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In this paper, we examine the validity of the Markovian approximation and the slippage scheme used to
incorporate short time transient memory effects in the Markovian master equations (Redfield equations). We
argue that for a bath described by a spectral function,J(ω), that is dense and smoothly spread out over the
rangeωd, a time scale ofτb ∼ 1/ωd exists; for times oft > τb, the Markovian approximation is applicable.
In addition, if J(ω) decays to zero reasonably fast in both theω f 0 and ω f ∞ limits, then the bath
relaxation time,τb, is determined by the width of the spectral function and is weakly dependent on the
temperature of the bath. On the basis of this criterion ofτb, a scheme to incorporate transient memory effects
in the Markovian master equation is suggested. Instead of using slipped initial conditions, we propose a
concatenation scheme that uses the second-order perturbation theory for short time dynamics and the Markovian
master equation at long times. Application of this concatenation scheme to the spin-boson model shows that
it reproduces the reduced dynamics obtained from the non-Markovian master equation for all parameters
studied, while the simple slippage scheme breaks down at high temperatures.

1. Introduction

Dissipative dynamics of a quantum system embedded in a
complex environment has gained much interest in recent years.
Because of its important role in physics and chemistry, numerous
works have been devoted to theoretical models for open quantum
systems.1,2 However, in contrast to classical dissipative pro-
cesses, that can be satisfactorily described by classical Langevin
or Fokker-Planck equations,3 a general theory for quantum
dissipation is still considered an unsolved issue.

Despite the difficulty of formulating a general theory,
adequate results can be obtained in many limiting cases. The
celebrated reduced dynamics description derived from projection
operator or cumulant expansion techniques has generated
promising results over the past few decades. By partitioning
the total system into a “system” part and a “bath” part, one can
reformulate the exact quantum Liouville equation and perform
a mathematically rigorous expansion in the weak-coupling limit.
As a result, time-convolution or time-convolutionless quantum
master equations describing the dynamics of the reduced system
can be derived by following either a chronological ordering
prescription (COP) or partial ordering prescription (POP),
respectively.4-6 These equations are usually non-Markovian and
difficult to treat analytically. Therefore, a separation of time
scales is usually postulated and the memory effects in the
dynamics are then neglected for times greater than the bath
relaxation time,τb. This approximation allows us to derive
Markovian master equations (Redfield equations) for the reduced
dynamics of the quantum system.

However, the applicability of the Markovian approximation
has long been criticized in the literature.7,8 In addition to the
assumption for the short bath relaxation time, it is well-known
that the Markovian master equations do not always preserve
the positivity of the reduced density matrix of the system, thus
resulting in physically inconsistent results. Suarez et al. have

shown that the problem of nonpositivity is due to the transient
memory effects in a short time scale and can be repaired by a
modification of the initial conditions (slippage).9 Gaspard and
Nagaoka adopted the slippage idea and developed a slippage
superoperator method that can determine the slippage of initial
conditions in a consistent way, but the range of applicability of
their slippage superoperator has not been fully tested.10 Despite
these stringent conditions and obvious inconsistencies, Mark-
ovian master equations have been applied successfully to a broad
range of physical and chemical problems. Although non-
Markovian approaches have grown in interest recently, Mark-
ovian approaches are favored due to their simplicity and
computational efficiency.11,12 Therefore, a scheme that can
ensure the positivity of the reduced system dynamics in the
framework of quantum Markovian equations is desirable.

In this paper, we examine two problems concerning the
applicability of the Markovian approximation and propose a
simple scheme for applying Markovian master equations that
is capable of reproducing results from the non-Markovian master
equations over a wide range of parameters. In section 2, we
shall briefly review the derivation of the Markovian master
equation. In section 3, the physical requirements for the
Markovian approximation will be examined in detail and the
factors defining the time scale for the non-Markovian dynamics
will be clarified. In section 4, we will then formulate a
concatenation scheme that avoids using slippage initial condi-
tions and absorbs the transient memory effects in a natural
manner. In addition, we show that Gaspard and Nagaoka’s
slippage superoperator method is not successful in preserving
positivity in all cases. Finally, in section 5, we will examine
the concatenation scheme by applying it to study the spin-boson
problem.

