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We propose a model based on a generalized effective Hamiltonian for studying the effect of noise in
guantum computations. The system-environment interactions are taken into account by including stochastic
fluctuating terms in the system Hamiltonian. Treating these fluctuations as Gaussian Markov processes with
zero mean and-function correlation times, we derive an exact equation of motion describing the dissipative
dynamics for a system af qubits. We then apply this model to study the effect of noise on the quantum
teleportation and a generic quantum controlied- (cNoOT) gate. For quantum teleportation, the effect of noise
in the quantum channels is found to be additive, and the teleportation fidelity depends on the state of the
teleported qubit. The effect of collective decoherence is also studied for the two-qubit entangled states. For the
guantumcNoT gate, we study the effect of noise on a set of one- and two-qubit quantum gates, and show that
the results can be assembled together to investigate the quality of a quaxbargate operation. We compute
the averaged gate fidelity and gate purity for the quantnoT gate and investigate phase, bit-flip, and
flip-flop errors during theNoT gate operation. The effects of direct interqubit coupling and fluctuations on the
control fields are also studied. We find that the quality ofdkeT gate operation is sensitive to the strengths
of the control fields and the strengths of the noise, and the effect of noise is additive regardless of its origin. We
discuss the limitations and possible extensions of this model. In sum, we demonstrate a simple model that
enables us to investigate the effect of noise in arbitrary quantum circuits under realistic device conditions.
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[. INTRODUCTION relaxation of a many-qubit system is nontrivial. No general
) ) o ) model exists for this purpose. Classical noise models and
Quantum information processing is of much current inter-mjicroscopic noise models have yielded some success, but
est[1]. The realization of quantum algorithms using nuclearthese formulations do not provide a general solution frame-
magnetic resonan¢®MR) [2-5] and ion-trag 6] techniques  work for a many-qubit system.
has shown that quantum computing is possible in principle. Classical noise models that describe the decoherence and
Recent efforts for building quantum computers have focusegopulation relaxation as exponential decays of the off-
on techniques based on solid-state devices that are believelthgonal and diagonal components of the density matrix are
to be more scalablg7-9]. However, such solid-state devices widely used for the estimate of the error rates during quan-
usually require sophisticated manufacturing techniques, an@im computation[11,12, but generally these models lack
the inevitable interactions between a qubit and its surroundquantum features that are important for quantum computing,
ing environment(“bath”) introduce noise into the quantum such as the quantum interference effect. _
system, resulting in the degradation of the quantum superpo- Microscopic noise models based on the spin-boson
sition state. Thus, the extra degrees of freedom of a soligtiamiltonian that explicitly include the linear couplings be-
state system and the inherent system-bath interactions posd’4¢€n the system and the bath degrees of freedom have pro-
great problem for quantum computing with such devices vided valuable insights about decoherence effgifsl1,13.

The decoherence problem is the main obstacle towards t ecently, the decoherence and gate_performance of 2 quan-
realization of a universal quantum computer, and a soun m controllednoT (CNOT) gate operation for several differ-

. e ent physical realizations has been studied based on such
thedoretlcalI f;gmewcl)rk f(t)_r the ]?Iescg_;t)tlon ;)f the .deCOherenC%pin-boson-type Hamiltoniarid4—17. A number of differ-
?fo 15)]opu ation refaxation ot qublt systems 1S nhecessany techniques have been developed to solve the dynamics of

B he abil d predict the behavi microscopic Hamiltoniangl8]. However, these methods are

ecause the ability to compute and predict the behavior 0I)ften complicated and difficult to generalize for systems with
a quantum circuit under the influence of noise is crucial, 3nore than two qubits. In addition, in many cases the exact
model that can describe errors from the system-bath interagz .\ ¢ the system-beith interactions is unknown. or the pa-

tions could be extremely useful. Such a model will also b€ eters are difficult to obtain experimentally, and the mi-

useful in the study of quantum error-correcting and e”or'croscopic models are difficult to use in these cases.

preventing schemes, as well as provide informative guide-" rq"gjoch-Redfield formalism is generally used to study
lines for the design of quantum computers. However, deNMR spin dynamicg19,20 and has been applied to study
scribing the nonequilibrium decoherence and populatioqhe dynamics of many-épin systems. However, this formal-
ism, while suitable in NMR systems, is not always applicable

in general qubit systems. Moreover, the Bloch-Redfield for-

*Electronic address: silbey@mit.edu malism is also known to violate the complete positivity of
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the reduced density operator at short tirf@H. To apply the  we assume throughout this work that the external control
Bloch-Redfield formalism to quantum computing, nonphysi-fields are switched on and off instantaneously, and the inter-
cal additional time intervals have to be inserted between thactions introduced by the external control fields are constant
switching event$14,15. These extra time periods will result in time; this corresponds to a rectangular pulse. More realis-
in an overestimation of the degradation of the qubit systemdic pulse shapes can be incorporated into our treatment with-
Thus, generally speaking, a method that can be used tout too much additional work. In addition, a sequence of
analyze the quality of a functional quantum circuit and ca-different rectangular pulses can be divided into time periods
pable of providing a quantitative result is still not available. with a constant external field in each of them and then
In this work, we propose a stochastic Liouville equation ap-treated separately using a different time-independnfor
proach to describe errors in quantum computations. This apeach time period. Considering only constant external control
proach originates from the Haken-Strobl-ReinekelSR)  fields does not affect the generality of this model.
model first proposed by Haken and Strobl and later extended The time-dependent part of the Hamiltonian describes the
by Reineker in the 1970s to describe charge and energyfluences of the environment via fluctuations of the system
transfer in organic crystal§22—24. The HSR model is energy. This term may include fluctuations from many dif-
known to be able to capture the coherent and incohererferent origins, such as the fluctuations of imperfect control
dynamics of quantum two-level systems. In this model, théfields, the fluctuations induced by the bath on the qubit ex-
system-bath interactions are taken into account by allowingitation energy, the off-diagonal matrix element, and the in-
the site energies and the off-diagonal matrix elements of théerqubit interactions. Following Haken and StrqBP], we
system to fluctuate over time. We generalize the idea otonsider the fluctuations as random Gaussian Markov pro-
Haken and Strobl to describe a systemnaofjubits. The re- cesses with zero mean a@function correlation times:
sulting stochastic Liouville equation is then solved to obtain

