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In this paper, we examine the validity of the Markovian approximation and the slippage scheme used to
incorporate short time transient memory effects in the Markovian master equations (Redfield equations). We
argue that for a bath described by a spectral functi¢m), that is dense and smoothly spread out over the
rangewg, a time scale of, ~ l/wq exists; for times ot > 1, the Markovian approximation is applicable.

In addition, if J(w) decays to zero reasonably fast in both the—~ 0 andw — oo limits, then the bath
relaxation time,r,, is determined by the width of the spectral function and is weakly dependent on the
temperature of the bath. On the basis of this criterion,p& scheme to incorporate transient memory effects

in the Markovian master equation is suggested. Instead of using slipped initial conditions, we propose a
concatenation scheme that uses the second-order perturbation theory for short time dynamics and the Markovian
master equation at long times. Application of this concatenation scheme to the spin-boson model shows that
it reproduces the reduced dynamics obtained from the non-Markovian master equation for all parameters
studied, while the simple slippage scheme breaks down at high temperatures.

1. Introduction shown that the problem of nonpositivity is due to the transient
Dissipative dvnamics of a quantum svstemn embedded in a MEMOTY effects in a short time scale and can be repaired by a
P y q Y modification of the initial conditions (slippag&)Gaspard and

complex environment has gained much interest in recent years. . X .
o . . . Nagaoka adopted the slippage idea and developed a slippage
Because of its important role in physics and chemistry, numerous . : A
superoperator method that can determine the slippage of initial

works ha\ée been devqted to theoretical quels fpr open qu"’mumconditions in a consistent way, but the range of applicability of
systems:? However, in contrast to classical dissipative pro-

. . ; . . their slippage superoperator has not been fully te$tBespite
cesses, that can be satlsf_actorlly described by classical Langewqhese s?r?ngent c?on di?ions and obvious inconysistencieg Mark-
or Fokker-Planck equation3,a general theory for quantum - . h b lied Ul ’ broad
dissipation is still considered an unsolved issue ovian master equations have been applied successfully to a broa

Despite the difficulty of formulating a enéral theor range of physical and chemical problems. Although non-
P! imeutty ormuating gen Y2 Markovian approaches have grown in interest recently, Mark-
adequate results can be obtained in many limiting cases. The

X o . = . “ovian approaches are favored due to their simplicity and
celebrated reduced dynamics description derived from projection omputational efficiency12 Therefore, a scheme that can
operator or cumulant expansion techniques has generateognsure the positivity of the reduced system dynamics in the
promising result:; over the past few decades. By partitioning framework of quantum Markovian equations is desirable.
the total system into a “system” part and a “bath” part, one can In this paper, we examine two problems concerning the
reformulate the exact quantum Liouville equation and perform '

. . o . applicability of the Markovian approximation and propose a
a mathematically rigorous expansion in the weak-coupling limit. : . .

; . i . simple scheme for applying Markovian master equations that
As a result, time-convolution or time-convolutionless quantum

master equations describing the dynamics of the reduced systen|1S capable of reproducing results from the non-Markovian master

: : . : 4 equations over a wide range of parameters. In section 2, we
can be derived by following either a chronological ordering . : A .
- 4 . 2 shall briefly review the derivation of the Markovian master
prescription (COP) or partial ordering prescription (POP),

respectively®~® These equations are usually non-Markovian and equation. In section 3, the physical requirements for the
>SP : q y - . Markovian approximation will be examined in detail and the
difficult to treat analytically. Therefore, a separation of time

scales is usually postulated and the memory effects in thefactors defining the time scale for the non-Markovian dynamics

dynamics are then neglected for times greater than the bathWiII be clarified. In section 4, we wil then formulate a
y . - >0 N Y : concatenation scheme that avoids using slippage initial condi-
relaxation time,r,. This approximation allows us to derive

h ; i . tions and absorbs the transient memory effects in a natural
Markovian master equations (Redfield equations) for the reduced e ,

. manner. In addition, we show that Gaspard and Nagaoka’'s
dynamics of the quantum system.

