perturbation expansion in the intermediate coupling regime
justified. Recently, Parris and Kenkre have extended the YS
variational method to treat two phonon bands in three spatial
dimensions.13 They argued that two phonon bands, one that
narrows the band while the other scatters the electron, are
required to describe the temperature dependence of charge-
carrier mobilities in OMC. However, the YS variational
ansatz contains only one variational variable and is known to
suffer from a lack of flexibility.32 Therefore, a more flexible
ansatz is necessary to obtain the correct temperature depen-
dence of mobilities.

In this paper, we develop a microscopic model that de-
scribes quantitatively the crossover from the coherent band-
like regime to the incoherent hopping regime in a single
unified theory. In Sec. II, we will describe the finite-
temperature variational method and the model Hamiltonian
used in this study and derive expressions that are necessary
for calculating the charge-carrier mobilities in OMC. To
demonstrate the improvement that a variational basis pro-
vides, in Sec. III, we will employ a simplified version of the
variational method and time-independent second-order per-
turbation theory to study the one dimensional �1D� Holstein
model at 0 K and compare the results to those from previous
studies. In Sec. IV, we will apply the full variational ap-

proach of Sec. II to a 1D interacting electron-phonon system
to examine the nature of polaron states in different parameter
regimes and study the temperature dependence of both band-
like and hopping transport. Then, in Sec. V, we compare our
results to experiments on the temperature dependent charge-
carrier mobilities in ultrapure naphthalene crystals to show
that the theoretical description provides quantitative agree-
ment for both hole and electron mobilities in naphthalene
crystals. Finally, in Sec. VI we briefly summarize our con-
clusions and remarks.

II. THEORETICAL MODELS

In this section, we present the theoretical model that is
developed to describe the charge transport in molecular crys-
tals. We first show that the Bogoliubov’s theorem on the
upper bound on the free energy of a quantum system can be
used as the foundation of a variational method and describe
the Holstein Hamiltonian and Merrifield’s transformation
that we used to model an excess charge carrier in OMC. We
then combine the Bogoliubov’s bound and Merrifield’s trans-
formation to calculate the optimal polaron state for an inter-
acting electron-phonon system. In the end of this section, we
consider a formula for charge-carrier mobilities that de-
scribes both bandlike and hopping transport and derive ex-
pressions that can be used to compute mobilities based on
the optimal polaron state obtained from the variational
method.

A. Bogoliubov’s bound on the free energy

We first describe our formulation for an upper bound on
the free energy of a general electron-phonon system. The
Helmholtz free energy A for a system defined by a Hamil-
tonian H at temperature T is given by

AH = − �−1 ln Tr e−�H, �1�

where �=kBT. For general interacting electron-phonon sys-
tems, explicit calculation of the free energy is a formidable
task. Fortunately, the following inequality exists as a conse-
quence of the convexity of the exponential function.

Bogoliubov’s theorem. If H and H� are two self-adjoint
operators with the property that the traces Tr�exp�−�H�� and
Tr�exp�−�H��� are finite for all ��0, then one has, for all
��0,

− �−1 ln Tr e−�H � − �−1 ln Tr e−�H� + �H − H��H�

	 AH
B�H�� ,

where the bracket �. . .�H� denotes average according to the
trial Hamiltonian H�,

�H − H��H� =
Tr��H − H��e−�H��

Tr e−�H�
.

Bogoliubov’s theorem provides an upper bound AH
B�H�� on

the free energy AH based on a trial Hamiltonian H�. If a trial
Hamiltonian that contains adjustable variational parameters
is used, we can obtain the optimal choice for the partition of
the Hamiltonian between a zeroth-order part and a perturba-
tion part by minimizing the Bogoliubov’s bound with respect
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to these variational parameters. Since the free energy is in-
variant under unitary transformations of the Hamiltonian, a
systematic way to introduce a variational trial Hamilton is to
adopt a unitary transformation that contains variational pa-
rameters. Suppose a unitary transformation U �U†U=1� is
applied on H so that

H̃ = U†HU 	 H̃0 + Ṽ ,

where H̃0 is the zeroth-order part whose exponential e−�H̃0

can be evaluated, the Bogoliubov’s bound becomes

AH
B�H̃0� = − �−1 ln Tr e−�H̃0 + �Ṽ�H̃0

. �2�

Thus, based on the Bogoliubov’s theorem, we construct a
finite-temperature variational theory that provides tempera-
ture dependent optimal zeroth-order Hamiltonian for general
electron-phonon systems. In the following, Eq. �2� will be
used to compute the upper bound on the free energy of an
interacting electron-phonon system.

B. The Hamiltonian and Merrifield’s transformation

The Holstein model23,33 is widely used to describe the
transport properties of OMC. The Hamiltonian includes a
band of electronic excitation �electron or hole� in a perfect
crystal coupled linearly to the coordinate of harmonic oscil-
lators located at each site. For simplicity, we consider one
molecule per unit cell and a narrow phonon band, i.e.,
Einstein’s model of dispersionless phonons, which is a good
description for the optical intramolecular modes in OMC.
The second quantized form of the Hamiltonian in the direct
space representation is given by ��=1�

H = He + Hph + Hint, �3�

where

He = 

n,m

Jnman
†am,

Hph = �0 
 bn
†bn, �4�

and

Hint = g�0

n

an
†an · �bn

† + bn� . �5�

Here an
† �an� is the creation �annihilation� operator of the

electronic excitation �electron or hole� at site n, �0 is the
phonon frequency, and bn

† �bn� is the creation �annihilation�
operator of the localized phonon state at site n. Throughout
this work, we assume that the position n and wavevector k
are measured relative to the lattice constants, therefore the
lattice constant and lattice structure of the crystal do not
appear explicitly in our formulas. Hereafter, we will call the
electronic excitation as “electron,” but it is actually general
and can be readily translate to other charge carriers or exci-
tons. In addition, we assume that the concentration of charge
carriers are small, so that we can work exclusively in the one
particle subspace. The quantity Jnm is the transfer integral
between localized electronic states at sites n and m. Because

of the translational symmetry, Jnm is a function of n−m only,
i.e., Jnm	Jn−m.

The last term in Eq. �5� represents the electron-phonon
coupling of magnitude determined by the dimensionless
electron-phonon coupling constant g. We assume that the
electron interacts linearly and locally to the phonon states.
Note that from previous discussion, it is clear that a complete
understanding of the problem can be obtained only when
both local and nonlocal interactions are taken into account.4

Nonlocal interactions �phonon modulations on J� can be
included in the Hamiltonian and treated in the same
variational-perturbation approach in a consistent
manner.27,34,35 Including nonlocal linear electron-phonon
couplings likely will increase the scattering and result in
lower band contribution and higher hopping contribution.35

In addition, nonlocal electron-phonon couplings could also
change the band shape and electronic density of states, and
such effects would complicate the calculation of electronic
free energies and transport properties.34 Nevertheless, al-
though the addition of nonlocal electron-phonon couplings
will likely shift the bandlike to hoppinglike transition toward
a lower temperature, qualitatively the temperature dependent
universal transition in transport properties should be intacted.
Therefore, for simplicity, in this work we will only consider
local electron-phonon couplings.

The electron-phonon Hamiltonian in Eqs. �3�–�5� has
well-known exact solutions in two limiting cases. When the
strength of electron-phonon coupling is set to zero, g=0, H is
diagonal in the k-space of the lattice, with band energy given
by E�k�=
n��0Jn�e

ikn�. This representation corresponds to
the free electron state and is a good zeroth-order basis in the
weak-coupling regime in which the electronic couplings are
stronger than electron-phonon couplings ��J��g2�0�. There-
fore, when g is small, a perturbation expansion in terms of g
in the k-representation is justified; this kind of approach is
usually called a weak-coupling perturbation theory �WCPT�,
and has been widely used to describe covalent bonded or
ionic solid-state systems in which electronic interactions are
strong.

In the other limit where the resonance transfer integrals
are set to zero �J=0�, the Hamiltonian can be diagonalized
by the small polaron transformation33 that give rise to
“dressed” small polaron states. The result is a transformed
Hamiltonian diagonalized in the site representation; i.e., the
Hamiltonian with J=0 is diagonal in the small polaron basis.
Therefore, the small polaron basis is a good zeroth-order
representation when the electron-phonon coupling is stronger
than the resonance transfer integrals of the electronic states
��J��g2�0�. This representation is referred to as the small
polaron representation and is widely applied to study the
electron-phonon Hamiltonian in the strong-coupling regime,
in which a perturbation expansion in terms of renormalized J
in the small polaron representation is justified. This kind of
approach is usually called a strong-coupling perturbation
theory �SCPT�.

Thus, well justified perturbation theories in both the
weak-coupling and strong-coupling regimes are available
and accurate. However, for intermediate coupling regime,
there is no clear small parameters on which we can perform
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a perturbation expansion. To obtain a reasonable zeroth-order
representation in the intermediate coupling regime, we apply
Merrifield’s transformation,36,37

U = e�
nan
†an
mfm�bn+m−bn+m

† ��, �6�

where �fm� are real parameters to be determined variation-
ally. Note that m labels the relative lattice site and fm is the
amplitude of the displacement to the equilibrium oscillator
position at site n+m. For crystal structures with inversion
symmetry, fm= f−m. The optimal transformation defined by
�fm� may be temperature dependent because of the varia-
tional procedure. Note that when fm=	m · f , the transforma-
tion is local and we recover YS one-parameter ansatz. In
addition, when fm=	m ·g, we recover Holstein’s small po-
laron transformation and the well-known small polaron re-
sults. Therefore, Merrifield’s transformation can be regarded
as a generalization of the small polaron transformation to
include nonlocal displacement of the phonon modes around
the electronic excitation.

Merrifield’s transformation takes a localized electron op-
erator to a partially dressed state that includes a phonon
cloud �deformation of lattice� surrounding the electron,

An
† = U†an

†U = an
†e−
mfm�bn+m−bn+m

† �.