a set of equations describing the dynamics of a general (h;())=0,
n-qubit system. To demonstrate the applicability of our
method, we study the effect of noise on quantum teleporta- (O h(t)=Ryq At~ 1), ()

tion and a genericNOT gate operation, and then compare

our results with previous work. We show that our model Calere the angular bracket$ represent the thermal average

reprodu;e the main re_sultg obtained _pr_evn_)usly by using Mig,er all bath degrees of freedom, and the time-independent
croscopic model Hamiltonians. The limitations and possible

tensi f iclassical model 150 di d correlation matrix elemeri;. is a real number describing
extensions of our semiclassical model are also discussed. o ~orrelations between; (1) andhy(t'). All R elements

form a Z"-dimensional correlation matriR. In addition, we
[l. STOCHASTIC LIOUVILLE EQUATION have the following symmetry property &:

APPROACH

Previous work on the study of the population relaxation Risa = Ritia = R = R = Ry &
and dccoherence of qubit systems is usually based on thene value ofR;..s depends on the strength of the coupling to
spin-boson Hamiltonian, in which the qubits are coupled lin-the environment; therefore, it is a measure of the noisiness of
early to the bath degrees of freeddthe environmentand  the environment. TheS-function correlation in time corre-
the bath is treated explicitly as a system of harmonic oscilsponds to the limit of fast bath modulations, which assumes
lators[10,11,18. Due to the difficulty of applying the spin- that the correlation time of the bath is much smaller than the
boson model to multiple-qubit systems, we take another apcharacteristic time of the system. Therefore, this model
proach. Instead of treating the bath explicitly, we follow the should be valid at the high-temperature limit. Also note that
stochastic Liouville approach of the HSR model and con-although the effect of temperature can be included by con-
sider an effective Hamiltonian that treats the effect of thesidering temperature-dependent correlation matrix elements,
bath as a set of classical fluctuating fields acting on the syshere is no explicit temperature dependence in this model.
tem[22-24. To describe the dynamics of an array of qubitswe will discuss the consequences of this assumption and the
under the influence of an external control field and environapplicability of this model in more detail in Sec. V.
mental noise, we consider a systermafubits and start from The time-independent part of the Hamiltonidg and the
a Hamiltonian with time-independent and time-dependentorrelation matrixR determine the dynamics of the system.
parts. The general Hamiltonian of the qubit system can behe values oH, andR depend on the setup of the physical
written as system, the various types of noise considered, and the nature
of the bath. Note that in the HSR model, the system is lim-
ited to the one-exciton subspace, and the matfitgandR
can be obtained directly. However, in awiqubit system, all
2" states must be considered, and how to deterrhigand
where c;r andc; are the creation and annihilation operatorsR is less obvious. In the following sections, we provide ex-
for theith state of the 2basis set. The time-independent part plicit examples oHy andR for systems describing quantum
H, describes the interactions between qubits, while the timeteleportation and generic quantum gates. Generalization of
dependent pat(t) describes the fluctuations of the interac- the procedure to determirté, and R for a generah-qubit
tions due to the coupling to the environment. For simplicity,system should be straightforward. Throughout this section

2"-1

H(t)=Ho+h(t)= > [Hij + hy (t)]CiTle (1)
i.j=0
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we will only use the generic forms &f, andR to derive the A. Quantum teleportation
equation of motion that describes the time evolution of the \ye first consider the ideal scenario of teleporting one qu-

n-qubit system under the influence of noise. bit from Alice to Bob. Suppose Alice and Bob share a EPR
. Thg dynamlps of the system is described by the stochastlﬁair' labeled as qubia and b, emitted from an EPR pair
Liouville equation(f=1) source, and Alice wants to teleport qulitin state |i)
p(t) = —i[H (1), p(®)], =¢y|0)+c4/1) to Bob. The EPR pair source emits two en-
tangled qubits in one of the four Bell states at tited, and
where p(t) is the density matrix of the system at time then the two qubits are sent through separate cha@elad
Using the statistical properties bft) [Eq. (2)] and the sym- C, to Alice and Bob, respectively. After receiving qulait
metry property of the correlation functiofgq. (3)], we can  Alice performs a Bell-state measurement on her qufits
compute the exact equation of motion for the averaged derand ¢) and sends the outcome of her measurement to Bob
sity matrix elements of the system by applying the secondthrough a classical channel. Alice’s measurement projects
order generalized cumulant expansion method to averaggubit b onto one of the four corresponding states: i.e.,
over all fluctuations. The result we obtain is in a simple|(co|O)p+Cy|1)p), TAColO)p+Ci|Lp), 0y(ColO)p+Ca|1)y), and
form: ioy(col0)ptcy/1)y). Bob then applies the corresponding in-
d verse transformatiol , o,, oy, and oy, respectively to
—Pap=— i> H,ipip+ iz”,;ajHjﬁ— > RikckgPad recover his qubit in the state)). .
dt j j k| In practice, errors can happen during the quantum telepor-
iy 5 v S Ry 4 tation from several origins(1l) the r_10ise in the guantum
2 RikikaP15 = BlikaPkl» ( channelsC, andC,, (2) the degradation of qubit after the
’ ‘ preparation,(3) the imperfect Bell-state measurement per-
where all summations are over afl-&tate indices. In addi- formed by Alice,(4) the further degradation of qulitwhen
tion, we have defined the averaged density matrix of thd@ransmitting the result of Bell-state measurement through the
systemp(t) ={p(t)). In Eq. (4), the dynamics of the averaged classical channel, an) the imperfect unitary transforma-
density matrix can be separated into a coherent part, due tions performed by Bob. Here, we only consider the first
Ho, and a incoherent part, due R. The dissipation of the ~situation where channels, andCy, are noisy, and focus on
system is governed by incoherent dynamics and is related tfie errors due to the degradation of entanglement. We as-
the elements of the fluctuation correlation matRx Notice ~ sume all other operations are done perfectly. This means that
that the form of Eq(4) is similar to the form of the widely the result obtained in the following represents a lower bound
used Redfield equation, with the relaxation matrix element®n the errors in quantum teleportation.
given by the corresponding;. terms in the equatiof25].
Equation(4) forms a system of 2 linear ordinary differ-
ential equationgODE’s). Given the values oH;; and Ry,
the ODE system can be solved efficiently to yield the time- To study the degradation of a pair of entangled qubits, we
dependent averaged density ma@ix). In fact, in most one-  consider the effective Hamiltonian describing two uncorre-
qubit and two-qubit systems, the equations can be solvethted qubitsa andb:
analytically, and the analytical formula f@i(t) can be ob-

