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We study the coherence quantum beats in two-dimensional (2D) electronic spectroscopy of a coupled dimer
system using a theoretical method based on a time-nonlocal quantum master equation and a recently proposed
scheme for the evaluation of the third-order photon echo polarization [Gelin, M. F.; Egorova, D.; Domcek,
W. J. Chem. Phys.2005, 123, 164112]. The simulations show that the amplitude and peak shape beating in
the 2D spectra is a result of the interplay between the rephasing and non-rephasing contributions to the 2D
signals and can be used to elucidate the coherence dynamics in a multichromophoric system. In addition, the
results suggest that the rephasing and non-rephasing 2D spectra contain complementary information, and a
study of both of them could provide more dynamical information from 2D electronic spectroscopy.

1. Introduction

The advent of two-dimensional (2D) electronic spectroscopy1-3

has provided a direct probe of electronic couplings and excitation
energy-transfer pathways in complex multilevel quantum sys-
tems. The 2D technique correlates the absorption and emission
frequencies of the material system and thereby provides a map
showing electronic couplings between electronic excitations and
spectral diffusion between two transition energies. In particular,
2D cross peaks can elucidate electronic couplings and energy-
transfer dynamics in complex multichromophoric systems,4-6

while analysis of 2D line shape can reveal solvation dynamics
and solute-solvent interactions in the condensed phase.7-9

Applications to molecularJ aggregates,8 photosynthetic light-
harvesting complexes,10-12 and semiconductor quantum wells13

have demonstrated that 2D electronic spectroscopy is a versatile
and powerful probe for dynamical information.

A powerful aspect of 2D electronic spectroscopy is its
capability to exploit the phase and coherence information in
the time evolution of the optical polarization induced by the
optical pulses. Pisliakov et al. first showed that these excitonic
coherence effects will be manifested in quantum beats in 2D
electronic spectra and can be related quantitatively to the
coherence dynamics in the system.5 Recently, quantum beats
in 2D electronic spectra in the Fenna-Matthews-Olson bac-
teriochlorophyll (FMO) complex of green sulfur bacteria were
observed, and the analysis of the beating patterns of diagonal
peaks provided direct evidence of excitonic coherence in the
system, that is, energy transfer in the FMO complex is described
by wave-like motion rather than incoherent hopping.12 However,
while the beats in the cross peaks in 2D spectra are well
characterized theoretically,5,6,14,15the origins of the amplitude
and especially the peak shape beats in the diagonal peaks remain
unclear. Since the cross peaks in 2D spectra are usually lower
in amplitude and overlap with stronger diagonal peaks, an
analysis based on the diagonal peaks is critical. Therefore, it is
important that we understand the nature of the coherence beats
in the diagonal peaks and formulate a prescription that can be

applied to quantitatively extract coherence dynamical informa-
tion from experimental 2D spectral data.

Recently, a method for the efficient calculation of third-order
photon echo polarization was developed and applied to simulate
a three-pulse photon echo peak shift and 2D electronic
spectroscopy of a two-level electronic system coupled to explicit
vibrational degrees of freedom.16,17 This approach was later
extended to treat two-exciton states for describing general third-
order experiments on multichromophoric systems.18 In an earlier
work, we applied this density-matrix-based method to show that
quantitative analysis of the time evolution of the cross peaks in
2D electronic spectroscopy can provide a complete understand-
ing of the population and coherence dynamics for the system
under study.6 Because this approach is based on a time-nonlocal
quantum master equation formalism that explicitly includes a
field-matter interaction and non-Markovian effects,19 all pos-
sible pulse-overlap effects and interferences between contribu-
tions from different Liouville pathways to the signal are included
in the calculation. Therefore, this density-matrix-based method
is ideal for investigating the electronic coherence effects and
origin of quantum beats in the diagonal peaks in 2D electronic
spectroscopy.

In this work, we apply the density matrix based method to
study the 2D electronic spectroscopy of a model dimer system.
Focusing on the time evolution of the amplitude and peak shape
in 2D spectra, we aim to understand the origin of the amplitude
and peak shape beating in 2D spectra and provide insights that
can aid experimental studies. We also demonstrate that the
rephasing and non-rephasing spectra of the model dimer system,
when treated separately, can provide complementary dynamical
information hidden in the total 2D spectra.