However, the applicability of the Markovian approximation slippage superoperator method is not successful in preserving

A . . ) o positivity in all cases. Finally, in section 5, we will examine
has long been criticized in the Ilterat_LFré.I_n addition to the the concatenation scheme by applying it to study the spin-boson
assumption for the short bath relaxation time, it is well-known problem
that the Markovian master equations do not always preserve '
the positivity of the red_uced d_enS|ty matrix of the system, thus 2. The Quantum Master Equation
resulting in physically inconsistent results. Suarez et al. have
Consider a systent;, governed by a system Hamiltonian,

T Part of the special issue “Irwin Oppenheim Festschrift”. Hs, and coupled to a bati, of harmonic oscillators through
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an interaction linear in the oscillator coordinatés=¢ 1):3.13 1 is not yet a Markovian master equation because the integrals
still refer to the initial time.
H=Hg+ Hg + Hgg If the bath correlation functiorE,(r) andTi(z) decay to zero
_ ¥ + within a finite bath relaxation timeg,, then, for long times of
=Hg+ zwaaaau + lszga(aa +a,) t > 13, we can extend the integrations oveto infinity and
o 08

obtain the Markovian master equation:

wherea! anda, are the creation and annihilation operators of .
thea’th bath modegw, is the mode frequencygis an operator  o(t) = — i[Hgo(t)] + ilzj(; I(@)[S[S(—7),0(t)].] dr —
referring to the system degree of freedom only, grds the

coupling constant. The dynamics of the total system can be 22 [T @IS[S(—2).0)]] d7 (2)
described by a time-dependent density maw(¥), and follows
the Liouville equation This step is the Markovian approximation. The resulting
. . Markovian master equation (Redfield equation) has been studied
p(t) = — i[H,p(0)] in innumerable papers in the literature. However, to the best of

our knowledge, concrete criteria for the applicability of the
Markovian approximation are still unclear. In the next two
sections, we will study the applicability of the Markovian
Fo = ptTrgp apprc_:ximation and provid_e a simple scheme that absorbs the
transient memory effects in a straightforward manner.

To obtain the reduced description for the system, we define the
following projection operator”’.

here
W 3. The Markovian Approximation
eq_ exp(fHsg) It is convenient to define a spectral strength function for the
Po Trg{ exp—pHg)} bath,J(®) = ¥ g20(ws — w), and rewrite memory kernel-

(r) andT’i(7) as integrals:
and Tg means “trace over the bath degrees of freedom”. The

choice of projection operator corresponds to factorized initial r() = ")) cos cothBw/2) dw
conditions for the total system D fo (@) @) Bol2)

p(0) = 0(0) ® pt* (@) = [, Jw)sin@r) do (3)
where g(0) is an arbitrary state for the system. The reduced To avoid infrared and ultraviolet divergences, we assume that
density matrix for the system is then defined as J(w) has the formws, with s > 1 at smallw, and decays to

zero faster tham =1 in the limit of w — . In addition, we
o(t) = Trgp(t) assume thad(w) does not depend on the temperature. These

) o ) conditions are reasonable assumptions for many physical
Following the standard projection operator technique and problems!® Also, note that if the low frequency behavior of
neglecting all terms of higher order thad* we obtain the  j(4) is subohmic (of the fornws with 0 < s < 1 at smallw),
differential-integral equation for the reduced density matrix for the 'memory kernel',(z) would never decay to zero within a

the system finite time scale. In this case, the low frequency modes of the
) ot bath dominate the dissipative processes and Markovian dynam-
o(t) = — i[Hgo(t)] +i4 ﬁ,ri(T)[S,[%(—T),G(t)h] dr — ics is inapplicable.