B. Effect of noise on a pair of entangled qubits

tained. In general, we can calculakg, and R from the H=H,+Hp= > g0l + 2 Jy(0ol”
Hamiltonian of the system and the correlations between fluc- n=ab n=ab

tuations introduced by the environment. Once we heye - e+ e (D10™ + I+ 83.(D)1o™ 5
andR, it is then trivial to solve Eq(4) to yield ap(t) that n%b[ n* o8(]oz nzzab[ e LA

fully describes the dynamics of thequbit system. This pro- ™ o o

cedure is straightforward and can be used to study the effef{hereo,  ando, ", n=a,b, are Pauli spin operators on qu-

of noise in complex quantum computations. We demonstratits & andb; 2e, (2¢p) is the averaged energy splitting be-

the applications of this model on the study of the effect oftween the|0) and [1) states of qubita (b); Ja(Jp) is the

noise on quantum teleportation and general quantum twcaveraged off-diagonal matrix element for qubdt(b);

qubit gates in the next two sections. Se4(t) [d=,(1)] is the time-dependent fluctuating part of the
diagonal energy for qubia[b]; 83,(t) [8J,(t)] is the time-
dependent fluctuating part of the off-diagonal matrix element

lIl. DISSIPATION IN QUANTUM TELEPORTATION for qubita [b]. Following the assumption made in Sec. II, we

Since first proposed by Bennetdt al. in 1993 [26], the regard de,(t) and 5_‘]“(t)’ n:a,t_), as Gaussian Markov pro-
concept of “quantum teleportation” has received much attenc€SSes fully described by their first two moments:
tion. By exploiting the entangled nature of an Einstein- (8e,(1))=(83,(1)) =0,
Podolsky-RoseliEPR) pair, a sender can transmit the quan-
tum state of a qubit to a receiver, without physically

transferring the qubit through space. In this section, we will (8en(t) Bem(t))=Yo0hmdlt — 1),
apply our stochastic Liouville approach to study the effect of ) )
noise on quantum teleportation. (83,(1) 8 (t'))= Y1 Enmdt = t'),
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<58n(t) (5Jm(t’)>:0, (6) |Bl>:\,—15(|0>a|0>b + |1>a|1>b),

Whereyg())g) describes the strength of the diagonal energy 1

fluctuations of qubita (b); 72 (»?) describes the strength of IB2)=—=(10)4|0)p = [1)a| 1)y,

the off-diagonal matrix element fluctuations of quhitb). V2

Clearly, /2 and v} are related to the system-bath interactions

involving o, system operators, ang and ))1’ are related to B >=i(|0> 1)+ |1)2]00p)

the interactions involvingr, system operators. These phe- 3 \s‘E al/b alybl

nomenological parameters can be estimated experimentally

[24,27]. Notice that we treat the correlation between quaits 1

and b independently, because in quantum teleportation, the |B4>:T§(|O>a|1>b' 1)al0)).

two EPR qubits are sent through different channels to two A

distantly separated places; thus the two qubits are coupled tghere subscripts,b label the state of different qubits. For

distinct baths. In addition, we assume the diagonal and offeonvenience, hereafter we will use the notation that uses the

diagonal fluctuations are not correlated. first digit to denote the state of qulaitand the second digit to
To simplify our computations, we choose to study thedenote the state of qubit—i.e., |1),/1),=|11). The Hamil-

dynamics of the system in the Bell-state basis. The four Beltonian for the two-qubit systerfEq. (5)] in the Bell-state

states are defined as basis is
|
0 gat ept hy(t) Ju+ Jp+hyg(t) 0
gat &+ Npy(1) 0 0 Jp = Ja+ hpy(t) )
Ja+ Jp+ hgy(t) 0 0 ga—epthgyt) |
0 Jp—Jathgyt) e5—ep+hyst) 0
[
where the nonzero transformed time-dependent matrix ele- Riz.of =9,
ments are
— A
hya()=hps(t) = Se4(H) + Jey(t), Roa271* N
Ras37 75 + %, 9

hy5(t)=hgy(t) = 634(t) + 83p(1),
Other nonzero elements Bf can be obtained using the sym-
metry property ofR [Eqg. (3)]. Plugging the correlation ma-
ho4(t)=h(t) = 8Jp(t) — 83,4(1), trix elementgEq. (7)] and the time-independent Hamiltonian
matrix element$Eq. (9)] into Eq.(4), we obtain the equation
of motion for the averaged density matrix of the systgtt).
ha4(t)=hys(t) = Sea(t) — dep(t). (8) In the limit of zero averaged Hamiltonian matrix ele-
ments,e,=J,=0, the equations of motion for the diagonal
density matrix elements are decoupled from those for the
ff-diagonal density matrix elements. Therefore, the dynam-
s of a system initially in one of the four Bell staté<., the
initial density matrix has only nonzero diagonal elemgnts
can be fully described by the equations for the diagonal den-
Rizim= %+ 75, sity matrix elements:

From Eqgs.(6) and(8), we can easily compute the corre-
lation matrix R of the system. In this cas® has only 32
nonzero elements that can be represented by the followingI
irreducible elements:

Eﬁll(t)zro[ﬁzz(t) =P+ T1[pas(t) = paa(V)],

Ri2ae 7~ 7%, dt
d. - -
Riz15 7 + ¥, d_tpzz(t)zro[f’n(t) = P22 ]+ T1[paa(t) = o) ],
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_ _ _ From Eq.(12), the fidelity of the entangled pair, defined
apas(t)=ro[544(t) =paa(]+ [alp1a(t) —pas(t) ], as the overlap between the initial density mapixand the
density matrix at time, can be calculated:

11 1 1
%7’44@):%[533(0 = Pad0] + Te[ppot) = pas(t)], (10) Fe(t) = Tr pop(t) = 2t Ze_zrot + Ze_zrlt + Ze—z(r0+rl)t_
where we have defined’y=(y3+15), and T';=(y2+40). (13
These equations have the form of a system of kinetic equaquation(13) shows that wher’y andI'; are both nonzero,
tions involving four states, and, clearly, andI'; have the  the fidelity Fe(oo):‘—]i in the long-time limit. When eitheF,
meaning of the degradation rate constants. The symmetrig, I'; is zero,F(*)=1. This result indicates that if we can
form Of Eq. (10) suggests that all four states are equiValem'somehow transform 2the system and minimize either the di-
dynamlca_tlly_; her_lce we expect the degradation rates of thSgonal energy fluctuations or the off-diagonal matrix ele-
systems initially in any of the four Bell states to be equal. Ingyan fiyctuations, the original quantum state can be better
this limit, the results of the teleportation ba;ed on diﬁeren,‘greserved. In adéition, Eq13) can be used to compute a
Bell-state channels are the same. Later we will show that thigjtico| time scale beyond which the degraded entanglement
is only true where,=J,=0 and the two qubits are coupled 10 -5nn0t he purified by any entanglement purification method

distinct b_aths. | h h ¢ bits ini [28]. The fidelity required by a successful entanglement pu-
Equation(10) also shows that a system of two qubits ini- iiication processF(t) > 0.5, corresponds to a critical time

tially in one of the maximumly entangled states degradez%C WhereFe(tc):%. For any high-fidelity quantum telepor-

i istical mi f the four Bell LA i . . .
Into a statistical mixture of the four Bell states Ssummgtatlon to be possible, the EPR pair should not be allowed

that the system is initially in the sta{B,) and stays in the to stay in the noisy channels for a time period longer than
nois antum channels for a time peripdhe density ma- . i e . :
ISy quantu Ime perib y te, which also defines the critical distance for possible

trrel);;rz)stetr:]tic?r;:?ﬁéegtgt?sazzsaﬁ:ﬁitjped Bob obtained can behigh-ﬁdelity guantum teleportation, given the noise of the
channels described by the parametEgsand ;.

P(t) =D12(1)[B(By| +D22(t)[Bo)(B;| +b33(t)[Ba)(Byl

+044(1)|B4)(By . (11 Now we can use the result in the previous section to study
the outcome of teleporting a qubit in state |#)=cy|0)
+¢4/1) from Alice to Bob. We assume that the traveling time
that the EPR pair spends in the noisy channels and the
Boa(t)= :11 + %e-ZI‘Ot + %e—Zl“lt + %e—Z(Foﬂ"l)t, averageq energy,, and off-diagonal matr_ix _elemenﬂﬁ for
both qubits are very small so that the limit 8{=J,=0, n

C. Outcome of teleportation

The populations can be obtained by solving Bd) with the
initial condition py=|B,)(B4|:

=a,b, can be applied. After receiving the degraded EPR pair

~ 1 1 - 1 - 1 - . .

PoAt)=7 — je 2o+ je it~ Jer2To Tt described by Eq(11), Alice and Bob then perform the Bell-
state measurement and corresponding unitary transformation

Pat)=1 + tedot - T2t Lgraloat, to complete the teleportation. Assuming that all measure-

ments and unitary transformations are carried out perfectly

~ _ _ _ and do not introduce more error, the teleportation outcome
padt)=5 — 3770 - e 2+ 2ot (12)  that Bob obtains is

CoCy + CoCy o

argt 4 o€~ Gl e 2TGH )t
2

5+ 3ol - [eye

p(= CoCy + CoC CoC1 — CoCy (19
0~1 " -0 1e—2I‘0t 401 >0 le—2(F0+F1)t 1

5 5 >t %(|Cl|2 - |coe @t

This result is similar to the result for the dissipation of athe outcome is exactly the same as if the teleported qubit is
two-level system in the HSR modg24,27). Notice that the transferred physically from Alice to Bob through the noisy
decoherence depends on the total diagonal fluctuatibns, channelC, and C,, although the qubit Bob receives has
=5+ ))8, and the population relaxation depends on the totahever traveled through chann@}, physically.

off-diagonal fluctuationsI'; = y{+ ))1’ Clearly, noise in both The fidelity of teleportation as a function of the traveling
channels affects the teleportation outcome additively. In factiime t is
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1 1. .o 1 . .