2. Theoretical Methods

2.1. 2D Electronic Spectroscopy.2D electronic spectroscopy
is a four-wave mixing experiment in which three laser fields
interact with the sample to create a polarization and the signal
in the phase-matching directionks ) -k1 + k2 + k3 is
heterodyne-detected and Fourier-transformed with respect to the
coherence timeτ (the time delay between the first and second
pulses) and the rephasing timet (the time delay between the
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third pulse and the signal) to obtain the 2D electronic spectrum
at a given population timeT (the time delay between the second
and third pulses).1-3 Theoretically, the 2D electronic spectrum
is described by the photon echo third-order polarizationPPE(t)
in the phase-matching directionks ) -k1 + k2 + k3. We have
demonstrated that by combining a time-nonlocal quantum master
equation formalism19,20 with a recently developed method for
the calculation of third-order photon echo polarization,16 the
2D electronic spectra for generalized multichromophoric systems
can be calculated efficiently.6 This approach is based on a
reduced density matrix description of the system that incorpo-
rates all relevant optical fields into the Hamiltonian and
propagates the driven dynamics of the system exactly, thereby
including pulse-overlap effects and contributions from all
Liouville pathways in the calculation. This enables proper
simulation of 2D spectra at short population times. More
importantly, all relevant dissipative dynamics of the system
appear in the calculation. In the following, we briefly summarize
this theoretical method for the calculation of 2D electronic
spectra.

The time evolution of a quantum system driven by laser fields
can generally be described by a quantum master equation (p )
1)21,22

whereF(t) is the reduced density matrix of the electronic system,
HS is the electronic Hamiltonian,Hint(t) describes the interaction
of the system with the laser fields, andR[‚] represents the
dissipative dynamics of the system. We consider the dissipative
dynamics induced by interactions of the system to a harmonic
bath using the time-nonlocal (TNL) quantum master equation
derived by Meier and Tannor.19 This TNL formalism also treats
the system-field interactionsHint(t) explicitly. In the electric
point dipole approximation,Hint(t) can be written as

whereE(t) is the time-dependent electric field of the laser pulses
and µ̂ is the electronic transition dipole operator defined by

where an (an
†) is the annihilation (creation) operator that

destroys (creates) thenth excitation, andµbn is the transition
dipole moment of thenth excitation. In the rotating-wave
approximation (RWA), the three laser pulses in a photon echo
experiment can be described by the time-dependent electric field

where τa represents the pulse central time,Ea(t - τa) is the
laser pulse profile,ωj a is the reduced carrier frequency of the
field ωj a ) ωa - ω0, andka is the momentum. In this work, we
adopt a Gaussian pulse profileEa(t) ∼ exp(-4 ln 2(t - τa)2/τp

2)
and assume that all three pulses have aτp ) 40 fs duration and
a carrier frequencyωa ) ω0. Gelin et al. showed that within
the RWA, PPE(t) can be calculated by considering the time
evolution of three auxiliary density matricesF1(t) - F3(t) defined
by the following dynamical equations16,17

where

Equation 6 is a system of three independent linear differential
equations that can be efficiently solved by propagating the
auxiliary density matrices numerically. The third-order photon
echo polarizationPPE(t) can then be calculated using

where the bracket〈...〉 means taking the expectation value of
the operator and averaging over static disorder.PPE(t) implicitly
depends on the coherence timeτ ) τ2 - τ1 and the population
time T ) τ3 - τ2 becauseVa(t) depends on the pulse central
time τa. Note that to properly describe the third-order polariza-
tion, it is necessary to include contributions from the two-
excitation states in eq 6. To this end, we expand all system
operators in the ground and one-excitation subspace to the two-
excitation manifold. This allows treatment of excitonic dynamics
in the one- and two-excitation subspace in a consistent manner.18

With PPE(t), the total 2D Fourier-transformed spectrum in
the limit of ideal resolution is then given by double Fourier
transform of the photon echo polarization field with respect to
τ and t

whereωτ is the coherence frequency andωt is the rephasing
frequency. Note that while the 2D signalS(ωτ,T,ωt) is a complex
function, we will consider exclusively the real value spectrum
in this work.