2. The Quantum Master Equation

Consider a system,S, governed by a system Hamiltonian,
HS, and coupled to a bath,B, of harmonic oscillators through† Part of the special issue “Irwin Oppenheim Festschrift”.
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an interaction linear in the oscillator coordinates (p ) 1):3,13

whereaR
† andaR are the creation and annihilation operators of

theR’th bath mode,ωR is the mode frequency,S is an operator
referring to the system degree of freedom only, andgR is the
coupling constant. The dynamics of the total system can be
described by a time-dependent density matrix,F(t), and follows
the Liouville equation

To obtain the reduced description for the system, we define the
following projection operatorP:

where

and TrB means “trace over the bath degrees of freedom”. The
choice of projection operator corresponds to factorized initial
conditions for the total system

whereσ(0) is an arbitrary state for the system. The reduced
density matrix for the system is then defined as

Following the standard projection operator technique and
neglecting all terms of higher order thanλ2,14 we obtain the
differential-integral equation for the reduced density matrix for
the system

where [...]+ denotes the anticommutator,S0(τ) ) eiHSτSe-iHSτ

and memory kernelsΓr(τ) and Γi(τ) are the real part and
imaginary part of the bath correlation function, respectively. In
this linear coupling model, these memory kernels can be
explicitly written as

Equation 1 is the quantum master equation that describes the
dynamics of the reduced quantum system. To derive this
equation, we have assumed that the system-bath coupling is
small, so that we can neglect terms of higher order thanλ2 and
replace the evolution kernel in the integrals by the zeroth-order
one. Note that in eq 1 we have adopted the POP approximation
and derive the time-convolutionless form of the master equation
by replacingσ(t - τ) with eiHSτσ(t)e-iHSτ; in the weak-coupling
limit, the COP and POP approximations are equivalent. Equation

1 is not yet a Markovian master equation because the integrals
still refer to the initial time.

If the bath correlation functionsΓr(τ) andΓi(τ) decay to zero
within a finite bath relaxation time,τb, then, for long times of
t . τb, we can extend the integrations overτ to infinity and
obtain the Markovian master equation:

This step is the Markovian approximation. The resulting
Markovian master equation (Redfield equation) has been studied
in innumerable papers in the literature. However, to the best of
our knowledge, concrete criteria for the applicability of the
Markovian approximation are still unclear. In the next two
sections, we will study the applicability of the Markovian
approximation and provide a simple scheme that absorbs the
transient memory effects in a straightforward manner.

3. The Markovian Approximation

It is convenient to define a spectral strength function for the
bath,J(ω) ) ∑RgR

2δ(ωR - ω), and rewrite memory kernelsΓr-
(τ) andΓi(τ) as integrals:

To avoid infrared and ultraviolet divergences, we assume that
J(ω) has the formωs, with s g 1 at smallω, and decays to
zero faster thanω-1 in the limit of ω f ∞. In addition, we
assume thatJ(ω) does not depend on the temperature. These
conditions are reasonable assumptions for many physical
problems.15 Also, note that if the low frequency behavior of
J(ω) is subohmic (of the formωs with 0 < s < 1 at smallω),
the memory kernelΓr(τ) would never decay to zero within a
finite time scale. In this case, the low frequency modes of the
bath dominate the dissipative processes and Markovian dynam-
ics is inapplicable.

At long times, the integrand inΓi(τ) is rapidly oscillating
due to the sin(ωτ) term. Therefore, if the spectral functionJ(ω)
can be treated as a continuous and fairly smooth function, then
a time scale,τb, exists due to the cancellation of the rapidly
oscillating integrand at larget. This means that the number of
bath degrees of freedom must be large, the distribution of bath
frequencies has to be dense and spread out, and the coupling
strength must vary uniformly with frequency. ForJ(ω) with
these properties,Γi(τ) decays to zero within aτb defined by the
width of the spectral functionJ(ω). If the width of the spectral
function isωd, then at timest . 1/ωd the oscillating integrand
cancels out and the integral tends to zero, that is,τb ∼ 1/ωd.