This transformed basis can be seen as dressed states which
contain electrons and their tightly bound phonon cloud.
Physically, Merrifield’s transformation contains nonlocal dis-
placement of the lattice surrounding the electron and the val-
ues of fm correspond to the amplitude of displacement from
the equilibrium phonon position. Thus, the set of variational
parameters �fm� represents the degree of dressing. For the
boson operators, we obtain

Bn
† = U†bn

†U = bn
† − 


m

fn−m · am
† am,

Bn = U†bnU = bn − 

m

fn−m · am
† am.

Substitution of these expressions into the Holstein Hamil-
tonian gives the transformed Hamiltonian,

H̃ = U†HU = H̃0 + Ṽ�.

The zeroth-order Hamiltonian H̃0 is diagonal in the
k-representation,

H̃0 = 

k
��0 · 


m

fm
2 − 2gf0� + J̃k�ak

†ak + �0

q

bq
†bq

	 H̃e + H̃ph, �7�

where the energy band J̃k is given by renormalized resonance
transfer integrals,

J̃k = 

n,m

eik�n−m�Jnm · �
n
†
m�0,

with the renormalization factors at finite temperatures given
by

�
n
†
m�0 = e−1/2
m��fm�−m − fm�−n�2·coth���0/2�.

The transformed interacting term Ṽ� has a complicated
form

Ṽ� =
1

N



k1,k2



n,m

e−ik1neik2m · Jn,m · �
n
†
m − �
n

†
m�0�ak1

† ak2

+
�0

�N


k,q

�g − fq� · ak+q
† ak · �bq + b−q

† � , �8�

where the angle brackets �¯�0 denotes thermal average over
phonon states, and we have defined fq=
meiqmfm, 
n

=e
mf �n−m��bm−bm
† �. Note that we have partitioned the trans-

formed Hamiltonian into a pure electronic part H̃e, a pure

phonon part H̃ph, and the perturbation part Ṽ�. In addition,

we have intentionally included the J̃k term in the zeroth-order
Hamiltonian to make the average of the interactions identi-

cally zero, �Ṽ��0=0.

By construction �Ṽ��0=0, therefore Bogoliubov’s bound

is simply A�−� Tr exp�−�H̃0�	A0. Since the zeroth-order

Hamiltonian H̃0= H̃e+ H̃ph is diagonal, Bogoliubov’s bound is
readily available

A0 = − �−1 ln Tr e−�H̃0

= − �−1 ln Tr e−�H̃e − �−1 ln Tr e−�H̃ph.

We can further ignore the noninteresting phonon part and
focus on the contribution from the dressed electronic states,

A0
e = − �−1 ln Tr e−�H̃e = − �−1 ln 


k

e−��k, �9�

where the electronic band energy is given by

�k = �0 · 

m

fm
2 − 2gf0� + J̃k. �10�

Note that the energy band of the dressed particle is tempera-
ture dependent. The temperature dependence comes into play
through the temperature dependent variational parameters
�fm� and the average effective transfer integral factor �
n

†
m�0.
For a system defined by a given set of parameters
�J0 ,�0 ,g ,T�, minimizing the quantity A0

e defined in Eq. �9�
by adjusting �fm� enables us to find the optimal set of the
dressing coefficients �fm� that describes the system, i.e., the
optimal partially dressed polaron state. In addition, it is easy
to check that minimizing A0

e reproduces strong-coupling re-
sult ��e−g2 coth���/2�� and weak-coupling result at finite tem-
perature in large g and small g limits, respectively.

Note that we minimize the free energy contributed by the
electronic subsystem, while in the YS treatment, the free
energy of a subsystem with total �electron plus phonon� crys-
tal wavevector K was minimized. Compared to their treat-
ment, our approach is more straightforward and our expres-
sion in Eq. �9� is easier to evaluate. In addition, at nonzero
temperatures, the quantity minimized in the YS treatment is
swamped by phonon free energies. Because the uninteresting
phonon free energy overwhelms the electronic free energy, it
is difficult to implement a numerical scheme that minimizes
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the free energy functional accurately in the YS theory. Gen-
erally speaking, we have extended the YS approach by using
a more general variational ansatz and providing a more
straightforward variational scheme that results in clean par-
tition of the electronic free energy and phonon free energy.

C. Mobility

Yarkony and Silbey derived a general expression for ex-
citon mobilities in molecular crystals that describes both
bandlike and hopping transport.25,27 We use their expression
to perform mobility calculations. In Appendix A, we summa-
rize their deviation and the resulting mobility formula when
the transformed Hamiltonian in Eqs. �7� and �8� is used.

The expression for Wq,q+K;k,k+K in Eq. �A10� can be used
to calculate the bandlike mobility �B and the hopping mo-
bility �H. The calculation of the bandlike contribution to the
electron mobility �Eq. �A6�� is more straightforward. The
group velocity vk=�k�k and the equilibrium density matrix
kk

eq=e−��k /
qe−��q can be easily obtained by recalling the
formula for �k,

�k = �0 · 

m

fm
2 − 2gf0�

+ 

n,m

eik�n−m�Jnm · e−1/2
m��fm�−m − fm�−n�2·coth���0/2�.

The rate of scattering out of state k can be calculated from
Wq,q+K;k,k+K using

�kk = 

q

�Wq,q+K;k,k+K�K=0,�→0.

Note that because of the 	-functions in the limit of �→0, the
summation over q can be replaced by summing Wq,q;k,k over
q points that satisfy the energy conservation conditions re-
quired by the 	-functions. In general, when the energy band
�k is obtained, the quantities �kk can be evaluated and the
bandlike mobility can be calculated according to Eq. �A6�.

In contrast, the hopping contribution to the electron mo-
bility �Eqs. �A7� and �A8�� is difficult to evaluate. An ana-
lytical expression for �kk is unavailable even for the simplest
one dimensional system. Nevertheless, with finite but small
� �0���1�, the expression for the second derivative of
Wq,q+K;k,k+K, �d2 /dK2��Wq,q+K;k,k+K�K=0 can be obtained using
a computational algebraic software such as MAPLE or
MATHEMATICA, and the result can be numerically integrated
to obtain the hopping mobility according to Eqs. �A7� and
�A8�.

The expressions for the upper bound on the electronic
free energy A0

e in Eq. �9� and the relaxation tensor
Wq,q+K;k,k+K in Eq. �A10� are the main results of the present
work. Minimizing A0

e with respect to the dressing coefficients
�fm� gives the optimal polaron state, and the optimal set of
�fm� can then be used to compute Wq,q+K;k,k+K and electron
mobilities according to Eqs. �A5�–�A8�. To demonstrate our
variational-perturbation approach, we will apply this method
to study the properties of a simple electron-phonon system in
one spatial dimension in the following sections.

III. POLARON STATES AT 0 K

Numerous variational methods have been applied to
study the Holstein Hamiltonian in the context of polaron
problem.36,38–41 In particular, Lindenberg and co-workers39,42

have performed extensive investigations on several varia-
tional Ansätze and found that variational methods can pro-
duce results comparable to computationally much more de-
manding methods such as quantum Monte Carlo,43,44 density
matrix renormalization group �DMRG�, and cluster diagonal-
ization methods. Although variational treatments of the
Holstein Hamiltonian have been carried out extensively,
most existing works are restricted in the ground state and
focused on problems such as polaron localization and spectra
properties. The number of treatments of the Holstein Hamil-
tonian at finite temperature or regarding dynamical proper-
ties is limited.45–47 Therefore, before we proceed to study the
dynamics of the Holstein Hamilton at finite temperatures, we
first examine the variational method described in Sec. II at
zero temperature and compare our calculations to previous
results. The objective is to test the applicability of our varia-
tional method. We will show that our variational approach
combined with second-order perturbation theory produces
results that are in good agreement with calculations employ-
ing more complicated methods.

We consider a 1D system with only nearest-neighbor
resonance transfer integrals described by the following
Hamiltonian:

H = J0

n

�an
†an+1 + an+1

† an� + �0

n

bn
†bn

+ g�0

n

an
†an · �bn

† + bn� . �11�

To illustrate the method in the simplest form, we use
Merrifield’s transformation �Eq. �6�� with a dressing coeffi-
cient fm= f ·	m, i.e., we consider only a single variation pa-
rameter f . Applying the simplified unitary transformation to
the 1D Hamiltonian, we obtain the transformed Hamiltonian

H̃= H̃0+ Ṽ�, where

H̃0 = 

k

��0 · �f2 − 2gf� − 2J0e−f2
cos k�ak

†ak + �0

q

bq
†bq

�12�

and

Ṽ� =
1

N



k1,k2



n,m

e−ik1n+ik2mJ0	1,�n−m�

��e−f�bn−bn
†�ef�bm−bm

† � − e−f2
�ak1

† ak2

+
�0�g − f�

�N


k,q

ak+q
† ak�bq + b−q

† � . �13�

Therefore, the zeroth-order band structure of the 1D system
can be written as

E�0��k� = �0 · �f2 − 2gf� − 2J0e−f2
cos k . �14�

At T=0 K, the Bogoliubov’s bound in Eq. �2� is an upper
bound on the energy of the ground state. For the 1D nearest-
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neighbor coupling system at T=0 K, the optimal f satisfies

d

df
�E�0��k = 0�� f=fopt

= 0, �15�

and we have the following self-consistent equation for the
optimal f:

fopt =
g�0

�0 + 2J0e−fopt
2 . �16�

Given g, J0, and �0, the optimal fopt can be obtained by
solving Eq. �16� iteratively. Note that the ground state energy
E�0��k=0� as a function of f can have more than one minima,
therefore, when an iterative scheme is used to calculate fopt,
multiple initial guesses must be applied and then the result-
ing energy values compared to locate the true optimal fopt.