We further divide the contributions from negative and positive
τ pulse orderings and define the rephasing spectrum

and the non-rephasing spectrum

The rephasing spectrum hasτ g 0 pulse ordering and contains
contributions from Liouville pathways that result in rephasing
of induced dipoles in an inhomogeneous distribution of transition
energies (photon echo signals). In contrast, the non-rephasing
spectrum hasτ e 0 pulse ordering and contains contributions
from free induction decay signals. The interplay between the
SR and SNR contributions determines the 2D peak shape and
can be used to characterize spectral diffusion in the system.9,23,24

Previous studies of 2D electronic spectroscopy almost exclu-
sively focused on the total spectrum because the total spectrum
exhibits absorptive peak shape that avoids artificial phase twist
and can be directly related to the linear absorption spectrum of
the system. However, in this work, we will study all three
variants of the 2D spectrum and demonstrate that additional
spectral features related to dynamical information about the
system can be obtained by study the rephasing and non-
rephasing spectra separately.

F̆(t) ) - i[HS + Hint(t),F(t)] - R[F(t)] (1)

Hint(t) ) -µ̂E(t) (2)

µ̂ ) ∑
n

µbn(an + an
†) (3)

) X + X† (4)

E(t) ) ∑
a)1

3

[Ea(t - τa) exp{-i(ωj at - ka‚r )} + c.c.] (5)

∂tF1(t) ) -i[Hh S - V1(t) - V2
†(t) - V3

†(t),F1(t)] - R[F1(t)]

∂tF2(t) ) -i[Hh S - V1(t) - V2
†(t),F2(t)] - R[F2(t)]

∂tF3(t) ) -i[Hh S - V1(t) - V3
†(t),F3(t)] - R[F3(t)] (6)

Va(t) ) Ea(t - τa) exp(iωj at)X (7)

PPE(t) ) 〈X(F1(t) - F2(t) - F3(t))〉 (8)

ST(ωτ,T,ωt) ∼ ∫-∞

∞
dτ∫-∞

∞
dt e-iωττeiωtt × iPPE(τ,T,t) (9)

SR(ωτ,T,ωt) ∼ ∫0

∞
dτ∫-∞

∞
dt e-iωττeiωtt × iPPE(τ,T,t) (10)

SNR(ωτ,T,ωt) ∼ ∫-∞

0
dτ∫-∞

∞
dt e-iωττeiωtt × iPPE(τ,T,t) (11)
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2.2. Model Dimer System.To study the coherence quantum
beats in 2D electronic spectroscopy, we consider a system with
two electronically coupled chromophores described by the
Frenkel-exciton Hamiltonian

where |0〉 denotes the electronic ground state,an (an
†) is the

annihilation (creation) operator that destroys (creates) an excita-
tion at siten ) 1,2,εg is the energy of the ground state,ε1 and
ε2 are the site energies of an excitation localized at chro-
mophores 1 and 2, respectively, andJ is the electronic coupling
between the two excitations.

The total system-plus-bath Hamiltonian is given by

whereHint(t) is the system-field interactions defined in eqs 2
and 3,HB is the Hamiltonian of a harmonic bath of independent
harmonic oscillators, andHSB describes the system-bath
interactions. For the system-bath interactions, we assume that
the electronic system is coupled linearly and diagonally to the
bath through a number of collective bath coordinates

whereqn denotes a collective bath coordinate that is local to
the nth chromophore in the system. Such excitation-bath
couplings induce diagonal transition-energy fluctuations in the
site representation. For simplicity, we assume that the bath
coupled to each chromophore is described by the same Ohmic
spectral function with an exponential cutoff

whereγ0 is the coupling strength andωc is the cutoff frequency
of the bath. We also assume that baths coupled to chromophores
1 and 2 are independent, that is, the cross-correlation function
is 〈q1(t)q2(0)〉 ) 0.