The real part seems more difficult because of the temperature
dependence, but we found the temperature has only a minor
effect on the bath relaxation time,τb, provided our assumptions
on the properties of the bath are correct. Notice that coth(âω/
2) is a smooth function that peaks atω ≈ 0 and behaves like
2/âω in a range fromω ) 0 to ω ) 2/â. At low temperatures,
this range is small and has little effect on the shape of the
integrand because of theωs factor in the spectral function. At
high temperatures, this range can be broad, and the hyperbolic
cotangent function can be replaced with 2/âω. Therefore, the
bath relaxation time at high temperatures is determined by the

σ̆(t) ) - i[HS,σ(t)] + iλ2∫0

∞
Γi(τ)[S,[S0(-τ),σ(t)]+] dτ -

λ2∫0

∞
Γr(τ)[S,[S0(-τ),σ(t)]] dτ (2)

Γr(τ) ) ∫0

∞
J(ω) cos(ωτ) coth(âω/2) dω

Γi(τ) ) ∫0

∞
J(ω) sin(ωτ) dω (3)

H ) HS + HB + HSB

) HS + ∑
R

ωRaR
†aR + λS∑

R
gR(aR

† + aR)

F̆(t) ) - i[H,F(t)]

PF ) Fb
eqTrBF

Fb
eq )

exp(-âHB)

TrB{exp(-âHB)}

F(0) ) σ(0) X Fb
eq

σ(t) ) TrBF(t)

σ̆(t) ) - i[HS,σ(t)] + iλ2∫0

t
Γi(τ)[S,[S0(-τ),σ(t)]+] dτ -

λ2∫0

t
Γr(τ)[S,[S0(-τ),σ(t)]] dτ (1)

Γr(τ) ) ∑
R

gR
2 cos(ωRτ) coth(âωR/2)

Γi(τ) ) ∑
R

gR
2 sin(ωRτ)
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width of the functionJ(ω)/âω. Since we assume the spectral
function decays to zero faster than 1/ω, the extra 1/ω frequency
dependence has little effect on the width of the function. We
argue thatτb is only weakly dependent on the temperature of
the bath and is largely determined by the properties of the
spectral function.

Figure 1 shows the normalized memory kernelΓr(τ)/Γr(0)
for several forms of spectral functions at different temperatures.
The timeτb at whichΓr(τ) decays to zero depends strongly on
the form of the spectral function but only weakly on the
temperature. For the Gaussian bath case, the functionΓr(τ)/Γr-
(0) is almost temperature independent. Note that the widths of
the spectral functions used in Figure 1 are set to 1; as a result,
all memory kernels shown decay within a time scale of order
∼1.

To summarize, if the spectral functionJ(ω) is fairly dense
and smooth and decays to zero reasonably fast in both theω f
0 andω f ∞ limits, then the time scaleτb ∼ 1/ωd exists. For
times of t > τb, the memory kernels tend to zero and the
Markovian approximation is applicable. In addition, for the
present model, the bath relaxation time,τb, is solely determined
by the properties of the spectral function and is only weakly
dependent on the temperature of the bath.

4. Positivity

It is well-known that the Markovian master equations derived
from the projection operator or cumulant expansion techniques
destroy the general positivity of the reduced dynamics. This
has been a major problem for the application of the Markovian
master equations. Suarez, Silbey, and Oppenheim have argued
that the Markovian master equation is in fact correct and the
source of the inconsistency is due to transient memory effects
in a short time scale. In this section, we will present a
prescription that quantitatively incorporates the short time
memory effects in the Markovian evolution.

The slippage scheme proposed by Suarez, Silbey, and
Oppenheim (SSO slippage scheme) aligns the trajectories given
by the Markovian evolution and second-order perturbation
theory (known to be correct at short times) and then extrapolates
the Markovian evolution back to zero time to find a set of

slipped initial conditions. Using the slipped initial conditions
together with the Markovian master equation correctly produces
the long time dynamics of the system and solves the nonposi-
tivity problem. However, the amount of the slippage depends
on the particular initial conditions and cannot be predicted
quantitatively. This makes the slippage scheme difficult to
implement.