We now calculate the second-order energy correction to
the energy band structure based on the partially dressed basis
defined by fopt. In the �k ;n� basis set, where k denotes the k
state of the electron and the vector n denotes the states of all
phonon modes in the system, the energy band structure cal-
culated from second-order time-independent perturbation
theory is

E�k� = E�0��k� + E�2��k�

= �0 · �fopt
2 − 2gfopt� − 2J0e−fopt

2
cos k

− 

nT�0



k�



ni
�
��k�;ni

� �Ṽ��k;0��2

�k − �k� − nT�0
, �17�

where nT=0,1 ,2 , . . . ,� is the total number of phonon
quanta, ni is a vector representing the distribution of nT pho-
non quanta in all phonon modes, and the summation over ni

means summing over all phonon configurations that contains
totally nT quanta of phonons. The E�2��k� term can be evalu-
ated analytically, and the explicit expression is given in
Appendix C. In the following we will calculate ground state
energy and polaron effective mass using Eqs. �14� and �17�
and compare the results to other methodologies in the litera-
tures to measure the adequacy of the variational-perturbation
method.

A. Ground state energy

The ground state properties of the 1D Holstein
Hamiltonian have been investigated extensively, and accu-
rate results regarding the ground state energy of the 1D
Holstein Hamiltonian are available.42 Therefore, we first
compare our result to these calculations at zero temperature.
In Table I, we compare the ground state energy from our
method to a number of previous calculations for a set of
system parameters in the intermediate coupling regime
�J0 /�0=1 and g=1�. The zeroth-order ground state energy
E�0��0� �Eq. �14�� and the second-order result E�0�=E�0��0�
+E�2��0� �Eq. �17�� are listed along with results from several
other methods. Among the methodologies listed in Table I,
the E�0��0�, Merrifield,36,37 Toyozawa,38,48 and global-local39

methods are variational methods, therefore, these numbers
are upper bounds to the true ground state energy. Note that

the true bulk ground state energy is believed to lie between
the N=32 DMRGs �Ref. 49� and the N=6 cluster
diagonalization46,50 values, both of which are computation-
ally demanding numerical methods. At this particular set of
parameters, the value given by E�0��0� �YS ansatz� signifi-
cantly overestimates the ground state energy, while the other
three variational methods give values that are within 1%
range of the exact value. The less satisfactory result given by
E�0��0� is clearly due to the restricted form containing only
one variational parameter in the variational ansatz, and the
inclusion of nonlocal deformation of the lattice in Merri-
field’s method significantly improves the value for ground
state energy. When the second-order correction is applied,
the variational-perturbation result E�0� gives a value that is
within 1% range of the exact value at J0 /�0=1 and g=1.
This significant improvement compared to E�0��0� indicates
that the perturbation expansion based on the optimal polaron
basis is justified in the intermediate coupling regime.

To compare our variational-perturbation method to other
analytical theories, some approximate perturbation results
are also listed in Table I. The second-order WCPT based on
the free electron states is a limiting case of our method. By
setting f =0 in Eq. �17�, the band structure from the second-
order WCPT is obtained

EWCPT�k� = − 2J0 cos k − g2�0
2 1

N


k�

�
1

2J0 cos k� − 2J0 cos k − �0
.

Near the bottom of the band where k�0 and cos k�1, the
integral over k� can be evaluated explicitly to give

Ek�0
WCPT�k� = − 2J0 cos k −

g2�0
2

2J0

�
1

��cos k + �0/2J0�2 − 1
. �18�

Grover–Silbey’s second-order strong-coupling perturbation
theory �GS SCPT� is the formalism first used by those au-
thors to study exciton transport in OMC.51,52 The present

TABLE I. A comparison of ground state energy of a 1D Holstein model
from different theoretical methods.

J0 /�0=1, g=1

Value Method Reference

−2.3473 E�0��0� This work, Eq. �14�
−2.4472 second-order WCPT This work, Eq. �18�
−2.4561 Merrifield variation 36 and 37
−2.4687 Toyozawa variation 38 and 48
−2.4693 global-local variation 39
−2.4697 DMRG N=32 49

Exact value
−2.471 Cluster diag. N=6 46 and 50
−2.4826 E�0� This work, Eq. �17�
−2.5679 GS second-order SCPT This work, Eq. �19�
−3.0896 Marsiglio’s second-order SCPT 53 and 73, Eq. �20�
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method also contains the GS SCPT theory in the limit of f
=g, and the resulting band structure around the bottom of the
band is

Ek�0
GS �k� = − g2�0 − 2J0e−g2

cos k − 2J0e−g2 

nT=1

�
fopt

2nT

nT!

�
A�A2 − 1 − AB + B�A2 − 1 − A2 − C

�A2 − 1
,

A = cos k + nT�0/2J0e−g2
,

B = 1
2 �2�− 1�nT + �− 2�nT�cos k ,

C = 1
2 �2nT + cos 2k − 1� . �19�

Finally, the result from a second-order strong-coupling per-
turbation theory due to Marsiglio �Marsiglio SCPT� is also
listed.53 Similar to the GS approach, Marsiglio’s theory is
also based on the small polaron transformation and treats the
renormalized electronic coupling term as the perturbation.
However, Marsiglio used the transformed coupling term di-
rectly and did not absorb the first order correction into the
zeroth-order Hamiltonian. Thus, the first-order energy cor-
rection is nonzero in Marsiglio’s theory, i.e., �V�0�0. The
band structure up to the second order in J0 from Marsiglio’s
SCPT is given by

EM�k� = − g2�0 − 2J0e−g2
cos k − 2h�g2�cos�2k�

− 2h�2g2� ,

h�x� =
J0

2e−2g2

�0
�Ei�x� − � − ln x� , �20�

where Ei�x� is the exponential integral and � is Euler’s con-
stant. Marsiglio’s theory is widely used in studies of the
Holstein polaron problem.

From Table I, we clearly see that all these simple pertur-
bation theories fail badly in the intermediate coupling re-
gime. In contrast, the present method using perturbation ex-
pansion based on a variational zeroth-order Hamiltonian
successfully reproduces the ground state energy of the 1D
Holstein model within a reasonable error range. Note that
Table I aims at demonstrating the improvement gained by
using a variational zeroth-order Hamiltonian in the interme-
diate coupling regime; because we only compare the results
in a single point of J0 /�0=1 and g=1, the trend shown in
Table I is in no means representative for the quality of results
from different theories.

B. Polaron effective mass

In addition to the ground state energies, we also compare
polaron effective masses calculated from a number of differ-
ent methods. The effective mass of a polaron band m* can be
calculated using the following formula:

m*

m0

=
2J0

� �2E�k�
�k2 �

k=0

. �21�

Note that for the convenience of comparison, we scale the
polaron effective mass by the effective mass of a free elec-
tron band m0=2J0. In Fig. 1, we show the inverse effective
mass as a function of electron-phonon coupling constant g at
J0 /�0=1 /2. Curves calculated from the present variational-
perturbation method are shown along with results from three
other second-order perturbation theories. In addition, values
calculated numerically using Toyozawa’s variational method
are also displayed. Toyozawa’s method is known to produce
fairly accurate results in this parameter regime,38,48 therefore,
values from Toyozawa’s method can serve as the guideline
for our comparison. In the small coupling �g� regime, the
effective mass of the polaron state resembles that of a free
electron, m* /m0�1; as the strength of the electron-phonon
coupling increases, the polaron effective mass grows mono-
tonically, and eventually follows the e−g2

behavior predicted
by SCPT theories at strong couplings �g�1�. Note that in
the intermediate coupling regime, the effective mass grows
rapidly, indicating a change in the character of the polaron
state from a weakly dressed state to a fully dressed state. We
will discuss this transition in more details later and focus
solely on the comparison of different theoretical methods
here.

The applicabilities of the second-order WCPT and Mar-
siglio’s second-order SCPT methods are clearly restricted to
the weak-coupling and strong-coupling regimes, respec-
tively; in particular, both of them fail badly in the interme-
diate coupling regime. Note that at small g, Marsiglio’s
strong-coupling theory results in effective masses that are
smaller than m0, m

M−SCPT
* �m0, which is unphysical. In con-

FIG. 1. Inverse effective mass at T=0 K for the 1D Holstein model at
J0 /�0=1 /2 as a function of the electron-phonon coupling g. We show re-
sults calculated from five different theories: The variational method using
Toyozawa’s Ansatz �open circles�, the variational-perturbation theory de-
scribed in this work, a second-order strong-coupling perturbation theory
based on Grover and Silbey’s formulation �GS-SCPT�, the second-order
strong-coupling perturbation theory due to Marsiglio �M-SCPT�, and
second-order weak-coupling perturbation theory �WCPT�. Our variational-
perturbation method gives result that is in excellent agreement to Toyoza-
wa’s variational results.
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trast to Marsiglio’s theory, GS-SCPT describes both strong-
and weak-coupling limits adequately and does not suffer the
problem of giving unphysical results. In the intermediate re-
gime, the GS-SCPT method gives correct trend, but overes-
timates the effective mass. A distinct feature in Grover and
Silbey’s theory �and the present variational-perturbation
theory too� is that the average matrix elements of the pertur-
bation term are included in the zeroth-order Hamiltonian so
that the first order correction is zero. Note that our compari-
son in Fig. 1 clearly indicates the importance of including the
first-order correction in the zeroth-order Hamiltonian.

In contrast to all other simple perturbation theories, the
present variational-perturbation method is in excellent agree-
ment with Toyozawa’s method at J0 /�0=1 /2 in all electron-
phonon coupling strengths. In Fig. 2, we compare our
variational-perturbation method to Toyozawa’s method at
J0 /�0=1 /2, 1, and 2. At smaller J0 /�0, the agreement is
excellent, while at larger J0 /�0, the agreement is less satis-
factory and the variational-perturbation method starts to de-
viate from Toyozawa’s method at intermediate to large g.
Nevertheless, the present model describes the effective mass
of the 1D Holstein model quantitatively at smaller J0 /�0 and
semiquantitatively at J0 /�0�1. Note that the present method
is less favorable at large J0 /�0; we believe it is due to the
restricted form of the one-parameter ansatz. For example, at
large J0 /�0, nonlocal lattice deformation, which is included
in more general Merrifield’s transformation but not in the
current one-parameter ansatz, is expected to be important for
a description of the polaron state.