Freidlt) = 5 + 5 (CoCa + Cocy) 620"+ ([cof? ~ ey )27 By o
R g—

Lo *\25-2(Tg+D &1 (=X p—

- 5 (Caer ~ cocy) e 20T (15 B —

06
The fidelity of teleportation decreases monotonically from 1 L
to % as the traveling time increases. At the long-time limit,
the fidelity approache%, which means that the result of the
quantum teleportation is a half-half mixture () and |1)
states; i.e., information abolit) is totally lost. This result is 02 b
in agreement with recent studies of the effect of noise on
guantum teleportatiof29].

Equation(15) provides a simple interpretation for the phe- 0
nomenological parametdr, andI';: Ty is the total decay
rate for the real part of the coherence, dndis the total
population relaxation rate. Recall thg, n=a,b, is defined FIG. 1. Fidelity as a function of the traveling time for the Bell
using the second moment of the diagonal energy fluctuatiostates in the coherent regime;=s,=1, J,=J,=0.5, %3=5=0.1,
den(t), n=a,b (coupling involving o), and 75, n=a,b, is  andy3=95=0.1. The characteristic time scaig=1/s.
defined using the second moment of the off-diagonal matrix
element fluctuationsJ,(t), n=a,b (coupling involvingoy).  function of traveling time at,=e,=1, J,=J,=0.5, Y=
We see clearly the effects of different types of noise: the=0.1, andy?= ﬁ:O.l. The different oscillating behavior of
diagonal fluctuations introduce phase shifts that only affecthe Bell states can be understood by considering the time-
the coherence of the qubit; the off-diagonal fluctuations inindependent part of the Hamiltonian. From E§), all the

troduce coupling between the two states and result in popthonzero time-independent matrix elements are
lation transfer. Note that the decay of the imaginary part of

t/l'o

the coherence depends on both diagonal and off-diagonal (B1/HolB2)=(BolHo[By) = &5+ &1,
fluctuations. In the terminology of quantum computing,
phase-shift errors are caused by the diagonal energy fluctua- (By|Ho|B3)=(B3|Hq|B1) = I+ Jp,
tions, bit-flip errors are caused by the off-diagonal matrix
element fluctuations, and the change in ¢fgcomponent is (ByHo|Ba)=(B4Ho|B,) = 3y — Ja,

due to both types of fluctuations. Previous studies of the
dissipation of qubits using spin-boson types of Hamiltonian B B
give similar results for the effects of different types of (Bg|Ho|Ba)=(By|H|B3) = 85— &1

system-bath interactiond0,11,13. Our model gives direct These matrix elements govern the coherent transition be-
relationships between the phenomenological parameters dgyeen the Bell states and result in the oscillating behavior of
scribing the strength of the fluctuations and the dissipationqe dynamics. In Fig. 1, the fidelity of th&,) state decays
rates. In addition, our model can take into account the eﬁeCtﬁwonotonically ag increases, because both matrix elements
of both types of fluctuationsimultaneouslywhich is differ-  coyple this state to the other states are zero for the param-
ent from most error models used previously. eters used. This also explains why the fidelity of {Bg)
state provides an upper bound on the fidelity of other Bell
states in Fig. 1. The state that is coupled most weakly to
other states decays most slowly.

When the time-independent part of the Hamiltonian con- In the regime where the averaged Hamiltonian matrix el-
tains nonzero matrix elements— i.es,#0 or J,#0, n ements are smaller than the strength of the noise, the system
=a,b—the exact analytical expression fpft) is not gener- is overdamped and no oscillating behavior can be observed.
ally available. In addition, the effect of diagonal energy fluc-Figure 2 shows the fidelity of the four Bell statesegtey,
tuations no longer can be clearly distinguished from the ef=0.1, J,=J,=0.05, %3=95=0.1, andy3=+2=0.1. In this re-
fect of off-diagonal matrix element fluctuations; both gime, all Bell states degrade monotonically as the traveling
population relaxation and decoherence depenggoandy],  time increases.
n=a,b. More importantly, the four Bell states no longer de- The fidelity of the EPR pair used in the quantum telepor-
cay at the same rate, and we can see the effect of the coheation is directly related to the fidelity of teleportation. There-
ent dynamics depending on the value of the averaged enerdgre, the above discussion can be directly applied to the fi-
and off-diagonal matrix elements. In the weakly damped redelity of teleportation performed using different Bell states.
gime where the averaged Hamiltonian matrix elements ar®hene,# 0 or J,# 0, n=a,b, the fidelity of the teleporta-
larger than the strength of the noise, the dynamics of a paition behaves differently when different Bell states are used.
of entangled qubits exhibits coherent oscillating behaviorTo achieve the best result for the teleportation, we have to
These oscillations can lead to errors of the quantum telepochoose the Bell state that is coupled most weakly to other
tation. Figure 1 shows the fidelity of the four Bell states as astates. In generak,>0, n=a,b, andJ, and J, have the

D. Nonzero averaged matrix elements
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1 y y - y =0,n=a,b), we obtain a simple result for the populations in
the four Bell states:
08 |
d_ ~ ~
06| apu(t):‘l)’o[?’zz(t) =puO]+ 4ylpast) =p1a(V],
T
04|
s d. ~
d_tp22(t)=470[bll(t) =p20],
02} 1
° 0 1 2 3 lt 5 d
t, d_tﬁs3(t) =4y[p1a(t) =paa(V)],