In this work, we study a system with electronic couplingJ
) 150 cm-1 and with site energies of each chromophore relative
to the renormalization frequencyω0 given byE1 ) -50 cm-1

and E2 ) 50 cm-1. In the exciton representation, the two
excitonic statese1 ande2 have relative energies of about-158
cm-1 and 158 cm-1, respectively. Effectively, we choose to set
the laser carrier frequencyω0 to be centered between the two
electronic transitions and apply the RWA so that all transition
frequencies are reduced byω0. The bath parameters for the
model system areγ0 ) 1 andωc ) 150 cm-1, and all of the
simulations are carried out at 77 K. The bath reorganization
energy

is ∼48 cm-1, which is significantly smaller than the electronic
coupling J ) 150 cm-1. This corresponds to weak system-
bath coupling so that the TNL quantum master equation based
on the weak coupling approximation is applicable. Diagonal
energetic static disorder characterized by a Gaussian distribution
with σ ) 50 cm-1 for both chromophores is included in the
system. Furthermore, the transition dipole moments of the two
localized transitions are assumed to have the same amplitudes

and be orthogonal to each other. To account for the orientational
factor, we consider an all-parallel setup for the three laser pulse
polarizations and an isotropic distribution of fixed molecules.

To simulate the 2D electronic spectra for the model dimer
system, we apply the TNL quantum master equation to
propagate eqs 6 and 7 and calculate the photon echo polarization
PPE(τ,T,t) according to eq 8. For the 2D electronic spectrum at
a given population timeT, we computePPE(τ,T,t) on a two-
dimensional grid of coherence time (τ) and rephasing time (t)
points and then perform numerical fast Fourier transform on
the 2D grid according to eqs 9-11 to obtain the total, rephasing,
and non-rephasing 2D spectra, respectively. Monte Carlo
sampling with 1000 random realizations ofHS and molecular
orientations is used to average over the distribution of static
disorder and transition dipole orientations.

3. Results and Discussion

In Figure 1, we show theoretical 2D spectra for the model
dimer system at population timesT ) 0, 100, 150, and 200 fs.
In addition to the real value total 2D spectra (eq 8), the rephasing
(eq 9) and non-rephasing (eq 10) spectra are also shown. These
2D spectra exhibit two diagonal peaks (DP1 and DP2) corre-
sponding to the two exciton states, respectively, and two cross
peaks (CP12 and CP21) due to electronic coupling between
them. AtT ) 0, the spectra already exhibit cross peaks between
the two transitions, which represent contributions from excitonic
coherence generated purely by the optical excitations. The
rephasing and non-rephasing spectra show phase-twisted peak
shapes, in which the rephasing peaks are elongated along the
diagonal direction and the non-rephasing peaks are elongated
along the antidiagonal direction.23,25In addition, the amplitudes
of the rephasing peaks are significantly higher than those of
the non-rephasing peaks. This contrast in rephasing and non-
rephasing amplitudes is a manifestation of the inhomogeneity
in the system. Because the inhomogeneous broadening in the
rephasing spectra is partially eliminated by the photon echo
effect, the rephasing pulse sequence gives rise to stronger signals
than the free induction decay signals given by the non-rephasing
pulse sequence.

Even for this simple dimer system, the 2D spectra in Figure
1 already display a wealth of information about the electronic
population relaxation dynamics. For example, the two diagonal
peaks in the total spectrum atT ) 0 fs (correlation spectrum)
exhibit significantly different peak shapes and amplitudes
because of the population dynamics; the rounder and smaller
DP2 diagonal peak shows additional dephasing of the coherence
involving the upper exciton level (e2) due to thee2 f e1 energy
transfer in the coherence time (τ) and rephasing time (t) periods
(lifetime broadening). These dynamical 2D line shape effects
are captured in our theoretical simulations because the density-
matrix-based method for the evaluation of third-order photon
echo polarization employed here describes the non-Markovian
electronic relaxation dynamics of the dimer system at all time
periods. Moreover, the population time evolution of the 2D
spectra clearly shows the decay of the DP2 diagonal peak and
the correlated emergence of a positive contribution to the CP21
cross peak on the time scale of∼200 fs, which is indicative of
the time scale of thee2 f e1 energy transfer. The manifestation
of population relaxation dynamics in the 2D spectroscopy has
been extensively studied previously.1,2,4,6,8,11,25Therefore, in the
following, we will focus on the beating in the 2D spectra and
the coherence dynamics.