5 it At long times, the integrand if(z) is rapidly oscillating
A fOFr(r)[S[S)(—r),o(t)]] dz (1) due to the singz) term. Therefore, if the spectral functidfw)

_ ) can be treated as a continuous and fairly smooth function, then
where [...}; denotes the anticommutatd®y(r) = eHsSeHs a time scalegp, exists due to the cancellation of the rapidly
and memory kerneld’(z) and I'i(r) are the real part and  oscillating integrand at large This means that the number of
imaginary part of the bath correlation function, respectively. In path degrees of freedom must be large, the distribution of bath
this linear coupling model, these memory kernels can be frequencies has to be dense and spread out, and the coupling

explicitly written as strength must vary uniformly with frequency. Féfw) with
) these propertied;i(r) decays to zero within &, defined by the
I'(x)= zga cos,) cothBw,,/2) width of the spectral functiod(w). If the width of the spectral
« function iswyq, then at timeg > 1/wg4 the oscillating integrand
I(7) = 2 sin(w. T cancels out and the integral tends to zero, thatysy 1l/wg.
@ Zga @.7) The real part seems more difficult because of the temperature

dependence, but we found the temperature has only a minor

Equation 1 is the quantum master equation that describes theeffect on the bath relaxation tims,, provided our assumptions
dynamics of the reduced quantum system. To derive this on the properties of the bath are correct. Notice that gaih(
equation, we have assumed that the systbath coupling is 2) is a smooth function that peaksat~ 0 and behaves like
small, so that we can neglect terms of higher order #tfeamd 2/fw in a range fromw = 0 to w = 2/3. At low temperatures,
replace the evolution kernel in the integrals by the zeroth-order this range is small and has little effect on the shape of the
one. Note that in eq 1 we have adopted the POP approximationintegrand because of the® factor in the spectral function. At
and derive the time-convolutionless form of the master equation high temperatures, this range can be broad, and the hyperbolic
by replacingo(t — 7) with eHs’g(t)e Hs'; in the weak-coupling cotangent function can be replaced witl#@/ Therefore, the
limit, the COP and POP approximations are equivalent. Equation bath relaxation time at high temperatures is determined by the
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Figure 2. Violation of the positivity condition in the slippage
superoperator method. We show the determinant of the slipped initial
conditions for a spin-boson model with an Ohmic-like bath as a function
of y(0), wherey(0) defines different nonslipped initial density matrices,

Figure 1. Normalized real part of the bath correlation functiofs [
(7)/T'«(0)] for baths with different forms of spectral functions at inverse
temperature$ = 0.01 (thin dashed linef = 1 (dashed-dotted line),
B = 5 (dashed line), an = 100 (solid line). The point wherE(r) > ]
decays to zero is dependent on the form of the spectral function but #<0) = [I + 4/ 1—y(0)’ox + y(0)oy]. The results are calculated using
only weakly dependent on the temperature. In addition, in general, €ds 43-47 in ref 10 and an Ohmic-like spectral functiod(w) =
higher temperatures do not correspond to shorter bath relaxation times @€ “*“=. The parameters used afe = 0.1,2 = 0.1, oc = 1, and _
The cutoff frequencies are set to 1, so the units of time/are 1fv;. temperaturd = 0. All notations used here are the same as those defined
in ref 10. The negative values of the determinant-dr.55 < y(0) <

width of the functionJ(w)/fw. Since we assume the spectral 0.55 indicate violations of the positivity condition.

function decays to zero faster thamlthe extra b frequency
dependence has little effect on the width of the function. We
argue thatr, is only weakly dependent on the temperature of
the bath and is largely determined by the properties of the
spectral function.

Figure 1 shows the normalized memory keriglr)/T'(0)

slipped initial conditions. Using the slipped initial conditions
together with the Markovian master equation correctly produces
the long time dynamics of the system and solves the nonposi-
tivity problem. However, the amount of the slippage depends
on the particular initial conditions and cannot be predicted

for several forms of spectral functions at different temperatures. duantitatively. This makes the slippage scheme difficult to
The timers, at whichT(z) decays to zero depends strongly on Implement.
the form of the spectral function but only weakly on the  As we pointed out above, Gaspard and Nagaoka suggested a
temperature. For the Gaussian bath case, the funE{eyT - slippage superoperator that can generate slipped initial conditions
(0) is almost temperature independent. Note that the widths of in a consistent way? On the basis of the assumption that the
the spectral functions used in Figure 1 are set to 1; as a result,dynamics of the Markovian master equation with slipped initial
all memory kernels shown decay within a time scale of order conditions can be approximately equal to that of the direct
~1. second-order perturbation theory for intermediate timetsof

