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A theory of coherent resonance energy transfer is developed combining the polaron transformation
and a time-local quantum master equation formulation, which is valid for arbitrary spectral densities
including common modes. The theory contains inhomogeneous terms accounting for
nonequilibrium initial preparation effects and elucidates how quantum coherence and
nonequilibrium effects manifest themselves in the coherent energy transfer dynamics beyond the
weak resonance coupling limit of the Förster and Dexter �FD� theory. Numerical tests show that
quantum coherence can cause significant changes in steady state donor/acceptor populations from
those predicted by the FD theory and illustrate delicate cooperation of nonequilibrium and quantum
coherence effects on the transient population dynamics. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2977974�

The resonance energy transfer �RET� of electronic
excitations1 is an indispensable step in photosynthesis2 and
organic optoelectronic processes.3 It also has a powerful
spectroscopic application called fluorescence RET �FRET�,
which can determine 2–10 nm distances in biological
systems.4 How RET occurs is well understood at the level of
the Förster and Dexter �FD� theory,5–7 where the transfer rate
can be calculated assuming incoherent quantum mechanical
transitions. What happens if the transition falls in the coher-
ent regime has become a topic of prime interest in recent
years.8–11 The utilization of coherence may lead to highly
efficient solar energy conversion devices12 and has signifi-
cant implications in enhancing the sensitivity of FRET at
short distances.13 However, the presence of coherence makes
the definition of a transfer rate ambiguous, and assessing its
effect on the overall RET dynamics has remained a difficult
theoretical and experimental issue. The theory developed in
this Communication elucidates some of these issues and pro-
vides a quantitative means to describe the RET dynamics in
various limits.

Let us consider the simplest system consisting of single
chromophoric energy donor �D� and acceptor �A�. The state
where both D and A are in the ground electronic state is
denoted as �g�. The state where only D �A� is excited while A
�D� is in the ground electronic state is denoted as �D� ��A��.
Only single electronic excitations are considered, and the
three states constitute a complete set of system states. Ini-
tially, the system is in �g�, and the bath—all other degrees of
freedom—is in equilibrium with �g�, with a corresponding
Hamiltonian Hb.

At time t=0, a laser pulse with duration �pulse selectively
excites �g� to �D�. It is assumed that �pulse��RET, where the
latter is the time scale of the RET dynamics. This in turn is

assumed to be much smaller than �sd, the spontaneous decay
time to the ground state. Then, the RET dynamics for t�0
�after the cessation of the pulse� can be described by a total
Hamiltonian, H=Hs

p+Hs
c+Hsb+Hb, where Hs

p and Hs
c are

system Hamiltonians �with superscripts p and c representing
population and coherence�, and Hsb is the system-bath inter-
action Hamiltonian. These have the following forms:

Hs
p = ED�D��D� + EA�A��A� , �1�

Hs
c = J��D��A� + �A��D�� , �2�

Hsb = BD�D��D� + BA�A��A� , �3�

where ED �EA� is the energy of state �D� ��A�� relative to �g�,
J is the resonance coupling between �D� and �A�, and BD �BA�
represents the bath operator coupled to �D� ��A��. The total
density operator at time t is denoted as ��t�. The initial con-
dition corresponding to the physical situation described
above is ��0�=��0�e−�Hb /Z, where �=1 /kBT, Z=Trb�e−�Hb	,
and ��0�= �D��D�.

For the Hamiltonians defined above, the corresponding
quantum Liouville operators14 are denoted as L, Ls

p, Ls
c, Lsb,

and Lb. Then, ��t� is governed by

d��t�
dt

= − iL��t� = − i�Ls
p + Ls

c + Lsb + Lb���t� . �4�

The major issue in coherent RET is that Ls
p, Ls

c, and Lsb are
all comparable, which makes perturbation expansion in any
of these unreliable. When the coupling to the bath is weak,
the second order quantum master equation �QME�
approach15,16 may be employed, while for strong coupling to
the bath, the FD theory5,6 is applicable. Our approach devel-
oped below interpolates between these limits by combining
the polaron transformation17–19 and a QME formulation20 up
to the second order. In order to make clear exposition of the
theory, we here assume a spin-boson-type model.18,21 Thus,
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Hb=
n��n�bn
†bn+ 1