FIG. 2. Fidelity as a function of the traveling time for the Bell
states in the overdamped regimg=¢,=0.1,J,=J,=0.05, 7’827}5
=0.1, andy?=+2=0.1. The characteristic time scatg=0.1/e,.

d.
ap44(t): 0. (18)

same sign thus thid,) state will have the weakest coupling.
The singletB,) state is the preferred EPR state for the quan-
tum teleportation. Equation(18) describes the dynamics for a system of two
qubits coupled to a common bath in the Bell-state basis.
Interestingly, the population in tHB,) state,p4(t), is invari-
ant in time. In addition, when only diagonal energy fluctua-
We have studied the dissipation of two entangled qubitgions exist(y,=0), the population in théBs) state is also
each coupled to a distinct bath, which is the typical situatiorinvariant; when only off-diagonal matrix element fluctua-
relevant for the quantum teleportation. Another interestingions exist(y;=0), the population in théB,) state is invari-
case is when the two qubits are coupled to a common batlant. Compared to the result of two qubits coupled to distinct
In this case, we use the Hamiltonian of E&); the differ-  baths[see Eq.(10)], Eq. (18) shows that the fluctuations
ence in the state of the bath is reflected by different correlainterfere constructively for théB,) state, leading to a faster
tion functions for the stochastic processes. When the tweecay rate, but destructively for th®,) state. This result can
qubits are coupled to a common bath, the first two momentge understood easily in our stochastic model. In our model,
can be represented as the effect of environment on the system is represented by a
_ _ fluctuating field, and the interaction Hamiltonian for the two
(8en(1)=(80n(1)) =0, qubits isH = 0PV (1) +\PV,(t) (i=x,z a andb are labels
for different qubity. When the two qubits are coupled to a
common bathV/,(t) =V,(t), we can factorize the interaction
into the formHim:(cri(a)+ai(b))va(t). Therefore, any stati)
that Satisfies<go|a'i(a)+(ri(b)|(p>=0 does not interact with the
L fluctuating field and is invariant to the noise. We can see that
(en(t) In(1)=0, (16) (B30 +0”|B3)=0 and(B,|s\?+0|B,)=0, and thus both
where y, describes the strength of the diagonal fluctuations{B3) and|B,) states are not affected by phase-shifting noise;
v, describes the strength of the off-diagonal fluctuations<82|g(xa>+Uf(b)|82>:0 and<B4|af(a)+af(b)|B4>=0, and thus both

Note that because the qubits are coupled to a common batfyq gy and|B,) states are not affected by bit-flipping noise.
the fluctuations on different qubits are correlated. From Edsyhis effect of the collective bath has been verified experi-

(8) and(16), we can derive the correlation matrik for the o511y [30] and studied in theoretical works related to the
system in the Bell-state basis. In this collective bath lifRit, 4ooc of “quantum error-avoiding codes31,37 and

has only eight nonzero elements that can be represented By, oherence-free subspacd®3,34. Duan and Guo have
the following two irreducible elements: shown a similar result using a Hamiltonian that explicitly

E. Effect of the collective bath

(Gen(t) Sem(t'))=yodlt —t'),

(83n(1) (1" ))=y 8t — 1),

Rys15470, includes the linear coupling terms between the system and
‘ the boson batH32,35. The agreement indicates that our
_ simple stochastic model can handle both the independent and
Riza54y1. (17)

the collective baths properly.

Using Eq.(17), we can derive the equation of motion for ~ Recently, Kumar and Pandey have studied the effect of
the dynamics of two qubits coupled to a common bath. In thenoise on quantum teleportatig29]. They applied two dif-
limit of zero averaged Hamiltonian matrix elemelfts=J,  ferent models—a stochastic model and a spin-boson type
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model—to this problem and studied the relative teleportatiorand Hanggi, and show that our model yields similar results.
efficiencies of the Bell states. Their main result is that for theln general, our model is easier to extend to many-qubit sys-
simple stochastic model, the four Bell states are equivalentems than the QUAPI method and can incorporate the effects
but for the second model in which the effect of environmentof noise from different sources at the same time.

is considered explicitly, thiB,) state is least affected by the
noise. We obtain a similar conclusion using the stochastic
Liouville equation approach. Based on our result, we under-
stand that théB,) state is the least affected state because of In a physical system, a quantum gate can be expressed by
the assumption of a collective bath, not because the effect & Hamiltonian with terms representing the control fields that
the bath is considered microscopically. Like spin-boson-typéesult in the gate operation. Consider a elementary step in a
models, a simple stochastic model when treated correctly caguantum gate operation where the control Hamiltonian is
provide the same result and gives a simple picture for théwitched on, a generic Hamiltonian describing the constant

effect of a collective bath versus a localized bath. external fields. and the time-dependent fluctuatiomsise
for a two-qubit system can be written as