To summarize, if the spectral functialiw) is fairly dense h, they integrated the Markovian master equation up to second
and smooth and decays to zero reasonably fast in both the order inA and compared the outcome to the result from second-
0 andw — o limits, then the time scale, ~ 1/wq exists. For order perturbation theory to obtain the slippage superoperator.
times oft > 1, the memory kernels tend to zero and the Their formal result (eq 25 in ref 10) is rather complicated and
Markovian approximation is applicable. In addition, for the difficult to apply to real systems; therefore, they suggested using
present model, the bath relaxation tinag,is solely determined  a short time expansion to compute the simplified slippage
by the properties of the spectral function and is only weakly superoperator. They also demonstrated that the simplified

dependent on the temperature of the bath. slippage superoperator indeed solved the nonpositivity problem
o for a spin-boson system with a Debye-like spectral function and
4. Positivity gave excellent results. However, the applicability of their method

It is well-known that the Markovian master equations derived for more general systems has not been tested. In fact, we find
from the projection operator or cumulant expansion techniques that their slippage superoperator does not always give results
destroy the general positivity of the reduced dynamics. This that satisfy the positivity condition. For example, if we replace
has been a major problem for the application of the Markovian the Debye-like spectral function of the spin-boson system
master equations. Suarez, Silbey, and Oppenheim have arguegtudied in ref 10 with a Ohmic-like spectral functial{w) =
that the Markovian master equation is in fact correct and the @€ ", the slippage superoperator gives nonpositive initial
source of the inconsistency is due to transient memory effects conditions in a broad range of parameters. Figure 2 shows the
in a short time scale. In this section, we will present a determinant of the slipped initial conditions calculated using
prescription that quantitatively incorporates the short time egs 43-47 in ref 10 and the spectral functidfw) = we™ /..
memory effects in the Markovian evolution. The negative determinant values shown in Figure 2 clearly

The slippage scheme proposed by Suarez, Silbey, andindicate that the slippage superoperator breaks down for the
Oppenheim (SSO slippage scheme) aligns the trajectories giverspin-boson model with an Ohmic-like bath. Therefore, we
by the Markovian evolution and second-order perturbation conclude that the slippage superoperator method in its simplified
theory (known to be correct at short times) and then extrapolatesform (eq 26 in ref 10) does not always give physically
the Markovian evolution back to zero time to find a set of admissible slipped initial conditions. The applicability of the
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slippage superoperator in its formal form, which does not require independent harmonic oscillators described by the following
the short time expansion, is still untested. spectral function:

We now turn to an extension of the SSO slippage scheme in
order to increase its range of applicability. A natural and simple Jw) = n(w3/w§)e_“’/‘”° )
modification of the SSO slippage scheme is to concatenate the

second-order perturbation theory with the Markovian master wherey, is a dimensionless friction constant of ordérandw,
equation. The idea is to use second-order perturbation theoryjs an appropriate cutoff frequency for the bath (for example,
to propagate the reduced dynamics at short times and switch tothe Debye frequency of the crystal). Hereafter, we will @gt
using the Markovian master equation at long times. We define = 1 effectively usingw. as the unit for energy andd{ as the

a transient timer;, at which the Markovian master equations ynit for time. It is convenient to adopt the Bloch representation

are applied with the initial conditions given by the second-order and describe the density matrix for the two-level system using
perturbation theory at time;. To this end,r; must be in the a Bloch vector:

regime where both the second-order perturbation theory and the
Markovian master equation are valid, that is, where the memory
kernels already decay to zero and the second-order perturbation
theory is still correct. As we have mentioned in the previous
section, the Markovian master equation is valid after times of  Using eq 1, we can easily obtain the non-Markovian master
t > 7 ~ llwg. In addition, for the second-order perturbation equations for the spin-boson model in the Bloch representation:
theory to be correct, we need the temperature weighted

oft) = %n + X0, + y(O)-0, + 2(t)-0)

parameted(wo) cothfBwo/2)t: < 1, wherewy is the averaged X(t) = Ay(t)
frequency for modes that contribute strongly in the spectral oy _
function J(w). Therefore, we obtain the range of for the y() = ~[A + 401X — 49(t) ¥() (8)
concatenation scheme to be valid: 2(t) = —4g(t) z(t) + 4h(t)
1 7 1 @) where we have defined time-dependent functions