Evidently, the present variational-perturbation method
gives favorable results compared to other simple perturbation
theories and is capable of describing the 1D Holstein model
at T=0 K in the intermediate coupling regime. Considering
that at T=0 K, the present analytical method with only one
variational parameter is able to give results that are in agree-
ment with much more complicated numerical methods, we

believe applying perturbation theory based on a variational
optimal basis at finite temperature would also give signifi-
cantly improved results.

IV. INTERACTING EXCITON-PHONON SYSTEM IN 1D

In this section, we apply the theoretical methods we de-
veloped in Sec. II to a simple 1D system and discuss the
implications of the results regarding the mobilities of charge
carriers in organic molecular crystals. We investigate a sim-
plified model with one spatial dimension and contains only
nearest-neighbor transfer integrals,

Jnm = J0 · 	n,m�1, �22�

where J0 is the bare resonance transfer integral between two
nearest-neighbor sites. The phonon renormalized band struc-
ture under Merrifield’s transformation is given by

�k = �0 · 

m

fm
2 − 2gf0� + J̃k

= �0 · 

m

fm
2 − 2gf0� − 2Jeff cos k , �23�

where we have defined the effective transfer integral renor-
malized by the dressing of the phonons,

Jeff = J0e−
m�fm
2 −fmfm+1�coth���0/2�. �24�

Note that Jeff is temperature dependent, and the temperature
dependence of Jeff comes into play through the temperature
dependent parameters �fm� and the coth���0 /2� factor; as a
result, the temperature dependence is different from ordinary
small polaronic band narrowing factor e−g2 coth���0/2�.

Bogoliubov’s bound for the 1D system is easily obtained
from Eq. �23�,

A � A0
e = − �−1 ln 


k

e−��k

= − �−1 ln�e−��0�
mfm
2 −2gf0�


k

e2Jeff� cos k� . �25�

For a bulk system, we can convert the sum over k into a
integral and obtain

A0
e = − �−1 ln N + �0


m

fm
2 − 2gf0� − �−1 ln�I0�2�Jeff�� ,

�26�

where N is the size of the system, and I0�x� is the Bessel
function of the first kind. The extreme values of A0

e can be
found at points where equality �A0

e /�fm=0 is satisfied for all
fm. As a result, we obtain a system of coupled equations,

fm − g	m +
Jeff

�0
�

I1�2�Jeff�
I0�2�Jeff�

� �2fm − fm+1

− fm−1� · coth���0/2� = 0. �27�

Equation �27� is used to calculate the optimal set of �fm� that
minimizes Bogoliubov’s bound on free energy. Note that the
effective transfer integral Jeff also depends on �fm�, therefore,
the system of equations must be solved self-consistently.
Again, A0

e as a function of �fm� can have more than one

FIG. 2. Inverse effective mass at T=0 K for the 1D Holstein model as a
function of the electron-phonon coupling g. Curves calculated using the
present variational-perturbation theory at J0 /�0=1 /2, 1, and 2 are shown
along with results from Toyozawa’s variational method. At smaller J0, our
variational-perturbation method is in excellent agreement to Toyozawa’s
variational results. At larger J0, our variational-perturbation method starts to
deviate from Toyozawa’s method at intermediate to large g.
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minima, therefore, multiple initial guesses must be applied
and then the resulting A0

e values compared to locate the true
optimal set of dressing coefficients. Nevertheless, for given
g, �0, �, and J0, it is trivial to obtain accurate solutions and
select the optimal solution on a personal computer.

We now check the strong-coupling and the weak-
coupling limits in Eq. �27�. In the limit that g2�0�J0, we
can neglect the last term in the right-hand side of Eq. �27�
and obtain fm=g	m. The transformation reduces to the small
polaron transformation, and we recover the conventional
strong-coupling results. On the other hand, when J0�g2�,
the first two terms in Eq. �27� can be neglected, and the
solution to the equation is fm= �fm+1+ fm−1� /2. Because of the
symmetry and boundary conditions required for the 1D crys-
tal, fm= f−m and limm→� fm=0, the only physically admis-
sible solution to �fm� is fm=0. Thus, we also recover the
weak-coupling results from Eq. �27�.

In order to compute the bandlike and hopping mobilities
using the results in Sec. II C, we need to calculate the equi-
librium density matrix kk

eq, the group velocity vk, and the
relaxation tensor elements Wq,q+K;k,k+K for the 1D system.
Both kk

eq and vk can be evaluated easily from the band struc-
ture in Eq. �23� to yield

kk
eq =

1

N
�

e2�Jeff cos k

I0�2�Jeff�
, �28�

vk =
d�k

dk
= 2Jeff sin k . �29�

To compute the relaxation tensor elements Wq,q+K;k,k+K for
the 1D nearest-neighbor system, we insert Jnm=J0 ·	n,m�1

into the expression for Wq,q+K;k,k+K �Eq. �A10�� to obtain

Wq,q+K;k,k+K
1d = n0�0

2�g2 − fk−q
2 �� �

�2 + ��q − �k − �0�2 +
�

�2 + ��q+K − �k+K − �0�2� + �n0 + 1��0
2�g2 − fk−q

2 �

�� �

�2 + ��q − �k + �0�2 +
�

�2 + ��q+K − �k+K + �0�2� + 2Jeff
2 � 


n=1

�



m=0

n



z=−�

�
Az

mBz
n−m

m!�n − m�!
�cos�k + q + K + �k

− q�z� + �− 1�n cos�K + �k − q�z�� � � �

�2 + ��q − �k + �2m − n��0�2 +
�

�2 + ��q+K − �k+K + �2m − n��0�2� ,

�30�

where the functions

Az = − �n0 + 1�

l

�2 · f lf l+z − f lf l+z−1 − f lf l+z+1� ,

Bz = − n0

l

�2 · f lf l+z − f lf l+z−1 − f lf l+z+1� .

Once the optimal set of dressing coefficients is obtained, Eq.
�30� is used to evaluate the relaxation tensor elements for the
1D system, and the result is then integrated numerically ac-
cording to Eqs. �A6� and �A7� to calculate the bandlike and
hopping mobilities, respectively. In our numerical calcula-
tions, we use a constant phonon relaxation rate �=0.01�0. In
all parameter range we studied the result is insensitive to the
value of � given that a good numerical algorithm and enough
numerical points are applied to evaluate the integrals. In ad-
dition, an extra constant scattering rate �0=0.001�0 is em-
ployed in our calculations for bandlike mobilities �Eq. �A6��.
The additional scattering term �0 is used to mimic the scat-
tering channel due to impurities in the crystal, which is
known to dominate the bandlike transport at low tempera-
ture. The amplitude of �0 only affects the mobility at

extremely low temperature, therefore adding the �0 term
does not alter the crossover from bandlike to hopping trans-
port. In the following, we first study the small polaron tran-
sition using the finite-temperature variation method, and then
present our results of mobility calculations for the 1D
system.

A. Small polaron transition

In this subsection, we examine the optimal polaron state,
defined by the optimal set of �fm�, from the finite-
temperature Merrifield variational method for the 1D
nearest-neighbor system. The dressing coefficients �fm� in
Merrifield’s ansatz represent the deformation of the lattice
around the electron, and the extend of the deformation char-
acterizes the nature of the polaron state. When the lattice
deformation is extended over many lattice sites, the state is
usually called a “large polaron” state; on the other hand,
when the deformation is restricted to a single site, a “small
polaron” state occurs. It is well known that at T=0 K, the
Holstein Hamiltonian exhibits large polaron states at weak
electron-phonon couplings �small g� and small polaron states
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at strong couplings �large g�. The transition from large po-
laron state to small polaron state, also called the self-trapping
transition, is the focus of many theoretical
investigations.54–59 Our finite-temperature variational method
allows us to examine this transition at finite temperatures.

1. Lattice deformation

We first show the structure of polaron states represented
by the optimal set of dressing coefficients �fm� at different
strengths of electron-phonon couplings �g�. In Fig. 3, we
show the relative amplitude of lattice deformations �fm /g�
surrounding an electron at low temperature ���0=10� for a
system with reduced nearest-neighbor transfer integral
J0 /�0=1 /2 at different g. At weak coupling, the deformation
of lattice �polaron profile� is extended over many lattice sites
and the relative amplitudes of deformations are small, there-
fore, the polaron state is only weakly dressed and of the
character of a large polaron state. Note that the ansatz used
by Yarkony and Silbey contains only a single variational pa-
rameter, as a result, their ansatz cannot describe these large
polaron states adequately. As the strength of electron-phonon
coupling g increases, the lattice deformation gradually be-
comes more localized. At g�1.5, the deformation is com-
plete localized on a single lattice site and f0 /g�1, therefore,
the polaron state is a fully dressed small polaron state. We
emphasize that the “localization” is only relative to the po-
sition of an electron in the site representation, and in no
means indicates a localized polaron. The polaron profile
shown in Fig. 3 should be interpreted as correlations between
the position of the electron and the lattice deformation; the
eigenstates of the zeroth-order Hamiltonian after Merrifield’s
transformation are momentum states delocalized over the
whole crystal, i.e., the eigenstates form a polaron band.

To show the effect of varying temperatures, we present
polaron profiles for a 1D system with J0 /�0=1 /2 and g
=1 /2 at different temperatures in Fig. 4. Clearly, the tem-
perature of the system plays a role resembling that of the
electron-phonon coupling g. As temperature increases, the

deformation of lattice becomes increasingly localized. Thus,
increasing temperature also drives the transition from a large
polaron state to a small polaron state.

2. Polaronic band narrowing effect

To further characterize the structure of the polaron states
and the polaronic band narrowing effect for the 1D system,
we study the effective transfer integrals Jeff �Eq. �24�� for
optimal polaron states in a broad range of parameters. Note
that for the 1D nearest-neighbor system, the bare bandwidth
is 4J0 and the polaronic narrowed effective bandwidth is
4Jeff. Hence, Jeff is a direct measure of the effective band-
width of the electrons.