As we pointed out above, Gaspard and Nagaoka suggested a
slippage superoperator that can generate slipped initial conditions
in a consistent way.10 On the basis of the assumption that the
dynamics of the Markovian master equation with slipped initial
conditions can be approximately equal to that of the direct
second-order perturbation theory for intermediate times oft .
τb, they integrated the Markovian master equation up to second
order inλ and compared the outcome to the result from second-
order perturbation theory to obtain the slippage superoperator.
Their formal result (eq 25 in ref 10) is rather complicated and
difficult to apply to real systems; therefore, they suggested using
a short time expansion to compute the simplified slippage
superoperator. They also demonstrated that the simplified
slippage superoperator indeed solved the nonpositivity problem
for a spin-boson system with a Debye-like spectral function and
gave excellent results. However, the applicability of their method
for more general systems has not been tested. In fact, we find
that their slippage superoperator does not always give results
that satisfy the positivity condition. For example, if we replace
the Debye-like spectral function of the spin-boson system
studied in ref 10 with a Ohmic-like spectral function,J(ω) )
ωe-ω/ωc, the slippage superoperator gives nonpositive initial
conditions in a broad range of parameters. Figure 2 shows the
determinant of the slipped initial conditions calculated using
eqs 43-47 in ref 10 and the spectral functionJ(ω) ) ωe-ω/ωc.
The negative determinant values shown in Figure 2 clearly
indicate that the slippage superoperator breaks down for the
spin-boson model with an Ohmic-like bath. Therefore, we
conclude that the slippage superoperator method in its simplified
form (eq 26 in ref 10) does not always give physically
admissible slipped initial conditions. The applicability of the

Figure 1. Normalized real part of the bath correlation functions [Γr-
(τ)/Γr(0)] for baths with different forms of spectral functions at inverse
temperaturesâ ) 0.01 (thin dashed line),â ) 1 (dashed-dotted line),
â ) 5 (dashed line), andâ ) 100 (solid line). The point whereΓr(τ)
decays to zero is dependent on the form of the spectral function but
only weakly dependent on the temperature. In addition, in general,
higher temperatures do not correspond to shorter bath relaxation times.
The cutoff frequencies are set to 1, so the units of time andâ are 1/ω0.

Figure 2. Violation of the positivity condition in the slippage
superoperator method. We show the determinant of the slipped initial
conditions for a spin-boson model with an Ohmic-like bath as a function
of y(0), wherey(0) defines different nonslipped initial density matrices,

Fs(0) ) [I + x1-y(0)2σx + y(0)σy]. The results are calculated using
eqs 43-47 in ref 10 and an Ohmic-like spectral function,J(ω) )
ωe-ω/ωc. The parameters used are∆ ) 0.1, λ ) 0.1, ωc ) 1, and
temperatureT ) 0. All notations used here are the same as those defined
in ref 10. The negative values of the determinant for-0.55< y(0) <
0.55 indicate violations of the positivity condition.
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slippage superoperator in its formal form, which does not require
the short time expansion, is still untested.

We now turn to an extension of the SSO slippage scheme in
order to increase its range of applicability. A natural and simple
modification of the SSO slippage scheme is to concatenate the
second-order perturbation theory with the Markovian master
equation. The idea is to use second-order perturbation theory
to propagate the reduced dynamics at short times and switch to
using the Markovian master equation at long times. We define
a transient time,τt, at which the Markovian master equations
are applied with the initial conditions given by the second-order
perturbation theory at timeτt. To this end,τt must be in the
regime where both the second-order perturbation theory and the
Markovian master equation are valid, that is, where the memory
kernels already decay to zero and the second-order perturbation
theory is still correct. As we have mentioned in the previous
section, the Markovian master equation is valid after times of
t > τb ∼ 1/ωd. In addition, for the second-order perturbation
theory to be correct, we need the temperature weighted
parameterJ(ω0) coth(âω0/2)τt , 1, whereω0 is the averaged
frequency for modes that contribute strongly in the spectral
function J(ω). Therefore, we obtain the range ofτt for the
concatenation scheme to be valid:

For simplicity, we chooseτt as the midpoint between the
upper bound and lower bound in the log scale:

Note that the expression ofτt in eq 5 is just a convenient choice.
Any choice ofτt that satisfies eq 4 is valid. When the second-
order perturbation theory and the Markovian master equation
are both valid during intermediate times, the resulting dynamics
will not be sensitive to the choice ofτt andω0. Therefore, the
requirement of specifyingτt is not a weak point of the
concatenation scheme. On the contrary, the choice ofτt and eq
4 provide a measure for the quality of the concatenated
dynamics.