2
�, where bn

† �bn� is the creation �annihila-
tion� operator of the nth mode with frequency �n, and BD

=
n��ngnD�bn+bn
†� and BA=
n��ngnA�bn+bn

†�. It is as-
sumed that J in Eq. �2� is a time independent parameter.
Numerous theoretical studies have been made for this model,
but its dynamics in the ranges of parameters corresponding
to coherent RET remains relatively unknown.11

Applying the polaron transformation17–19 generated by
G=
n�bn

†−bn��gnD�D��D�+gnA�A��A�� to Eq. �4�, we obtain
the following time evolution equation for �̃�t�=eG��t�e−G:

d�̃�t�
dt

= − i�L̃s
p + L̃s

c + Lb��̃�t� , �5�

where L̃s
p and L̃s

c are quantum Liouville operators for

H̃s
p = ẼD�D��D� + ẼA�A��A� , �6�

H̃s
c = J�	D

† 	A�D��A� + 	A
†	D�A��D�� . �7�

In Eq. �6�, ẼD=ED−
ngnD
2 ��n and ẼA=EA−
ngnA

2 ��n. In

Eq. �7�, 	D=e−
ngnD�bn
†−bn� and 	A=e−
ngnA�bn

†−bn�, and 	D
† and

	A
† are their Hermitian conjugates. Accordingly, the initial

condition transforms to �̃�0�=��0�	D
† e−�Hb	D /Z, which is

nonequilibrium with respect to the bath.22

For the purpose of deriving the QME, we divide the total

transformed Hamiltonian as H̃= H̃0+ H̃1. The zeroth order

term H̃0 is defined as

H̃0 = H̃s
p + �H̃s

c� + Hb = H̃0,s + Hb, �8�

where �¯� denotes average over e−�Hb /Zb, and

H̃0,s = ẼD�D��D� + ẼA�A��A� + Jw��D��A� + �A��D�� . �9�

Here, w= �	D
† 	A�= �	A

†	D�=e−
ncoth����n/2�
gn
2/2 with 
gn=gnD

−gnA. The remaining first order term H̃1 is defined as

H̃1 = H̃s
c − �H̃s

c� = J�B̃�D��A� + B̃†�A��D�� , �10�

where B̃=	D
† 	A−w. By definition, �B̃�= �B̃†�=0. A crucial

point to note is that, unlike the usual assumption of the FD
theory,5,6 we follow the approach of Abram and Silbey23 and

take JB̃ and JB̃† as perturbations which remain small in both
limits of weak and strong system-bath couplings. This allows

for the second order QME with respect to H̃1 to be valid in
both limits.

In the interaction picture of H̃0, �̃I�t�=eiL̃0t�̃�t� is gov-
erned by the following time evolution equation:

d

dt
�̃I�t� = − iL̃1,I�t��̃I�t� , �11�

where L̃1,I�t� is the quantum Liouville operator for

H̃1,I�t� = J�B̃�t�T�t� + B̃†�t�T†�t�� , �12�

with B̃�t�=eiHbt/�B̃e−iHbt/� and T�t�=eiH̃0,st/��D��A�e−iH̃0,st/�.
Applying the standard projection operator technique20

with P�·���b Trb�·	 and Q=1−P to Eq. �11� and making

second order approximations �with respect to L̃1,I�t�� for

both the homogeneous and inhomogeneous terms consis-
tently, we obtain

d

dt
P�̃I�t� = − iPL̃1,I�t�Q�̃�0� − �

0

t

d�PL̃1,I�t�L̃1,I���

��Q�̃�0� + P�̃I���� , �13�

where PL̃1,I�t�P=0 has been used and Q�̃�0�=��0�
��	D

† e−�Hb	D−e−�Hb� /Z. In Eq. �13�, P�̃I��� can be replaced
with P�̃I�t� without affecting the accuracy up to the second
order.20 Taking the trace of the resulting equation over the
bath degrees of freedom, we obtain the following time-local
QME for �̃I�t�=Trb��̃I�t�	:

d

dt
�̃I�t� = − R�t��̃I�t� + I�t� , �14�

where

R�t� = �
0

t

d� Trb�L̃1,I�t�L̃1,I����b	 , �15�

I�t� = − i Trb�L̃1,I�t�Q�̃�0�	

− �
0

t

d� Trb�L̃1,I�t�QL̃1,I����̃�0�	 . �16�

While being time local, Eq. �14� can account for non-
Markovian bath effects through the time dependence of R�t�
and is expected to show good performance beyond the typi-
cal perturbative regime, as has been demonstrated for other
cases.24 As long as w defined below Eq. �9� is nonzero, it is
simple to show that Eq. �14� captures the Redfield limit15 for
long times and weak system-bath coupling limit. Two
straightforward extensions of Eq. �14� are possible. The first
is for more general initial condition with coherent mixture of
�D� and �A�, which is important for modeling pump-probe
spectroscopy. The second is multistate generalization.

Inserting Eq. �12� into Eqs. �15� and �16� and using the
cyclic invariance of the bath operators within Trb�¯	, we
can explicitly decouple the bath correlation functions from
the commutators of system operators. The resulting expres-
sion for Eq. �15�, when applied to �̃I�t�, can be shown to be

R�t��̃I�t� =
J2

�2e−K�0��
0

t

d���e−K�t−�� − 1��T�t�,T����̃I�t��

+ �eK�t−�� − 1��T†�t�,T����̃I�t��

+ �eK�t−�� − 1��T�t�,T†����̃I�t��

+ �e−K�t−�� − 1��T†�t�,T†����̃I�t��	 + H . c . ,

�17�

where K�t�=
n
gn
2�coth����n /2�cos��nt�− i sin��nt�	 and

“H.c.” represents the Hermitian conjugates of all the previ-
ous terms. The same convention will be used hereafter. The
expression for Eq. �16� is more complicated because it in-
volves nonequilibrium bath correlation functions. After care-
ful examination, we find that it can be expressed compactly
in terms of K�t�, a new bath function f�t�=e2i
ngnD
gn sin��nt�,
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which represents the correlation of the initial donor bath, and
fm�t ,��= f�t�f���−1 and fa�t ,��= f�t�+ f���−2. Thus,
Eq. �16� can be shown to be

I�t� = −
iJ

�
e−K�0�/2�f�t� − 1��T�t�,��0��

−
J2

�2e−K�0��
0

t

d��F�1��t,���T�t�,T�����0��

+ F�2��t,���T†�t�,T�����0��

+ F�3��t,���T�t�,T†�����0��

+ F�4��t,���T†�t�,T†�����0��	 + H . c . , �18�

where F�1��t ,��= fm�t ,��e−K�t−��− fa�t ,��, F�2��t ,��= fm

�−t ,��eK�t−��− fa�−t ,��, F�3��t ,��= fm�t ,−��eK�t−��− fa�t ,−��,
and F�4��t ,��= fm�−t ,−��e−K�t−��− fa�−t ,−��. In the above ex-
pressions, the system-bath coupling is fully specified by two
spectral densities, Js���=
n
��−�n��n

2
gn
2 and Ji���

=
n
��−�n��n
2gnD
gn. These spectral densities can repre-

sent various situations including the cases where there are
common bath modes25 �gnDgnA�0� between the donor and
the acceptor.

It is noteworthy to mention important qualitative fea-
tures related to the characteristics of the spectral density. Let
us assume that Js�����p in the limit of �→0. If p1,

e−K�0�=0 and �H̃s
1�=0 at all temperatures. Then, the only sur-

viving terms are those with e−K�0�+K�t−�� in Eq. �17� and those
with F�2��t ,�� or F�3��t ,�� in Eq. �18�. The resulting dynamics
involves only population terms ��D��D� and �A��A�� in a way
similar to the noninteracting blip approximation,21 but our
equations are time local and include inhomogeneous terms.