In Fig. 5, we show relative effective transfer integral
Jeff /J0 as a function of electron-phonon coupling g at a low
temperature ���0=10� for 1D systems with different bare
transfer integrals. The transition from a weakly dressed large
polaron state at small g �Jeff /J0�1� to a strongly dressed
small polaron state at large g �Jeff /J0�1� can be clearly
seen. A rapid decrease in Jeff occurs in the intermediate cou-

FIG. 3. Polaron profiles at ��0=10 for a 1D nearest-neighbor system with
J0 /�0=1 /2 at different strengths of electron-phonon couplings g. As g in-
creases, the polaron profile becomes more localized.

FIG. 4. Polaron profiles for a 1D nearest-neighbor system with J0 /�0

=1 /2 and g=1 /2 at different temperatures. The polaron profile becomes
more localized at higher temperatures.

FIG. 5. Effective transfer integrals as a function of electron-phonon cou-
plings g for systems with different bare transfer integrals J0 /�0 at low
temperature ���0=10�.
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pling regime, signaling the small polaron transition. Note
that at small J0 /�0, the transition is smooth; however, for
systems with sufficiently large J0 /�0, the effective band-
width changes abruptly. The abrupt change is due to the ex-
istence of two minima in the free energy functional with
respect to the dressing coefficients. When a crossover of the
free energies of the two minima occurs, the optimal set of
variational parameters abruptly shifted from one minima to
the other, resulting in a discontinuous change in the optimal
polaron structure. Exact theorems on the ground state of the
1D Holstein model state that the adiabatic ground state en-
ergy and effective mass are analytical functions of the
strength of electron-phonon coupling g,24,60–62 and while the
character of the polaron state can change sharply in a narrow
g range, there is no true phase transition in this system. Allen
and Silbey studied the abrupt change and showed that it is
unphysical and due to the artifact of the variational
method.24,32 In addition, a series of studies by Lindenberg
et al. comparing a number of variational methods also
clearly show that the abrupt change is due to the insufficient
flexibility in the variational ansatz.37,39,42,48

Figure 5 also shows that the critical coupling strength
where the small polaron transition occurs depends on the
reduced bare transfer integral J0 /�0. For a narrow-band sys-
tem whose J0 /�0 is small, the small polaron transition occurs
at a smaller g, in contrast to wide-band systems with large
J0 /�0. This trend is the consequence of the competition be-
tween electronic coupling J0 and electron-phonon coupling
g. Note that different J0 /�0 can also be seen as different �0.
Given the same J0 and electron-phonon coupling strength g,
our theory predicts that higher frequency phonon modes tend
to localize the electron, while the low frequency modes
could only dress the electron weakly.

Evidence for band narrowing with the increase of tem-
perature has been recently reported by Koch et al. for a pen-
tacene thin film.14 Our finite-temperature variational method
allows us to study the temperature dependence of the small
polaron transition. In Fig. 6, we compare curves of the rela-
tive effective transfer integrals Jeff /J0 at different tempera-
tures for a system with J0 /�0=0.8. While the asymptotic
behaviors of Jeff at small g�1 and large g�1 are not tem-

perature dependent, the transition point where Jeff sharply
decreases depends on the temperature. At higher tempera-
tures, the small polaron transition occurs at smaller g, and
the abrupt change is more pronounced. In addition, Fig. 6
also indicates the polaronic �exponential� band narrowing ef-
fect at high temperatures.

Figure 7 shows the relative effective transfer integrals
Jeff /J0 as a function of the reduced temperature 1 /��0 for
systems with g=1 and different bare transfer integrals.
Clearly, the small polaron band narrowing factor
e−g2 coth���0/2� does not describe the temperature dependence
in these intermediate coupling systems. The effective transfer
integral Jeff is a complicated function of temperature because
the variational parameters �fm� are also temperature depen-
dent. Note that again a system with a larger bare transfer
integral exhibits small polaron transition at a higher tempera-
ture. In the temperature range that we have shown in Fig. 7,
the small polaron transition occurs smoothly at low tempera-
tures for narrow-band materials whose reduced bare transfer
integrals J0 /�0 are small. For a system with intermediate
J0 /�0=1, Jeff varies slowly at low temperature, and then
drops suddenly at 1 /��0�1.4, indicating the appearance of
an abrupt small polaron transition. For wide-band materials
with large J0 /�0, the effective transfer integrals Jeff are rela-
tively temperature independent in the temperature range
shown in Fig. 7; the abrupt transition to small polaron states
for systems with J0 /�0�1.5 occurs at higher temperatures
not shown in the figure.

3. Phase diagrams

We summarize our findings about the characters of po-
laron states in the 1D Holstein model at different parameters
in phase diagrams shown in Fig. 8. These phase diagrams
map the character of the polaron state as a function of
electron-phonon coupling constant g and reduced electronic
transfer integral J0 /�0 at different temperatures. Regions of
different polaron characters are labeled as L, L�, S, S�: L
labels the region of large polaron states, S labels the region
of small polaron states, L� labels the region where the free

FIG. 6. Effective transfer integrals as a function of electron-phonon cou-
plings g for a system with J0 /�0=0.8 at different temperatures.

FIG. 7. Effective transfer integrals as a function of temperature for systems
with g=1 and different bare transfer integrals. The small polaron transition
signaled by a drop in Jeff is more dramatic for wide-band materials.
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energy functional A0
e �Eq. �26�� exhibits spurious double

minima with the lower A0
e given by the large polaron state,

and S� labels the region where spurious double minima exist
and the small polaron state gives the lower A0

e. In these phase
diagrams, the wedge-shaped region includes states that ex-
hibit double minima, and abrupt changes occur across the
small polaron transition line separating the L� region and the
S� region. For comparison, we also plotted an empirical self-
trapping line that separates the small polaron region and the
large polaron region of the 1D Holstein model at zero
temperature,63

gST = 1 + �J0/�0.

The self-trapping line is obtained by comparing the ground
state energy from second-order WCPT and SCPT theories
and is known to reproduce the critical points predicted by
more accurate numerical methods. The excellent agreement
between gST and the transition line predicted by our varia-
tional method at low temperatures indicates that our varia-
tional approach gives reasonable semiquantitative results at
low temperatures. Although the abrupt transition due to spu-
rious double minima is an artifact of the variational ansatz, it
captures the point where the small polaron transition occurs.

Our finite-temperature variational method enables us to
study the small polaron transition at finite temperatures and
constructs phase diagrams at different temperatures �Fig. 8�.
As the temperature increases, the wedge-shaped region ex-
pands and the small polaron transition line marking the
abrupt transition is shifted toward smaller g, indicating that
the transition to small polaron states is assisted by thermal
population of the phonon modes.

B. Bandlike and hopping mobilities

Figure 9 shows the results of our mobility calculations
for a 1D nearest-neighbor system with reduced transfer inte-
gral J0 /�0=2 and different electron-phonon coupling con-
stants. The results clearly show universal band to hopping
transitions in the mobilities, as observed in experiments. All
theoretical curves exhibit a universal trend. The total mobil-
ity is temperature independent in extremely low temperatures
because the mobility is determined by the additional scatter-
ing channel represented by �0. After this impurity limited
regime, the mobility decreases in a power-law fashion as the
temperature increases. The steep power-law decrease contin-
ues over a wide temperature range, during which the mobil-
ity decreases by several orders of magnitudes. At intermedi-
ate to high temperatures, the mobility ceases to decrease and
depends only weakly on the temperature. Eventually, an
abrupt change in the mobility occurs at a high temperature,
which corresponds to the abrupt transition to the small po-
laron state. Note that beyond this transition point, the polaron
state is fully dressed and the polaron bandwidth is narrowed
by an exponentially small factor, resulting in very different
transport behavior after the transition. As we have men-
tioned, the abrupt change is unphysical and is an artifact of
the Merrifield ansatz, therefore, mobility results around the
discontinuity are questionable. Since the high temperature
range in which the abrupt change occurs is usually not ac-
cessible in experiments, we disregard mobility points after
the small polaron transition and focus on the transport prop-
erties of partially dressed states in this work.

In Fig. 9, we also show the bandlike contribution to the
mobility as well as the hopping contribution. The total mo-
bility is dominated by the bandlike term in low temperatures
and by the hopping term in high temperatures. At low to
intermediate temperatures, the bandlike term decreases

FIG. 8. �Color online� Polaron phase
diagram determined using the finite-
temperature variational method with
Merrifield’s ansatz at different tem-
peratures. The dotted line is the em-
pirical self-trapping line given by gST

=1+�J0 /�0.
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monotonically, while the hopping term grows as temperature
increases. At sufficiently high temperature, the hopping term
dominates the mobility even when the electron is only
weakly coupled to the phonons. The crossover of the band-
like and hopping terms results in the almost temperature in-
dependent mobility at the intermediate to high temperature
regime. Note that the crossover temperature Tc where the
crossover from bandlike to hopping transport occurs depends
on J0 /�0 and g. In general, a weak-coupling �small g� or
wide-band �large J0 /�0� system has higher Tc.

To study how the strength of electron-phonon coupling g
affects the mobility, we compare the bandlike and hopping
mobilities for a 1D Holstein system with J0 /�0=2 at differ-
ent electron-coupling constants �Fig. 10�. The comparison
shows that varying the strength of electron-phonon coupling
has different effects on the bandlike term and the hopping
term. Because an increase in g results in more scattering of
the polaron state, the hopping mobility �high-T� is enhanced
by strong electron-phonon couplings, while the bandlike mo-
bility �low-T� is inhibited. Notice that varying g could result
in a change of mobility over several orders of magnitude.
Thus, our results suggest that selecting a material with
proper g value is important for optimizing charge-carrier mo-
bilities at different temperatures; given the same reduced
transfer integral J0 /�0, small g materials are favorable at low
temperatures �higher bandlike mobility�, while large g mate-
rials are favorable at high temperatures �higher hopping mo-
bility�. Note that this result is valid only when the system is
still described by a partially dressed state. After the abrupt
small polaron transition, the exponential renormalization of
the transfer integrals �band narrowing effect� will dominate
the g dependence of the charge-carrier mobility. Therefore,
after the small polaron transition, increasing g will lower the
mobility.