There is a fundamental difference between the SSO slippage
scheme and the concatenation scheme described here. The
slippage scheme implicitly assumes that the Markovian trajec-
tory generated from invalid initial conditions is parallel to the
trajectories from slipped initial conditions, while the concatena-
tion scheme assumes that the new initial conditions given by
the second-order perturbation at the timeτt correctly absorb the
memory effects. In the next section, we will show that at high
temperatures the SSO slippage scheme breaks down, while the
concatenation scheme still gives a correct description of the long
time dynamics.

5. The Spin-Boson Model

To illustrate the concatenation scheme, we study the spin-
boson model in this section. Consider a nondegenerate two-
level system coupled to its environment through the systemσx

operator:

The model chosen for the bath is a Debye-like bath of

independent harmonic oscillators described by the following
spectral function:

whereη is a dimensionless friction constant of orderλ2 andωc

is an appropriate cutoff frequency for the bath (for example,
the Debye frequency of the crystal). Hereafter, we will setωc

) 1, effectively usingωc as the unit for energy and 1/ωc as the
unit for time. It is convenient to adopt the Bloch representation
and describe the density matrix for the two-level system using
a Bloch vector:

Using eq 1, we can easily obtain the non-Markovian master
equations for the spin-boson model in the Bloch representation:

where we have defined time-dependent functions

The non-Markovian master equations (eqs 8 and 9) cannot be
solved analytically; therefore, we propagate the solutions
numerically using the fourth-order Runge-Kutta method. On
the other hand, the Markovian master equations can be solved
analytically, yielding

where we have usedγ ) 2g(∞), zeq ) h(∞)/g(∞), and ν )

xγ2-∆2-4∆f(∞).
Figure 3 shows the non-Markovian (eq 8) and Markovian

(eq 10) evolution of the determinant of the reduced density
matrix, with the initial conditionsx(0) ) 0, y(0) ) x3/2, and
z(0) ) 0.5. The parameters used are∆ ) 0.1,η ) 0.01, andâ
) 0.5. We observe that, although the Markovian evolution
reaches correct thermal equilibrium at long times, it is negative
during a short time period, indicating at least one of the two
eigenvalues are outside the [0,1] range. Note that, at this high
temperature regime, the amount by which the positivity is broken
can be greater thanη, because of the thermal population of the
phonon modes. In contrast to the Markovian evolution, the non-
Markovian evolution preserves the positivity of the reduced
dynamics at all times. This result confirms that the source of
the nonpositivity problem is the short time memory effects.

1
ωd

, τt , 1
J(ω0) coth(âω0/2)

(4)

τt ) x ωd

J(ω0) coth(âω0/2)
(5)

H ) -
∆

2
σz + ∑

R
ωRaR

†aR + σx∑
R

gR(aR
† + aR) (6)

J(ω) ) η(ω3/ωc
2)e-ω/ωc (7)

σ(t) ) 1
2
[I + x(t)‚σx + y(t)‚σy + z(t)‚σz]

x̆(t) ) ∆y(t)

y̆(t) ) -[∆ + 4f(t)]x(t) - 4g(t) y(t)

z̆(t) ) -4g(t) z(t) + 4h(t)

(8)

f(t) ) ∫0

t
Γr(τ) sin(∆τ) dτ

g(t) ) ∫0

t
Γr(τ) cos(∆τ) dτ

h(t) ) ∫0

t
Γi(τ) sin(∆τ) dτ

(9)

x(t) ) {x(0) cosh(νt) -
sinh(νt)

ν
[∆y(0) + γx(0)]}e-γt

y(t) ) {y(0) cosh(νt) -
sinh(νt)

ν
[γy(0) + ∆x(0) + 4f(∞) x

(0)]}e- γt

z(t) ) zeq + [z(0) - zeq]e
-2γt (10)
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Numerical studies on non-Markovian quantum master equations
have indicated that they provide reasonable results in a wide
parameter range.16-19 In this weak-coupling case, the non-
Markovian master equation correctly describes the dynamics
of the open system at all times.