On the other hand, for p�2, �H̃s
1� and e−K�0� are nonzero at

all temperatures, and the dynamics always involves coher-
ence terms, �D��A� and �A��D�. However, caution is required,
and it is important to identify the physical origin of the low
frequency modes especially for the Ohmic density. If the low
frequency modes have an anharmonic origin, they may not
make full multiphonon contributions or remain virtually
static during the lifetime of the electronic excitation. This
situation can be accounted for by introducing a lower bound
of order 1 /�sd in the frequency-domain integration of the
spectral density. With this modification, our theory reduces to
the Redfield approach for weak coupling limit even for
Ohmic spectral densities.

For numerical calculations, it is convenient to express

Eq. �14� in the eigenbasis of H̃0,s. Detailed expressions are
provided in the supporting document. Numerical tests have
been made for the following super-Ohmic spectral densities:
Js��� /2=Ji���= �� /3!���3 /�c

2�e−�/�c. In the units where
�c=�=1 and kBT=1, two different cases of �=1 and 3 were

considered for �E= ẼD− ẼA= �1. Calculations of �̃I�t� have
been made both with and without I�t� in Eq. �14�, which can
then be used to determine any physical observable of the
system. Here, we focus only on the population of the excited

donor, PD�t�= �D�e−iH̃0,st/��̃I�t�eiH̃0,st/��D�. In order to assess
the role of quantum coherence, the population PD

r �t� based
on the following rate equation was also calculated:

d

dt
PD

r �t� = − kDA
r �t�PD

r �t� + kAD
r �t��1 − PD

r �t�� , �19�

where kDA
r �t� is the time-dependent FD rate7 from D to A

given by

kDA
r �t� =

2J2

�2 e−K�0� Re�
0

t

d�ei�ẼD−ẼA�t/��eK�t� − 1�� . �20�

The expression for kAD
r �t� is the same except for the replace-

ment ẼD− ẼA→ ẼA− ẼD. The time-dependent equilibrium
constant of the donor, KD�t�=kAD

r �t� / �kDA
r �t�+kAD

r �t��, was
also calculated as a reference.

Figure 1 shows results for �=1. When J=0.5, the quan-
tum coherence causes oscillatory donor population, but its
average over the period and the steady state limit remain
very close to those based on the rate equation, Eq. �19�.
When J=2, the quantum coherence has significant effects on
the steady state donor population. For �E=1, there is more
donor population �less efficient transfer� than the prediction
of the rate equation, Eq. �19�. For �E=−1, the opposite is
true. Thus, quantum coherence �or tunneling� is shown to
counteract the prescription of the detailed balance based on
the FD rate equation �in the site localized basis�.

Figure 2 shows results for �=3. When J=0.5, the
system-bath coupling is large enough to damp the oscillatory
population and to make the time-dependent population
nearly overlap with that based on the rate equation. When
J=2, there are slight transient oscillations at early times, and
the steady state donor populations differ from those of the
rate equation but to less extents than those in Fig. 1. Also
shown are significant contributions of the inhomogeneous
term I�t� on the transient behavior of population dynamics.
This suggests the importance of including nonequilibrium
effects for quantitative description of the ultrafast RET dy-
namics. For the modeling of nonlinear spectroscopy experi-
ments being used to probe such dynamics in real time, fur-
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FIG. 1. �Color online� Time-dependent donor populations for �=1. Units
are such that �=�c=1 and kBT=1. Blue dashed lines �without I�t�� result
from Eq. �14� with the inhomogeneous term I�t�=0, and black solid lines
�full� correspond to the results of Eq. �14� employing the full expressions.
Red dot-dashed lines represent results based on Eq. �19�. Red dotted lines
correspond to the time-dependent equilibrium donor population KD�t� as
defined below Eq. �19�. Different panels show results for different values of
�E=ED−EA and J as indicated.
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ther extension of the theory for more general initial
conditions as was done by Matro and Cina16 is needed,
which is possible at the expense of more complicated I�t� in
our formalism. Future theoretical efforts will be dedicated to
this issue.

In summary, we have developed a theory of coherent
RET including both nonequilibrium and quantum coherence
effects. Numerical tests demonstrate the presence of oscilla-
tory population dynamics even for moderately large system-
bath coupling and interesting effects of quantum coherence
on the steady state donor populations.
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FIG. 2. �Color online� Time-dependent donor populations for �=3. All
other details are the same as in Fig. 1.
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