In a number of previous studies, the small polaron tran-
sition in a variational treatment is considered to correspond
to the crossover from the bandlike to hopping transport.13,31

However, our results suggest that the two phenomena are not
directly correlated. The smooth crossover in the transport
mechanisms does not correspond to the transition in the
structure of the polaron state; in contrast, the crossover from

FIG. 10. A comparison of bandlike �upper panel� and hopping �lower panel�
mobilities for a 1D Holstein system with J0 /�0=2 at different electron-
coupling constants.

FIG. 9. Mobilities for a 1D Holstein
system with J0 /�0=2 at different
electron-coupling constants g. We
show the total mobility �solid lines�,
bandlike contribution to the mobility
�thin dashed lines�, and hopping con-
tribution to the mobility �thick dashed
lines�. �=0.01�0 and �0=0.001�0 are
employed for these calculations. The
unit of the y-axis is �0=ea0

2 /�, where
e is the charge of an electron, a0 is the
lattice constant, and � is Planck’s
constant.
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the bandlike mechanism to the hopping mechanism occurs at
a lower temperature compared to the small polaron transition
�the abrupt change in the mobilities�. Our results indicate
that partially dressed state can give rise to a significant hop-
ping term in a broad parameter range, which may be respon-
sible for the bandlike to hopping transition observed in ex-
periments

We summarize key qualitative results that are exhibited
by our partially dressed theory: �1� A steep power-law de-
crease of the mobility exists in the bandlike regime, and the
n�1.5 behavior can be explained by the contribution from
the multiphonon scattering in the bandlike term; �2� all the-
oretical curves predict smooth bandlike to hopping transition
in the temperature dependence of charge-carrier mobilities;
however, the change in transport mechanism does not corre-
spond to the small polaron transition; �3� almost temperature
independent behavior over a wide temperature range exists
in some parameter regime; �4� significant thermal-activated
mobility at high temperature is not observed in all parameter
regimes that we have studied; however, for sufficiently
strong electron-phonon couplings, a slight increase in the
mobility can occur after the crossover from the bandlike to
hopping transport.

V. TEMPERATURE DEPENDENCE ON THE CHARGE
MOBILITIES IN NAPHTHALENE

We also compare our mobility calculations to experi-
mental measurements of excess charge-carrier mobilities on
the naphthalene crystals. In Fig. 11, we compare two theo-
retical curves from the 1D model presented in the previous
section to excess electron and hole mobilities measured in
parallel to the crystalline b direction of the naphthalene

crystals.5,64 The curves with �g ,J0 ,�0�
= �0.4,20 meV,200 cm−1� and �0.5, 13 meV, 150 cm−1� are
in agreement with experimental excess hole and electron mo-
bilities, respectively. The fitting parameters indicate weak
electron-phonon couplings and are consistent with other
spectroscopic experiments65–69 and theoretical
calculations70–72 on naphthalene crystals.

Our simplified 1D model is hardly adequate for the de-
scription of the mobility in naphthalene crystal because of
the highly anisotropic and noncubic structure of the crystal.
Using the theoretical model presented in Sec. II, it is possible
to construct a three dimensional �3D� description that takes
into account the real crystal structure; however, such com-
plete simulation would be beyond the scope of this work.
Figure 11 is not meant to provide a fit to the experimental
data. Nevertheless, it demonstrates that our approach does
capture the temperature dependence of the mobilities and can
provide a quantitative description that covers the whole ex-
perimental temperature range and different types of materials
in a unified theory.

VI. CONCLUDING REMARKS

In conclusion, we have developed a unified theory that
describes both coherent and incoherent transports in the
Holstein Hamiltonian and can quantitatively describe the
temperature dependence of the charge-carrier mobilities in
OMC. Our formalism is based on a finite-temperature varia-
tional method combining Merrifield’s transformation with
Bogoliubov’s theorem to obtain the optimal basis for an in-
teracting electron-phonon system, and then to calculate the
bandlike and hopping mobilities for charge carriers based on
the optimal basis. Because we use Bogoliubov’s theorem to
obtain the optimal thermal mean-field description for the in-
teracting electron-phonon system, a perturbation expansion
based on the variational zeroth-order Hamiltonian is justified
in the intermediate coupling regime. Our calculations on the
1D Holstein model at T=0 K and finite temperatures indicate
that the variational-perturbation method gives results that
compared favorably to other analytical methods.

Moreover, we have applied the unified theory to the 1D
Holstein model at finite temperatures. We studied the struc-
tures of polaron states over a broad range of parameters in-
cluding different temperatures. Our method yields phase dia-
grams that are in agreement with predictions of more
accurate numerical methods at low temperatures. Therefore,
the finite-temperature Merrifield’s variational method, al-
though contains unphysical double minima on the free en-
ergy potential surface, gives reasonable semiquantitative re-
sults for the polaron transition. We also calculated the
bandlike and hopping mobilities of the 1D model in different
parameters and showed that the temperature dependence of
the total mobility predicted by our theory exhibits power-law
decay at a wide temperature range, and an almost tempera-
ture independent behavior at higher temperatures before an
abrupt change occurs. We found that as the temperature

FIG. 11. �Color online� A comparison of our results with experimental mea-
surements on ultrapure naphthalene crystals. Both excess electron and hole
mobilities measured in parallel to the crystalline b direction of the naphtha-
lene crystals are shown alongside with selected 1D results from our theory
presented in the previous section. In addition, �0=0.025�0 and �=0.05�0

are employed in the numerical calculations.
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increases, the hopping transport can become dominant char-
acter even before the polaron state changes its characters.
Thus, our result indicates that the self-trapping transition
studied in conventional polaron theories does not necessary
correspond to the crossover from bandlike to hopping trans-
port in the transport properties in OMC. Comparing our 1D
results with experiments on ultrapure naphthalene crystals
suggests that our method can describe the charge-carrier mo-
bilities in OMC quantitatively across the whole experimental
temperature range.

Although our variational method correctly predicts the
small polaron transition line at low temperatures, the abrupt
transition makes it difficult to access regions close to or after
the transition quantitatively. A more generalized ansatz, such
as Toyozawa’s ansatz, should greatly improve the applicable
range of the current theory. Note that our results suggest that
the crossover from banklike to hopping transport occurs be-
fore the self-trapping transition, thus, the deficiency does not
affect our main results regarding the charge-carrier mobilities
in OMC.

Finally, we note that the mobility expression from
Yarkony and Silbey �Eqs. �A5�–�A8�� is an approximate ex-
pression in which small terms have been dropped. Since we
have used numerical integration to evaluate the mobilities, it
is straightforward to numerically propagate the reduced den-
sity matrix of the system according to the master equation in
Eq. �A2�, and then calculate the mobility using Eq. �A4�.
Such direct propagation scheme is favorable when simulat-
ing real 3D systems because numerical integration of 3D
functions is not efficient. In addition, static disorders and
nonequilibrium effect can be easily incorporated into such a
numerical scheme, making the approach favorable when
modeling disorder materials.
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APPENDIX A: EXPRESSION FOR MOBILITY
CALCULATIONS

Yarkony and Silbey considered a general electron-
phonon Hamiltonian,

H = He + Hph + V

= 

k

Ekak
†ak + 


q

�qbq
†bq +

1
�N



k1,k2

ak1

† ak2
Vk1k2

, �A1�

where Vk1k2
are operators that act on phonon degrees of free-

dom. Using a quantum master equation approach in a ap-
proximation equivalent to second-order time-dependent per-
turbation theory in the exciton-phonon coupling V, they find
the equation of motion for the reduced density matrix of the
exciton,

̇kk��t� = − i�Ek − Ek��kk��t� − �kk�kk��t�

+ 

q,s

Wkk�;qsqs��� , �A2�

where Ek is the energy of the state k, the relaxation tensor
Wkk�;qq� is defined using phonon correlation functions

Wkk�;qq� = �
0

�

d���Vq�k�Vkq����0e−i�Eq�−Ek���

+ �Vq�k����Vkq�0e−i�Ek−Eq��� , �A3�

and the quantities �kk� is given by

�kk� =
1

2

q

�Wqq;kk + Wqq;k�k�� .

Note that the diffusion coefficient D of a nonequilibrium
distribution of electronic states can be related to the mean-
square displacement of a particle �R2�t�� using the following
expression:

D =
1

2d
lim
t→�

d

dt
�R2�t�� ,

where d is the dimensionality of the system �assuming an
isotropic system�. The mean-square displacement of a par-
ticle is related to the diagonal density matrix elements of the
system in the site representation, �R2�t��=
nn2nn�t�. In the
k-representation, the diffusion coefficient is given by

D =
1

2d
lim
t→�



k

��K
2 ̇k,k+K�t��K=0. �A4�

Substitution of the quantum master equation in Eq. �A2� into
this equation in the limit of t→� yields a complicated equa-
tion that gives the diffusion coefficient of the electron. After
neglecting small terms, an approximate formula for the mo-
bility of the electron that consists of a bandlike term and a
hopping term is obtained,

� = e�D = �B + �H, �A5�

where the bandlike mobility is given by

�B = e�

k

kk
eq ·

vk
2

�0 + �kk
, �A6�

where e is the electron charge, kk
eq=e−�Ek /
qe−�Eq is the

thermal population of state k, vk=�kEk is the electron group
velocity in state k, �kk is the rate of scattering out of state k,

�kk = 

q

Wqq;kk,

and �0 is an extra term inserted to represent the contribution
to the scattering rate from mechanisms not considered in the
Hamiltonian �e.g., scattering due to quadratic electron-
phonon couplings and impurities�.

The hopping term is given by

�H = e�

k

kk
eq · �kk, �A7�

where �kk is a function defined using the relaxation tensor W,
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�kk = − Re 

q
�d2Wq,q+K;k,k+K

dK2 �
K=0

+
1

2

d2�kk

dk2 . �A8�

Equations �A5�–�A8� are the main results derived by
Yarkony and Silbey. We will adopt their expression to calcu-
late the mobility of a partially dressed electron governed by
the transformed Hamiltonian in Eq. �7�.