<
Wy J(wg) cothBw/2)

t
f(t) = [ T',(z) sin(At) dr
For simplicity, we choose; as the midpoint between the ‘fo '

upper bound and lower bound in the log scale: o) = ftl“ (0) coshr) o
o r
Wy . .
- h(t) = [ T\(z) sin(Ar) d
i \/ J(wy) cothBwy/2) ®) ®) ﬂj (1) sin(A7) dr

The non-Markovian master equations (egs 8 and 9) cannot be
solved analytically; therefore, we propagate the solutions
numerically using the fourth-order RungKutta method. On

the other hand, the Markovian master equations can be solved
analytically, yielding

Note that the expression ofin eq 5 is just a convenient choice.
Any choice ofr; that satisfies eq 4 is valid. When the second-
order perturbation theory and the Markovian master equation
are both valid during intermediate times, the resulting dynamics
will not be sensitive to the choice af andwg. Therefore, the
requirement of specifyingr; is not a weak point of the sinh@t)

concatenation scheme. On the contrary, the choiagarid eq X(t) = {x(O) coshgt) — ———[Ay(0) + yx(O)]} e
4 provide a measure for the quality of the concatenated v

dynamics. sinh(t)

There is a fundamental difference between the SSO slippageY(t) = {Y(O) coshgt) — —=—{yy(0) + Ax(0) + 4f(e) X
scheme and the concatenation scheme described here. The
slippage scheme implicitly assumes that the Markovian trajec- (o)]} e
tory generated from invalid initial conditions is parallel to the
trajectories from slipped initial conditions, while the concatena- z(t) = z,, + [2(0) — zeq]e_zyt (20)

tion scheme assumes that the new initial conditions given by

the second-order perturbation at the timeorrectly absorb the where we have used = 2g(»), zeq = h()/g(w), andv =
memory effects. In the next section, we will show that at high m

temperatures the SSO slippage scheme breaks down, while the Figure 3 shoWs the non-Markovian (eq 8) and Markovian
concatenation scheme still gives a correct description of the Iong(eq 10) evolution of the determinant of the reduced density

time dynamics. matrix, with the initial conditions(0) = 0, y(0) = +/3/2, and
5. The Spin-Boson Model z(0) = 0.5. The parameters used ae= 0.1,7 = 0._01, ands _
= 0.5. We observe that, although the Markovian evolution
To illustrate the concatenation scheme, we study the spin- reaches correct thermal equilibrium at long times, it is negative
boson model in this section. Consider a nondegenerate two-during a short time period, indicating at least one of the two
level system coupled to its environment through the systgm  eigenvalues are outside the [0,1] range. Note that, at this high
operator: temperature regime, the amount by which the positivity is broken
A can be greater thap because of the thermal population of the
__= t t phonon modes. In contrast to the Markovian evolution, the non-
H 2OZ+ Zw“a“a‘l * G"Zg“(au &) © Markovian evolution preserves the positivity of the reduced
dynamics at all times. This result confirms that the source of
The model chosen for the bath is a Debye-like bath of the nonpositivity problem is the short time memory effects.
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Figure 3. Non-Markovian (solid line) and Markovian (dashedotted Figure 4. Short time dynamics of det{t)] at different temperatures
line) dynamics of detf(t)]. The Debye-like spectral function from eq  (from bottom to top = 10,8 = 1, andg = 0.5). Dynamics obtained
7 is used. The parameters used Are= 0.1,7 = 0.01, and8 = 0.5; from the non-Markovian master equation (solid lines), second-order
the initial conditions are«(0) = 0, y(0) = +/3/2, andz(0) = 0.5. perturbation theory (dashed lines), and Markovian master equation