At short times, the second-order perturbation theory can
provide correct dynamics. The results are

where we use subscript p to denote the results obtained from
the second-order perturbation theory; the integralsIn(t) are

Figure 4 compares the short time dynamics obtained from
the non-Markovian master equation, second-order perturbation
theory (eq 11), and Markovian master equation at three different
temperatures. The same parameters and initial conditions as
those in Figure 3 are used. To compare the dynamics, the
Markovian evolution shown in Figure 4 has been shifted to be
aligned with the second-order perturbation result. Notice that
the amount of slippage and violation of positivity in the
Markovian dynamics increases as the temperature increases, and
so does the deviation between the second-order perturbation
theory and the non-Markovian master equation. These trends
can be explained by the temperature dependence of the phonon-

mode thermal populations. As the temperature increases, the
population in the phonon modes increases and the effective
system-bath interaction also increases. As a result, the range
in which the second-order perturbation theory is applicable
reduces when the temperature increases. Also note that at high
temperatures the Markovian dynamics is totally off and cannot
be aligned with the results calculated from the second-order
perturbation theory. This indicates that the Markovian dynamics
is not necessarily parallel to the correct dynamics of the reduced
system (can be seen clearer in Figure 3), especially at high
temperatures. In the high temperature regime, the SSO slipped
initial conditions are not well defined and the SSO slippage
scheme will be difficult to apply.

We also applied the concatenation scheme to this problem.
The temperature-dependent transient time,τt, can be estimated
from the cutoff frequency,ωc, yielding

For t < τt, the second-order perturbation theory (eq 11) is used.
For t > τt, the second-order perturbation theory is used to
compute the initial conditions att ) τt for the Markovian
dynamics. Using eqs 10-12, we obtain the concatenation result
for t > τt explicitly:

Note that there are no adjustable parameters in this scheme. In
comparison with eq 10, we can see that simple slipped initial
conditions in the Markovian master equation cannot reproduce
the concatenation result in eq 13. This indicates the fundamental

Figure 3. Non-Markovian (solid line) and Markovian (dashed-dotted
line) dynamics of det[σ(t)]. The Debye-like spectral function from eq
7 is used. The parameters used are∆ ) 0.1, η ) 0.01, andâ ) 0.5;
the initial conditions arex(0) ) 0, y(0) ) x3/2, andz(0) ) 0.5.

xp(t) ) [cos(∆t) - I1(t)]x(0) + [sin(∆t) - I2(t)]y(0)

yp(t) ) [cos(∆t) - I3(t)]y(0) - [sin(∆t) - I2(t)]x(0)

zp(t) ) [1 - I4(t)]z(0) + I5(t)

(11)

I1(t) ) 2∫0

t
Γr(τ){(t - τ) cos[∆(t - τ)] - 1

∆
sin[∆(t -

τ)]} dτ

I2(t) ) 2∫0

t
Γr(τ)(t - τ) sin[∆(t - τ)] dτ

I3(t) ) 2∫0

t
Γr(τ){(t - τ) cos[∆(t - τ)] + 1

∆
sin[∆(t -

τ)]} dτ

I4(t) ) 4∫0

t
Γr(τ)(t - τ) cos(∆τ) dτ

I5(t) ) 4∫0

t
Γi(τ)(t - τ) sin(∆τ) dτ (12)

Figure 4. Short time dynamics of det[σ(t)] at different temperatures
(from bottom to top,â ) 10,â ) 1, andâ ) 0.5). Dynamics obtained
from the non-Markovian master equation (solid lines), second-order
perturbation theory (dashed lines), and Markovian master equation
(dashed-dotted lines) are shown for each temperature. The Debye-
like spectral function from eq 7 is used. The parameters used are∆ )
0.1 andη ) 0.01, and the initial conditions arex(0) ) 0, y(0) ) x3/2,
andz(0) ) 0.5.