The total 2D spectrum in Figure 1 clearly shows beats in 2D
diagonal and cross peaks as a function ofT. In particular, the

HS ) εg|0〉 〈0| + ε1a1
†a1 + ε2a2

†a2 (12)

+ J(a1
†a2 + a2

†a1) (13)

HT ) HS + Hint(t) + HB + HSB (14)

HSB ) -∑
n)1

2

an
†an‚qn (15)

J(ω) ) γ0ω exp(-ω/ωc)

λ ) 1
π ∫0

∞
J(ω)dω
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DP1 diagonal peak shows correlated beats in its amplitude and
peak shape; when the amplitude is stronger (T ) 100 and 200

fs), the peak is rounder, and when the amplitude is weaker (T
) 0 and 150 fs), the peak is more elongated. This is precisely

Figure 1. Theoretical real value 2D spectra for the model dimer system at population timesT ) 0, 100, 150, and 200 fs. At eachT, the real value
total spectrum (left), the real value rephasing spectrum (center), and the real value non-rephasing spectrum (right) are shown. Thex andy axes are,
respectively, the coherence frequency and the rephasing frequency relative to the carrier frequency of the laserω0. Two diagonal peaks (DP1 and
DP2) and two cross peaks (CP12 and CP21) can be clearly seen at allT. The maxima of the lower and upper diagonal peaks on the total spectrum
are at approximately-130 and 200 cm-1, respectively. The absorption maxima are blue shifted from the relative transition energies of the two
exciton states (at-158 and 158 cm-1, respectively) because of the system-bath interactions (i.e., Stokes shift). The negative features are in blue,
and positive features are in yellow and red. The upper cross peaks, CP12, is mostly negative because it is dominated by the excited-state absorption
contributions that are negative in the real value 2D spectrum. Note that all of the total and rephasing spectra are shown on the same scale, while
the non-rephasing spectra are scaled by 2.
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what has been observed in the experimental 2D spectra in the
FMO complex.12 A closer inspection reveals that this peak shape
beating is due to coherence beats in the amplitude of the non-
rephasing contribution to the total 2D spectrum. Because the

non-rephasing peak shape is elongated along the antidiagonal
direction, a stronger non-rephasing contribution results in a
rounder peak in the total 2D spectrum. Therefore, the peak shape
beating in the 2D spectra is a result of the interplay between

Figure 2. Time evolution of the diagonal cut through the diagonal peaks (left panel) and the antidiagonal cut through the off-diagonal peaks (right
panel) of the 2D spectra. Clearly, the beating in the diagonal peaks is dominated by the non-rephasing contributions to the 2D signals. In contrast,
the beating in the cross peaks is dominated by the rephasing contributions. Note that the weak beating in the antidiagonal cut of the non-rephasing
spectrum is due to interference from the diagonal peaks.
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the rephasing and non-rephasing contributions to the 2D signals.
In addition, Figure 1 shows that while the amplitude of the
rephasing contribution to the DP1 diagonal peak remains
constant inT, the non-rephasing contribution exhibits quantum
beats. In contrast, the cross peaks (e.g., the CP12 cross peak)
show pronounced beats in the rephasing spectra but remain
constant in the non-rephasing spectra.