(dashee-dotted lines) are shown for each temperature. The Debye-
Numerical studies on non-Markovian quantum master equationslike spectral function from eq 7 is used. The parameters used are
have indicated that they provide reasonable results in a wide 0.1 andy = 0.01, and the initial conditions aw0) = 0, y(0) = v/3/2,
parameter rang®1° In this weak-coupling case, the non- andz0)=0..

Markovian master equation correctly describes the dynamics mode thermal populations. As the temperature increases, the

of the open system at all times. _ population in the phonon modes increases and the effective
At short times, the second-order perturbation theory can system-bath interaction also increases. As a result, the range
provide correct dynamics. The results are in which the second-order perturbation theory is applicable
. reduces when the temperature increases. Also note that at high
Xp(t) = [cos@t) — 1,(Y]X(0) + [sin(At) — 1()]¥(0) temperatures the Markovian dynamics is totally off and cannot

_ ; be aligned with the results calculated from the second-order
t) = [cosAt) — 15(t)]y(0) — [sin(At) — 1,(t)]x(0
yp( ) = [cos@t) — 1,O1y(0) — [sin(AD) — 1,(H]x(0) (11) perturbation theory. This indicates that the Markovian dynamics

Zp(t) =1 — 1,(t)]Z(0) + I(t) is not necessarily parallel to the correct dynamics of the reduced
system (can be seen clearer in Figure 3), especially at high

where we use subscript p to denote the results obtained fromtemperatures. In the high temperature regime, the SSO slipped
the second-order perturbation theory; the integrdl3 are initial conditions are not well defined and the SSO slippage
scheme will be difficult to apply.

We also applied the concatenation scheme to this problem.
The temperature-dependent transient timecan be estimated
from the cutoff frequencyg,, yielding

1,(t) =2 L‘rr(r){ (t — 7) cosfA(t — 7)] — % Sin[A(t —

r)]} dr

1) = 2[[T,(1)(t — 7) sin[A(t — )] dt N m

t 1 . Fort < 1y, the second-order perturbation theory (eq 11) is used.
() = ZLFr(r){ (t —17) cos[A(t — 7)] + A sin[A(t — Fort > 7, the second-order perturbation theory is used to
compute the initial conditions at = 7; for the Markovian
T)]} de dynamics. Using egs 1012, we obtain the concatenation result
. for t > 7 explicitly:
1,() =4 [(T,()(t — 7) cosAr) dr

sinhp(t — 7))
15(t) = 4 [ Ty(2)(t — 7) sin(Aq) do (12) v

X(t) = {Xp(Tt) coshp(t — 7)) — [Ay(z) +

yxp(rt)]} AN

Figure 4 compares the short time dynamics obtained from

the non-Markovian master equation, second-order perturbation sinhp(t — 7)]

theory (eq 11), and Markovian master equation at three different Y(t) = | ¥p(z) coshi(t — )] — ——— ——1[ry,(z) +
temperatures. The same parameters and initial conditions as

those in Figure 3 are used. To compare the dynamics, the AXy(Ty) + 4f(e0) xp(ft)]}ey(tn)
Markovian evolution shown in Figure 4 has been shifted to be

aligned with the second-order perturbation result. Notice that z(t) = Zoyt [Zp(ft) — zeq]e—zﬂt—ft) (13)