τt ≈ x ωc

J(ωc) coth(âωc/2)

x(t) ) {xp(τt) cosh[ν(t - τt)] -
sinh[ν(t - τt)]

ν
[∆yp(τt) +

γxp(τt)]}e-γ(t-τt)

y(t) ) {yp(τt) cosh[ν(t - τt)] -
sinh[ν(t - τt)]

ν
[γyp(τt) +

∆xp(τt) + 4f(∞) xp(τt)]}e-γ(t-τt)

z(t) ) zeq + [zp(τt) - zeq]e
-2γ(t-τt) (13)

Validity of the Markovian Approximation J. Phys. Chem. B, Vol. 109, No. 45, 200521403



difference between the SSO slippage scheme and the concatena-
tion scheme proposed here. Figure 5 shows the short time
dynamics obtained form the concatenation scheme together with
the dynamics from the non-Markovian master equation. The
same dynamics at a longer time period is shown in Figure 6.
Compared to the Markovian dynamics shown in Figure 3, the
simple concatenation scheme gives dramatic improvement.
Clearly, the concatenation scheme adequately reproduces the
correct dynamics at both short and long times. At high
temperatures, small deviations from the non-Markovian results
exist at short times. The deviations can be ascribed to the errors
in the second-order perturbation theory and do not change the
long time dynamics. In fact, Figure 6 shows that the concatena-
tion scheme gives results that are in excellent agreement with
the non-Markovian master equation even at high temperatures.

We have also applied the concatenation scheme to a similar
spin-boson model with an Ohmic-like spectral function,J(ω)
) ωe-ω/ωc. In this case, the concatenation scheme produces

results that satisfy the positivity condition at all times for all of
the parameters and initial condition ranges examined. Given
the simplicity and the clear background of the concatenation
scheme, we expect that it is generally applicable in systems
with weak system-bath couplings.

6. Conclusion

We have examined the validity of the Markovian approxima-
tion based on a generic model with system-bath interaction
linear in the oscillator coordinates. We argued that if the spectral
function J(ω) of the bath is fairly dense and smoothly spread
out, then a time scale ofτb exists for bath relaxations. For times
of t > τb, the memory kernels tends to zero and the Markovian
approximation is applicable. In addition, ifJ(ω) decays to zero
reasonably fast in both theω f 0 andω f ∞ limits, the bath
relaxation time,τb, is determined by the width of the spectral
function, τb ∼ 1/ωd, and is only weakly dependent on the
temperature of the bath. We emphasize that in this context the
width of the spectral function should be determined by the
physical conditions of the system and cannot be chosen
arbitrarily by an imposed cutoff frequency. Although all of our
discussions are based on the linear form of the coupling, we
believe that the random phase argument is generic and can be
applied to other forms of interactions.

Moreover, we have proposed a concatenation scheme that
absorbs the transient memory effects in a natural manner and
fixes the nonpositivity problem. The concatenation scheme
applies second-order perturbation theory at short times and uses
Markovian master equations for long time dynamics; therefore,
it in fact describes both the short time and long time dynamics.
Applications of the concatenation scheme on the spin-boson
problem show excellent agreement with the results obtained
from the non-Markovian master equation at all temperature
ranges studied. Our results indicate that, with proper adjust-
ments, the Markovian master equations are applicable in the
weak-coupling limit. Although we have only studied the
concatenation scheme on the simple spin-boson model, we
expect it can be easily applied to multilevel systems. It will be
interesting to study the performance of the concatenation scheme
on more complicated multilevel problems. Because of its
simplicity, the concatenation scheme can provide an efficient
way to apply multilevel Markovian master equations, while
avoiding the nonpositivity problem.

All our results are based on the assumption that the system-
bath interactions are weak and neglecting higher order terms in
the memory kernels is valid. This weak-coupling condition
seems to be a stringent limitation for quantum master equations
eqs 1 and 2. However, in many physical scenarios, the system
is strongly coupled to only a few bath modes. Therefore, the
system-bath boundary can be redefined to include strongly
coupled modes into the system, and the weak-coupling ap-
proximation can still be adequate.
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