IV. ERRORS IN A QUANTUM cNoOT GATE HO= S [on+ 0o, 0]0™ + S [3,+ 8300
Qubits and quantum gates are the basic elements of quan- n=ab n=ab
tum computing. A quantum circuit that performs a particular a (b a) (b
quantum operation can be expressed as a composition of *lo+ 5g(t)](a(+)0(‘)+a(‘)a(+ )
elementary quantum gatg36]. In fact, quantum circuits can =Hgy+h(t) (19
nstruct ing one- and two-qubit gat ic build- . . .
be conelcled Lsig one- i o-dubl gl 22 Bt Diinere the wo qubis are labeled as quband qubi e
with all one-qubit quantum gates forms such a set of univerf'rSF two terms comprise t_he Harmltoman for two noninter-
sal quantum gatd87]. In reality, quantum computations are actlr)g qub|t§ c;onsudered n E((E)) th?n)lis,t t(ﬁ)rm represents
performed by subjecting an array of qubits under a sequendd® interqubit interaction witly,"=(c, "+ io,7), n=a,b; g
of control fields that control the Hamiltonian of the qubit @hd 89(t) are the time-independent and time-dependent fluc-
system and result in specific quantum gate operations. Ther&Jating parts of the interqubit coupling. The controllable
fore, we consider the process of quantum computation afields are represented by the values of,Jy,n
preparing the qubit system in the initial state, then perform=2 , b, andg Quantum gates can be implemented by
ing programmed control fields on the qubits in a sequence ofWitching these fields on and off in a controlled manner.
time steps, and finally measuring the output in the workingNotice that theX¥ type of coupling is adopted in our model
basis. Hamiltonian. This interaction is just an illustrative example
To understand the effect of noise on general quantun@nd does not account for all possible interactions in a spe-
Computations and he'p the imp|ementation Of quantum Comcific I’ealization Of SO|id-State deViceS. The I’ea| fOI’m Of the
puters, we need a model that can be used to describe tiyaterqubit interaction term depends on the controllable inter-
decoherence and population relaxation for a system of qubitdctions available for each individual physical implementa-
subjected to external control fields. The decoherence anfon. Nevertheless, our model can handle the other types of
realizations have been studied in Reffs4—17,38. In par-  tonian we use here can reproduc_e th_e same general physical
ticular, Thorwart and HangdP investigated the decoherence behavior as other two-qubit Hamiltonians.
and dissipation for a genertNOT gate operation using the ~ From Eq.(19), we can write down the time-independent
numerical ab initio technique of the quasiadiabatic- Part of the Hamiltonian in the standard basis
propagator path integralQUAPI). They demonstrated that {/00),(01),[10),[11)}
this numerical method is capable of describing the full time-

A. Generic model for two-qubit quantum gates

resolved dynamics of the two-qubit system in the presence of gatep  Jo Ja 0
noise. To our knowledge, so far, the QUAPI method is the H. = Jb ea~ep 0 Ja 20)
most sophisticated method that has been applied to study the 0 J, g £p— €4 Jp ’
decoherence during @nOT gate operation. In this section, 0 J 3 —e—s
we apply the stochastic Liouville equation approach to study a b a b
the same genericNOT operation investigated by Thorwart and the time-dependent part of the Hamiltonian is
|
Oeq(t) + Sep(t) AJp(1) 6J,4(1) 0
S8t Se4(t) — Syt Sg(t 8J,(t
(D) = o) SeaD-Ses®  8g() ® 1
8J(t) og(t) ep(t) = Seq(t) 8Jp(t)
0 835(1) S(1) = Geq(t) = Fey(D)
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Furthermore, we assume the two qubits are close to each U, (a) = g2 n—ap
other in space; therefore, we consider the correlation func- w ’ ”
tions suitable for two qubits coupled to a common bath.and the two-qubit operation
Again, we assume the fluctuations have zero mean and

. . . — ia((r(a)(r(b)+(r(a)lr(b))
Sfunction correlation times. The nonzero second moments Uj(a) = 7+ 7= o=,
are All these operations can be easily implemented using our
(8e,(t) Se(t))= vt = t'), model Hamiltoniar{Eq. (19)]. (with all control fields set to
zero initially): U,(a), n=a,b, can be done by switching on
83,(1) 83 (t')=, St —t'), en=—¢ggsSgra) for a time perlqd ofr=al2ey;, Up(a@), n
(O30 SJnt)= 7 ) =a,b, can be done by switching od,=-J,sgn«) for a
(89(1) SY(t'))= 7,8t — '), (22) time period of7=a/2Jy, Uj(a) can be done by switching

on g=-gosgn«) for a time period ofr=a/g, where the
where y, describes the strength of the diagonal energy flucsign  function sgtw) returns -lwhena<0, and
tuations,y; describes the strength of the off-diagonal matrix 1 whena > 0. Using the Corresponding averaged Hamil-
element fluctuations, ang, describes the strength of the tonian H, for each operation and the correlation matrix
fluctuations of the inter-qubit interactions. As we have showrpresented in the previous section, the equation of motion
in the previous section, these phenomenological parameteggscribing the dynamics of the two-qubit system subjected
are related to the kinetic rate of each separate dissipativiey any of these operations can be easily obtained. Actu-
process and can be easily measured experimentally. Alsgily, for arbitrary initial conditions, the analytical solution
note that we directly include the interqubit coupling fluctua-for the time-dependent two-qubit density matgiét) dur-
tions, which corresponds to two-qubit flip-flop errors that arejng U (), U,(a), n=a,b, and U;() operations is avail-
difficult to treat in the microscopic spin-boson-type Hamil- gpje in the Laplace domain and can be used to study ar-

tonians. bitrary quantum circuits composed by these three
Equation(22) can be used to compute the elements of thesjementary operations.

correlation matrixR. Using R together with the averaged  The cnoT gate can be expressed by the following se-
Hamiltonian matrix elements in E¢20), we can obtain the quence of one- and two-qubit gate operatig@is

equation of motion describing the dynamics of the two-qubit

system subjected to arbitrary one- and two-qubit control ™ - - -
fields. As a result, we can study the dissipative dynamics of ~CNOT= UbX<_>UbZ(_>be(_ “)Ui<_>UaX(7>
the qubit system during arbitrary gate operations. Although

we only consider an operation done by a set of constant ><U-(2>U <1T>U (j) (23)
external fields, the behavior of more complicated gates that N2)7P 2 7@ 2
involve more than one step can be studied by combining the[_

result for each elementary operations. In our model, the re:
sults for a set of universal quantum gates can be assembl
to compute the results for a general quantum circuit.