the amount of slippage and violation of positivity in the

Markovian dynamics increases as the temperature increases, antlote that there are no adjustable parameters in this scheme. In
so does the deviation between the second-order perturbationcomparison with eq 10, we can see that simple slipped initial
theory and the non-Markovian master equation. These trendsconditions in the Markovian master equation cannot reproduce
can be explained by the temperature dependence of the phononthe concatenation result in eq 13. This indicates the fundamental
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0.09 . T . T results that satisfy the positivity condition at all times for all of
0.08 : the parameters and initial condition ranges examined. Given
the simplicity and the clear background of the concatenation
0.07 scheme, we expect that it is generally applicable in systems
0.06 with weak systerrbath couplings.
£ 005 6. Conclusion
3 004 We have examined the validity of the Markovian approxima-
0.03 tion based on a generic model with systebath interaction
linear in the oscillator coordinates. We argued that if the spectral
0021 function J(w) of the bath is fairly dense and smoothly spread
0.01 out, then a time scale of, exists for bath relaxations. For times
0 . ‘ . . of t > 7y, the memory kernels tends to zero and the Markovian
0 10 20 30 40 50 approximation is applicable. In addition,Jfw) decays to zero

t reasonably fast in both the — 0 andw — o limits, the bath
Figure 5. Short time dynamics of det{t)] at different temperatures ~ relaxation timegy, is determined by the width of the spectral
(from bottom to top = 10,8 = 1, andB = 0.5). Dynamics obtained  function, 7, ~ l/wg, and is only weakly dependent on the
from the non-Markovian master equation (solid lines) and the concat- temperature of the bath. We emphasize that in this context the
enation scheme (dashed lines) are shown for each temperatures. Thgidth of the spectral function should be determined by the
Debye-like spectral function from eq 7 is used. The parameters used yp, qjca| conditions of the system and cannot be chosen
areA = 0.1 andy = 0.01, and the initial conditions as€0) = 0, y(0) o .
— /312, andz(0) = 0.5. a_rb|trar|_ly by an imposed cutoff f_requency. Although all (_)f our
discussions are based on the linear form of the coupling, we

0.25 . : : . believe that the random phase argument is generic and can be
applied to other forms of interactions.

Moreover, we have proposed a concatenation scheme that
absorbs the transient memory effects in a natural manner and
fixes the nonpositivity problem. The concatenation scheme
applies second-order perturbation theory at short times and uses
Markovian master equations for long time dynamics; therefore,
it in fact describes both the short time and long time dynamics.
Applications of the concatenation scheme on the spin-boson
problem show excellent agreement with the results obtained
from the non-Markovian master equation at all temperature
ranges studied. Our results indicate that, with proper adjust-
ments, the Markovian master equations are applicable in the
0 L . . " weak-coupling limit. Although we have only studied the
0 200 400 600 800 1000 concatenation scheme on the simple spin-boson model, we
) ) ) ) expect it can be easily applied to multilevel systems. It will be
Figure 6. Dynamics of det(t)] at a longer time period at three  jnteresting to study the performance of the concatenation scheme
different temperatures (from bottom to tgp= 10,5 = 1, andf = on more complicated multilevel problems. Because of its

0.5). Dynamics obtained from the non-Markovian master equation (solid . lici h . h id ffici
lines) and the concatenation scheme (dashed lines) are shown for eac§IMP!ICIty, the concatenation scheme can provide an efficient

temperatures. Damping of the oscillations at high temperatures can beway to apply multilevel Markovian master equations, while

clearly seen. The Debye-like spectral function from eq 7 is used. The avoiding the nonpositivity problem.

parameters used are= 0.1 andy = 0.01, and the initial conditions All our results are based on the assumption that the system

arex(0) = 0, y(0) = +/3/2, andz(0) = 0.5. bath interactions are weak and neglecting higher order terms in
the memory kernels is valid. This weak-coupling condition

difference between the SSO slippage scheme and the concatenaeems to be a stringent limitation for quantum master equations

tion scheme proposed here. Figure 5 shows the short timeeqs 1 and 2. However, in many physical scenarios, the system

dynamics obtained form the concatenation scheme together withis strongly coupled to only a few bath modes. Therefore, the

the dynamics from the non-Markovian master equation. The system-bath boundary can be redefined to include strongly

same dynamics at a longer time period is shown in Figure 6. coupled modes into the system, and the weak-coupling ap-

Compared to the Markovian dynamics shown in Figure 3, the proximation can still be adequate.

simple concatenation scheme gives dramatic improvement.
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