We first evaluate the phonon correlation functions
�Vq�k�Vkq����0. Reorganizing the interaction term of the trans-
formed Hamiltonian in Eq. �8� and comparing the result to
Eq. �A1�, we obtain the corresponding phonon operators for
the Hamiltonian after Merrifield’s transformation,

Vk1k2
=

1

N


n,m

e−ik1neik2m · Jn,m · �
n
†
m − �
n

†
m�0�

+ �0�g − fk1−k2
� · �bk1−k2

+ bk2−k1

† � . �A9�

This expression for phonon operators is used to compute the
phonon correlation functions �Vq�k�Vkq����0. Due to the com-

plex form of Vk1k2
, the expression for �Vq�k�Vkq����0 is quite

involved; to avoid confusion, the result is given in Appendix
B.

Our mobility calculations depend on the evaluation of
the following relaxation tensor elements:

Wq,q+K;k,k+K = �
0

�

d���Vk+K,q+KVqk����0e−i�Ek+K−Eq+K��

+ �Vk+K,q+K���Vqk�0e−i�Eq−Ek��� .

In order to evaluate the integral over � while avoiding sin-
gularities introduced by 	 functions, we assume a phonon
bandwidth � �inverse relaxation time of phonons� and treat
integral of the form Re�d�eiF� as

Re �
0

�

d�eif� · e−�� =
�

�2 + F2 .

The result for Wq,q+K;k,k+K is

Wq,q+K;k,k+K = n0�0
2�g2 − fk−q

2 �� �

�2 + ��q − �k − �0�2 +
�

�2 + ��q+K − �k+K − �0�2� + �n0 + 1��0
2�g2 − fk−q

2 �

�� �

�2 + ��q − �k + �0�2 +
�

�2 + ��q+K − �k+K + �0�2� +
1

N



n1,m1



n2,m2

e−ik�n1−m2�e−iq�n2−m1�J̃n1m1
J̃n2m2

� 

n=1

�



m=0

n
AmBn−m

m!�n − m�!
� � �

�2 + ��q − �k + �2m − n��0�2 +
�

�2 + ��q+K − �k+K + �2m − n��0�2� , �A10�

where we have defined thermal population number of pho-
non modes n0=1 / �e−��0 −1�, phonon renormalized reso-

nance transfer integrals J̃nm=Jnm�
n
†
m�0, and functions

A =
− 1

2 

q�

Xq�
n1m1X̄q�

n2m2 · �n0 + 1� ,

B =
− 1

2 

q�

X̄q�
n1m1Xq�

n2m2 · n0,

with Xq
nm= �1 /�N�fq�eiqm−eiqn� and X̄q

nm= �1 /�N�f
q
*�e−iqm

−e−iqn�. Note that for narrow phonon bands, the value for �
should be small �0���1�, and when �→0 we obtain 	
functions in the expression.

The three terms in Eq. �A10� have simple physical inter-
pretations. The first term represents a process in which an
electron absorbs one phonon and is scattered upward to a
higher energy state, the second term is a process that emits a
phonon and scatters the electron downward to a lower energy
state, and the third term represents multiphonon processes in
which multiple phonons are exchanged. For very narrow-
band materials whose electronic bandwidth is smaller than

the phonon frequency �0, only the multiphonon term con-
tributes to the scattering of electrons. In addition, for systems
with strong electron-phonon coupling g, it is possible that at
high temperatures, the polaronic narrowing effect will result

in a narrow polaron band such that J̃��, and again the
single phonon processes �the first and second terms� do not
contribute. Note that at low temperatures �n0�1� or when
the electron is only weakly dressed �fm�1�, the prefactor
AmBn−m�1 and the multiphonon processes are negligible.
On the other hand, when temperature increases, the thermal
population of phonon modes n0 as well as the dressing coef-
ficients �fm� increases, and the contribution of the mul-
tiphonon term would increase. Eventually, multiphonon term
dominates the scattering of electrons at high temperatures.

APPENDIX B: PHONON CORRELATION
FUNCTIONS

The phonon correlation function �Vq�k�Vkq����0 for a nar-
row phonon band with phonon frequency �0 is given by
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�Vq�k�Vkq����0 =
1

N



n1,m1



n2,m2

e−iq�n1eik�m1e−ikn2eiqm2J̃n1m1
J̃n2m2

� �e−
s�Xs
n1m1X̄s

n2m2�n0+1�ei�0�+X̄s
n1m1Xs

n2m2n0e−i�0�� − 1� +
�0

N
�g

− fk−q�

n,m

e−iq�neik�mJ̃nmX̄k−q
nm �− n0e−i�0� + �n0 + 1�ei�0�� +

�0

N
�g − fq�−k��


n,m
e−ikneiqmJ̃nmX̄q�−k�

nm �n0e−i�0� − �n0

+ 1�ei�0�� + �0
2�g − fq�−k��

2 · �n0e−i�0� + �n0 + 1�ei�0�� · 	�q� − k� + k − q� ,

where we have defined J̃nm=Jnm�
n
†
m�0, Xq

nm= �1 /�N�fq�eiqm−eiqn�, X̄q
nm= �1 /�N�f

q
*�e−iqm−e−iqn�, and n0=1 / �e−��0 −1�. Note

that using the symmetry property of quantum correlation functions, we can easily calculate the other correlation function
�Vq�k����Vkq�0,

�Vq�k����Vkq�0 = �Vq�k�Vkq����0
*.

APPENDIX C: SECOND-ORDER CORRECTION ON THE ENERGY BAND AT T=0 K

The second-order energy correction to the energy band of the polaron state in Eq. �17� assumes the following form:

E�2��k� = − 2�0fopt�g − fopt� − �0
2�g2 − fopt

2 �
1

N


k�

1

2J̃0 cos k� − 2J̃0 cos k − �0

− 2J̃0
2 


nT=1

�
fopt

2nT

nT!

1

N


k�

2nT + cos 2k + cos 2k� + 2 · �− 1�nT cos�k� − k� + �− 2�nT cos�k� + k�

2J̃0 cos k� − 2J̃0 cos k − nT�0

,

where we have defined J̃0=J0e−fopt
2

. Around the bottom of the
band where k�0 and cos k�1, the integral over k� can be
evaluated explicitly to give

Ek�0
�2� �k� = − 2�0fopt�g − fopt� − �0

2�g2 − fopt
2 �

�
1

2J̃0
��cos k + �0/2J̃0�2 − 1

− 2J̃0 

nT=1

�
fopt

2nT

nT!

�
A�A2 − 1 − AB + B�A2 − 1 − A2 − C

�A2 − 1
, �C1�

where the auxiliary functions are defined as

A = cos k + nT�0/2J̃0,

B = 1
2 �2�− 1�nT + �− 2�nT�cos k ,

C = 1
2 �2nT + cos 2k − 1� .

The expression for Ek�0
�2� �k� is used to calculate the effective

mass of the polaron state at T=0 K.

1 M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals
�Oxford University Press, New York, 1982�.

2 N. Karl, J. Vac. Sci. Technol. A 17, 2318 �1999�.
3 Organic Electronic Materials:Conjugated Polymers And Low Molecular
Weight Organic Solids, edited by R. Farchioni and G. Grosso �Springer,
New York, 2001�.

4 V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. J. Silbey,
and J.-L. Brédas, Chem. Rev. �Washington, D.C.� 107, 926 �2007�.

5 N. Karl, Organic Semiconductors, Landolt Börnstein/New Series Group
III Vol. 17 �Springer, Berlin, 1985�, Subvol. 17i, pp. 106–218.

6 N. Karl, Mol. Cryst. Liq. Cryst. 171, 31 �1989�.
7 N. Karl, J. Cryst. Growth 99, 1009 �1990�.
8 C. E. Swenberg and M. Pope, Chem. Phys. Lett. 287, 535 �1998�.

9 E. A. Silinsh and V. Čápek, Organic Molecular Crystals: Interaction,
Localization, and Transport Phenomena �AIP, Woodbury, 1994�.

10 M. E. Gershenson, V. Podzorov, and A. F. Morpurgo, Rev. Mod. Phys.
78, 973 �2006�.

11 J. Zaumseil and H. Sirringhaus, Chem. Rev. �Washington, D.C.� 107,
1296 �2007�.

12 Y. C. Cheng, R. J. Silbey, D. A. da Silva, J. P. Calbert, J. Cornil, and J. L.
Bredas, J. Chem. Phys. 118, 3764 �2003�.

13 P. E. Parris and V. M. Kenkre, Phys. Rev. B 70, 064304 �2004�.
14 N. Koch, A. Vollmer, I. Salzmann, B. Nickel, H. Weiss, and J. Rabe,

Phys. Rev. Lett. 96, 156803 �2006�.
15 R. M. Glaeser and R. S. Berry, J. Chem. Phys. 44, 3797 �1966�.
16 H. Haken and G. Strobl, Z. Phys. 262, 135 �1973�.
17 H. Haken and P. Reineker, Z. Phys. 249, 253 �1972�.
18 P. Reineker, Exciton Dynamics in Molecular Crystals and Aggregates

�Springer-Verlag, Berlin, 1982�.
19 V. Čápek, Chem. Phys. 171, 79 �1993�.
20 A. Troisi and G. Orlandi, Phys. Rev. Lett. 96, 086601 �2006�.
21 M. Hultell and S. Stafstrom, Chem. Phys. Lett. 428, 446 �2006�.
22 B. Jackson and R. J. Silbey, J. Chem. Phys. 75, 3293 �1981�.
23 T. Holstein, Ann. Phys. �N.Y.� 8, 325 �1959�.
24 D. Emin, Adv. Phys. 22, 57 �1973�.
25 D. R. Yarkony and R. J. Silbey, J. Chem. Phys. 67, 5818 �1977�.
26 R. J. Silbey and R. W. Munn, J. Chem. Phys. 72, 2763 �1980�.
27 R. W. Munn and R. Silbey, Mol. Cryst. Liq. Cryst. 57, 131 �1980�.
28 V. M. Kenkre, J. D. Andersen, D. H. Dunlap, and C. B. Duke, Phys. Rev.