To follow the time evolution of the 2D spectra more closely,
we take a diagonal cut (through the diagonal peaks) and an
antidiagonal cut (through the two cross peaks) for each 2D
spectrum and plot the cuts as a function ofT (Figure 2). The
time evolution of these cuts shown in Figure 2 provides a clear
visualization of the population and coherence dynamics in the
system. In addition, the beats in the diagonal peaks are clearly
dominated by the non-rephasing contributions to the 2D signals,
and, in contrast, the beats in the cross peaks are dominated by
the rephasing contributions. This contrast can be explained by
considering the coherence Liouville pathways that give rise to
the 2D signals in the impulsive limit.14,27,28In Figure 3, we show
the double-sided Feynman diagrams representing these coher-
ence pathways, in which the system is in a coherence state|â〉-
〈R| (R * â) during the population timeT. Because the time
evolution of the coherence state has an oscillating phase factor
with the frequency equal to the energy difference between the
pair of exciton states (∆ERâ ) Eâ - ER), these contributions
cause excitonic quantum beats in the 2D spectra. Importantly,
when divided into the rephasing and the non-rephasing contribu-
tions, coherence pathways contribute to the cross peaks in
rephasing spectra; however, in non-rephasing spectra, the
coherence pathways contribute to the diagonal peaks. Note that
our simulation is not based on the response function formalism
and is thus not limited to the contributions from these Liouville
pathways alone. Nevertheless, the Feynman diagrams in Figure
3 provide a convenient and intuitive explanation of the amplitude
and peak shape beating in 2D spectroscopy.

Since the coherence pathways that give rise to excitonic
quantum beats in 2D spectra contribute differently in the
rephasing and non-rephasing pulse sequences, we suggest that
by looking at the cross peaks in the 2D rephasing spectrum
and the diagonal peaks in the 2D non-rephasing spectrum, one
can further deconvolute the contributions due to excitonic
coherence from those due to energy-transfer dynamics and
extract the coherence dynamics more clearly. In Figure 4a, we
plot the amplitude of the DP1 diagonal peak in the non-

rephasing spectra (solid line) and the CP12 cross peaks in the
rephasing spectra (dashed line). Quantum beats at these two
positions are correlated, as indicated by the Feynman diagrams
in Figure 3. The period of∼105 fs corresponds to an energy
gap of∼316 cm-1 between the two exciton states. In addition,
the damping of the beats indicates that the dephasing time of
the |e1〉〈e2| coherence is∼400 fs. Note that for a multilevel
quantum system, such coherence beats would have frequencies
corresponding to energy gaps between exciton levels; therefore,
spectral analysis of the beating frequencies can lead to relative
eigen energies of the excitons. Furthermore, the quantum beats
also provide information on the dephasing and coherence
transfer dynamics in the system.6,12 While the rephasing and
non-rephasing spectra contain unwanted distortions of the 2D
peak shape, investigating them separately provide a means to
selectively study contributions from different Liouville pathways
by different pulse orderings.29

Evidently, the separation of rephasing and non-rephasing
spectra can also be useful for the extraction of population
dynamics. In Figure 4b, we plot the peak amplitude evolution
of the CP21 cross peaks in the non-rephasing spectra (solid line)
and that of the DP2 diagonal peak in the rephasing spectra
(dashed line). Figure 4b clearly shows thee2 f e1 energy

Figure 3. The impulsive limit double-sided Feynman diagrams
representing contributions to the third-order polarization from the
coherence pathways. In these diagrams, g denotes the ground state,
the Greek letters denote one-exciton states, and f represents a two-
exciton state. For these pathways, the system is prepared in a coherence
state|R〉〈â| during the population timeT; therefore, an oscillating phase
factor with a frequency of∆ERâ is associated with all of these terms.
Note that because theτ > 0 (rephasing) andτ < 0 (non-rephasing)
contributions have different orderings of the first two pulses, the
rephasing contributions give rise to cross peaks on a 2D spectrum, while
the non-rephasing contributions give rise to diagonal peaks.

Figure 4. Amplitude of 2D peaks as a function of population time.
(a) A comparison between the amplitude beating of the DP1 diagonal
peak in the non-rephasing spectra (solid line) and that of the CP12
cross peaks in the rephasing spectra (dashed line). The beating period
of ∼105 fs corresponds to the energy gap of∼316 cm-1 between the
two exciton states. In addition, the dephasing time of∼400 fs can be
extracted from the damping of the beats. For clear comparison, the
two curves are shifted so that their long time value approaches zero.
(b) We plot the peak amplitude evolution of the CP21 cross peaks in
the non-rephasing spectra (solid line) and the DP2 diagonal peak in
the rephasing spectra (dashed line). Thee2 f e1 energy transfer on the
time scale of∼200 fs can be clearly seen. For clear comparison, the
two curves are shifted so that their minima values approach zero, and
the curve for the CP21 non-rephasing peak is scaled so that its value
approaches 1 at long population time. Note that the weak beats in both
the CP21 and DP2 curves are due to interference from the diagonal
peaks and off-diagonal peaks, respectively.

Coherence Quantum Beats in 2D Electronic Spectroscopy J. Phys. Chem. A, Vol. 112, No. 18, 20084259



transfer on the time scale of∼200 fs. The population dynamics
is easily seen in the emergence of the positive contribution to
the CP21 cross peaks in the non-rephasing spectrum and the
decay of the DP2 diagonal peak in the rephasing spectrum
(Figure 4b). Note that the sum of the values of the two curves
in Figure 4b is approximately constant at all population times,
indicating that the two curves directly correspond to the decay
of the e2 population and the increase of thee1 population and
all contributions not due toe2 f e1 energy transfer are
eliminated by examining the rephasing and non-rephasing
contributions separately. Because the oscillatory coherence
pathways do not contribute to the cross peaks in the non-
rephasing spectrum and the diagonal peaks in the rephasing
spectrum, separating the rephasing and non-rephasing contribu-
tions in 2D spectroscopy can avoid oscillatory features that could
obscure the energy-transfer dynamics.

4. Conclusions

In this paper, a time-nonlocal quantum master equation
coupled with a recently proposed scheme16 for the evaluation
of the third-order polarization in the phase-matching direction
ks ) -k1 + k2 + k3 was used to simulate the 2D electronic
spectrum of a coupled dimer system. We demonstrated that the
interplay of electronic coherence pathways in the rephasing and
non-rephasing contributions to the total 2D spectrum results in
the amplitude and peak shape beats in the diagonal peaks, and
these quantum beats can be quantitatively related to the
coherence dynamics in the system. The results provide a simple
and intuitive explanation for the amplitude and peak shape beats
recently observed in the 2D experiment on the photosynthetic
FMO complex.12 Moreover, we showed that the separation of
rephasing spectra and non-rephasing spectra provides a means
to further deconvolute contributions from different coherence
pathways, making it valuable to investigate the two contributions
separately. Although our model simulation is based on a simple
dimer model, the results should be applicable to more general
multilevel systems.

Previously, Khalil et al. have demonstrated for 2D infrared
(IR) spectroscopy that amplitude beats due to coherence between
states appear in diagonal peaks in non-rephasing spectra and in
cross peaks in rephasing spectra.26 Although they studied
vibrational states, the same observations and conclusions are
also applicable to electronic 2D spectroscopy considered in the
present work. However, the effects of inhomogeneous broaden-
ing (peak shape beating) and of ultrafast relaxation dynamics
were not discussed by Khalil et al. in ref 26. Our simulations
included inhomogeneous effects, pulse-overlap effects, and full
electronic relaxation dynamics in the dimer system and conse-
quently demonstrated the peak shape beats and that the quantum
beats in 2D electronic spectrum can be observed even when
fast relaxation dynamics is present (Figure 2). More importantly,
we have explicitly shown that coherence dynamics and relax-
ation dynamics can be studied independently by examining the
rephasing and non-rephasing spectra separately. Therefore, the
present theoretical study not only complements previous ex-
perimental observations in 2D IR26 and electronic12 spectroscopy
but also presents new means to obtain dynamical information
from experimental data.

The ellipticity of 2D diagonal peaks30 and the relative
amplitudes of the rephasing and non-rephasing contributions9

have been suggested as measures of the frequency-frequency
correlation function of the electronic system. Our results indicate
that excitonic coherence effects can alter the peak shape of 2D
peaks; therefore, the adaptation of these measures of correlation
functions has to be treated carefully. In principle, the beating
contribution due to excitonic coherence can be eliminated by
fitting to a damped oscillatory function, and the remaining
component would represent contributions from system-bath
interactions.
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