Lett. 62, 1165 �1989�.
29 S. Rackovsky and R. Silbey, Mol. Phys. 25, 61 �1973�.
30 J. D. Andersen, C. B. Duke, and V. M. Kenkre, Chem. Phys. Lett. 110,

504 �1984�.
31 D. R. Yarkony and R. J. Silbey, J. Chem. Phys. 65, 1042 �1976�.
32 J. W. Allen and R. Silbey, J. Chem. Phys. 43, 341 �1979�.
33 T. Holstein, Ann. Phys. �N.Y.� 8, 343 �1959�.
34 R. W. Munn and R. Silbey, J. Chem. Phys. 83, 1843 �1985�.
35 R. W. Munn and R. Silbey, J. Chem. Phys. 83, 1854 �1985�.
36 R. E. Merrifield, J. Chem. Phys. 40, 445 �1964�.
37 Y. Zhao, D. W. Brown, and K. Lindenberg, J. Chem. Phys. 106, 5622

�1997�.
38 Y. Toyozawa, Prog. Theor. Phys. 26, 29 �1961�.
39 D. W. Brown, K. Lindenberg, and Y. Zhao, J. Chem. Phys. 107, 3179

�1997�.

114713-17 A unified theory for charge-carrier transport in organic crystals J. Chem. Phys. 128, 114713 �2008�

Downloaded 03 Apr 2008 to 128.32.144.88. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1116/1.581767
http://dx.doi.org/10.1021/cr050140x
http://dx.doi.org/10.1080/00268948908065785
http://dx.doi.org/10.1016/0022-0248(90)91123-8
http://dx.doi.org/10.1016/S0009-2614(98)00229-2
http://dx.doi.org/10.1103/RevModPhys.78.973
http://dx.doi.org/10.1021/cr0501543
http://dx.doi.org/10.1063/1.1539090
http://dx.doi.org/10.1103/PhysRevB.70.064304
http://dx.doi.org/10.1103/PhysRevLett.96.156803
http://dx.doi.org/10.1063/1.1726537
http://dx.doi.org/10.1007/BF01399723
http://dx.doi.org/10.1007/BF01400230
http://dx.doi.org/10.1016/0301-0104(93)85132-R
http://dx.doi.org/10.1103/PhysRevLett.96.086601
http://dx.doi.org/10.1016/j.cplett.2006.07.042
http://dx.doi.org/10.1063/1.442479
http://dx.doi.org/10.1016/0003-4916(59)90002-8
http://dx.doi.org/10.1080/00018737300101269
http://dx.doi.org/10.1063/1.434789
http://dx.doi.org/10.1063/1.439425
http://dx.doi.org/10.1080/00268948008069822
http://dx.doi.org/10.1103/PhysRevLett.62.1165
http://dx.doi.org/10.1103/PhysRevLett.62.1165
http://dx.doi.org/10.1080/00268977300100081
http://dx.doi.org/10.1016/0009-2614(84)87079-7
http://dx.doi.org/10.1063/1.433182
http://dx.doi.org/10.1016/0301-0104(79)85202-7
http://dx.doi.org/10.1016/0003-4916(59)90003-X
http://dx.doi.org/10.1063/1.449372
http://dx.doi.org/10.1063/1.449373
http://dx.doi.org/10.1063/1.1725135
http://dx.doi.org/10.1063/1.473598
http://dx.doi.org/10.1143/PTP.26.29
http://dx.doi.org/10.1063/1.474668


40 J. Bonca, S. A. Trugman, and I. Batistic, Phys. Rev. B 60, 1633 �1999�.
41 L. C. Ku, S. A. Trugman, and J. Bonca, Phys. Rev. B 65, 174306 �2002�.
42 A. H. Romero, D. W. Brown, and K. Lindenberg, J. Chem. Phys. 109,

6540 �1998�.
43 H. De Raedt and A. Lagendijk, Phys. Rev. B 27, 6097 �1983�.
44 H. De Raedt and A. Lagendijk, Phys. Rev. B 30, 1671 �1984�.
45 G. Kopidakis, C. M. Soukoulis, and E. N. Economou, Phys. Rev. B 51,

15038 �1995�.
46 E. V. L. de Mello and J. Ranninger, Phys. Rev. B 58, 14625 �1998�.
47 C. L. Zhang, E. Jeckelmann, and S. R. White, Phys. Rev. B 60, 14092

�1999�.
48 Y. Zhao, D. W. Brown, and K. Lindenberg, J. Chem. Phys. 107, 3159

�1997�.
49 E. Jeckelmann and S. R. White, Phys. Rev. B 57, 6376 �1998�.
50 A. S. Alexandrov, V. V. Kabanov, and D. K. Ray, Phys. Rev. B 49, 9915

�1994�.
51 M. K. Grover and R. Silbey, J. Chem. Phys. 52, 2099 �1970�.
52 M. Grover and R. Silbey, J. Chem. Phys. 54, 4843 �1971�.
53 F. Marsiglio, Physica C 244, 21 �1995�.
54 E. I. Rashba, Excitons �North-Holland, Amsterdam, 1982�, p. 543.
55 P. O. J. Scherer, E. W. Knapp, and S. F. Fischer, Chem. Phys. Lett. 106,

191 �1984�.
56 K. S. Song and R. T. Williams, Self-Trapped Excitons �Springer-Verlag,

Berlin, 1993�.
57 G. Wellein and H. Fehske, Phys. Rev. B 58, 6208 �1998�.
58 A. H. Romero, D. W. Brown, and K. Lindenberg, J. Lumin. 83, 147

�1999�.

59 D. W. Brown, A. H. Romero, and K. Lindenberg, J. Phys. Chem. A 103,
10417 �1999�.

60 D. Emin and T. Holstein, Phys. Rev. Lett. 36, 323 �1976�.
61 H. Löwen, J. Math. Phys. 29, 1505 �1988�.
62 B. Gerlach and H. Löwen, Rev. Mod. Phys. 63, 63 �1991�.
63 A. H. Romero, D. W. Brown, and K. Lindenberg, Phys. Rev. B 60, 4618

�1999�.
64 L. B. Schein, W. Warta, A. R. McGhie, and N. Karl, Chem. Phys. Lett.

100, 34 �1983�.
65 E. L. Bokhenkov, I. Natkanets, and E. F. Sheka, Zh. Eksp. Teor. Fiz. 70,

1027 �1976�.
66 B. Dorner, E. L. Bokhenkov, E. F. Sheka, S. L. Chaplot, G. S. Pawley, J.

Kalus, U. Schmelzer, and I. Natkaniec, J. Phys. Colloq. 42, �C6�-602
�1981�.

67 E. L. Bokhenkov, A. I. Kolesnikov, T. A. Krivenko, E. F. Sheka, V. A.
Dementjev, and I. Natkaniec, J. Phys. Colloq. 42, �C6�-605 �1981�.

68 N. Sato, H. Inokuchi, B. M. Schmid, and N. Karl, J. Chem. Phys. 83,
5413 �1985�.

69 A. L. Motyka, S. A. Wittmeyer, R. J. Babbitt, and M. R. Topp, J. Chem.
Phys. 89, 4586 �1988�.

70 V. Coropceanu, M. Malagoli, D. A. da Silva Filho, N. E. Gruhn, T. G.
Bill, and J. L. Brédas, Phys. Rev. Lett. 89, 275503 �2002�.

71 T. Kato and T. Yamabe, J. Chem. Phys. 115, 8592 �2001�.
72 T. Kato, M. Kondo, K. Yoshizawa, and T. Yamabe, Synth. Met. 126, 75

�2002�.
73 W. Stephan, Phys. Rev. B 54, 8981 �1996�.

114713-18 Y.-C. Cheng and R. J. Silbey J. Chem. Phys. 128, 114713 �2008�

Downloaded 03 Apr 2008 to 128.32.144.88. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1103/PhysRevB.60.1633
http://dx.doi.org/10.1103/PhysRevB.65.174306
http://dx.doi.org/10.1063/1.477305
http://dx.doi.org/10.1103/PhysRevB.27.6097
http://dx.doi.org/10.1103/PhysRevB.30.1671
http://dx.doi.org/10.1103/PhysRevB.51.15038
http://dx.doi.org/10.1103/PhysRevB.58.14625
http://dx.doi.org/10.1103/PhysRevB.60.14092
http://dx.doi.org/10.1063/1.474667
http://dx.doi.org/10.1103/PhysRevB.57.6376
http://dx.doi.org/10.1103/PhysRevB.49.9915
http://dx.doi.org/10.1063/1.1673263
http://dx.doi.org/10.1063/1.1674761
http://dx.doi.org/10.1016/0921-4534(95)00046-1
http://dx.doi.org/10.1016/0009-2614(84)80224-9
http://dx.doi.org/10.1103/PhysRevB.58.6208
http://dx.doi.org/10.1016/S0022-2313(99)00089-7
http://dx.doi.org/10.1021/jp992035v
http://dx.doi.org/10.1103/PhysRevLett.36.323
http://dx.doi.org/10.1063/1.527894
http://dx.doi.org/10.1103/RevModPhys.63.63
http://dx.doi.org/10.1103/PhysRevB.60.4618
http://dx.doi.org/10.1016/0009-2614(83)87257-1
http://dx.doi.org/10.1051/jphys:01981004204060500
http://dx.doi.org/10.1063/1.449710
http://dx.doi.org/10.1063/1.454799
http://dx.doi.org/10.1063/1.454799
http://dx.doi.org/10.1103/PhysRevLett.89.275503
http://dx.doi.org/10.1063/1.1409539
http://dx.doi.org/10.1016/S0379-6779(01)00542-2
http://dx.doi.org/10.1103/PhysRevB.54.8981