able | lists the required control fields and time span to
plement each step using our model Hamiltonian. In Table
, We usegg, Jy, andg, to denote the strength of the control-
lable single-qubit bias, intraqubit coupling, and interqubit
interaction, respectively. In addition, we assume that the con-
trollable field strengths and noigdefined by parameterg,,
The quantuncNOT gate plays a central role in the quan- y;, andy, as mentioned in the previous sectidar the two
tum computation, because, as we noted above, the set of @jubits are identical. The value of these parameters should
one-qubit gates together with tasioT gate is universdl37].  depend on the specific physical realization of the qubit sys-
In the standard basi§00),|01),|10),|11)}, the idealcNOT  tems. The total time required to perform theoT gate is
gate is represented as TenoT=71 289+ 7wl Jg+ 7/ gg. FOr a typical energy scale of 1
meV (suitable for quantum dot qubjtsthe operation time is

B. Quantum cNoT gate

1000 on the picosecond time scale.
igeat |0 1 00 Using the parameters listed in Table I, we can calculate
Ucnor= 000 1] the time-dependent two-qubit density matriXt) during
00 10 CNOT operations under different noise conditions defined by

Yo» Y1, and y,. Figure 3 shows the time-resolvenhoT op-
This gate operates on two qubits and inverts the state of theration for two qubits initially in thg11) state. We set the
second qubit if the first qubit is in the stal®). ThecnoT  strengths of the control fields equal to 1—i.ee=Jy=0o
gate cannot be constructed in one step using our modell. The ideal operatiosolid line) starts at population 1 in
Hamiltonian. Instead, we must construct theoT gate using the|11) state and ends its total population in {1€) state,

multiple elementary one- and two-qubit gates. showing a successfulNOT operation. Three different noisy
To begin with, we define the one-qubit rotations on qubitoperations are shown in Fig. 31) operation with the
a andb, strength of the diagonal energy fluctuatiops=0.05(dashed
o line), (2) operation with the strength of the off-diagonal ma-
Unda) =€ 72 n=a,b, trix element fluctuationsg; =0.05 (dash-dotted ling and(3)
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TABLE |. Parameters of the model Hamiltonians used to performaket gate in seven steps. The
required control fields and time span for each step are listed. Note that we only list the nonzero field

parameters.
No. Operation Control fields Time
ud Zlu | =E S
1 b2\ o )7E 2 £a=80, £p=80 7 4o
U (z) G
2 i\ 2 9=-0o ERENP YN
U 17 - + l
3 =\ 2 Ja=dg TR 4
U (2) LT
4 i\ 2 9=o EERENP N
Upu(— 7) o= Tt T
5 Jp=Jo 2720,
U =2 -+
6 bz 2 &p=¢&p 6T 480
uZ -
7 b2 Jp=-Jg T 43,

operation with the strength of the interqubit coupling fluc- |4y =10),|@,)=(1), |@3)=(|0)+|1))/\2, |@s)=(|0)+|1))/+2,
tuations y,=0.05 (dotted ling. The effect of noise on the |go4):(|0>+i|1>)/\f§, anda,b denoting the state for different

CNOT operation can be clearly seen. In previous work, Thor, hits These states span the Hilbert space for the two-qubit

wartt_ and H?nlgg' gerlved tl'[]? same Itlme—trefrc])lx_zmm)T op- | operations and should give a reasonable result for the aver-
eration resulf15]. Our result is very close to their numerica aged effec{15,39.

ab initio QUAPI result. The agreement between our time-
resolved result with the QUAPI result gives us conﬁdencqd
that our model captures the correct physics.

We use the gate fidelity and gate purity to characterize th
performance of theNoT gate. Other gate quantifiers includ- 4
ing the quantum degree and entanglement capability are also F_iz W | i |¢f” )
calculated 39], but we do not show the results here because - 16,55 outPCNOT Your»
they follow the same trend as the gate fidelity and gate pu- ’ B
rity. In our formalism, the density matrix for the two qubits where we have defined the ideaNoT output |¢4),)
after the noisycNOT operation, p(7cnot) =UcenomPoUnom =ugea jyly and the output of the reatNoOT operation
can be calculated for any initial density matgix Following  pinor=Ycnot WX ¥ UEnor The gate fidelity is a measure
Thorwart and Hanggi, we average the gate fidelity and gatef how close the real operation is compared to the ideal
purity over 16 initial states to account for the general perfor-operation. For a perfect gate operation, the gate fidelity
mance of thecNOT gate. The 16 unentangled input statesshould be 1.
lyg), 1,j=1,2,3,4, aredefined as|yg)=|¢))a®]|¢)), with Similarly, the averaged gate purity is defined as

The gate fidelity is defined as the overlap between the
eal output and the output of the real gate operation. Using
(tahe 16 initial states, the averaged fidelity can be written as
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1F T T T 'Ide'all . 1F -

Poo

Pio

FIG. 3. Time-resolvedcNoT gate operation on théll) input state. Shown are the populations in the four basis stagen
=(ij|p(t)]ij) as a function of time. The strengths of all the fields are set to 1 in the calculationegiely=g,=1—and the corresponding
time steps are defined in Table I. We show the results for four diffexeat gate operationsil) ideal operation without any noigsolid
line), (2) operation with the strength of the diagonal fluctuatiggs 0.05(dashed ling (3) operation with the strength of the off-diagonal
fluctuationsy;=0.05 (dash-dotted ling and(4) operation with the strength of the interqubit coupling fluctuatigps 0.05 (dotted ling.

12 B explicitly discuss the effect of the control-field strength in
== Tr[(plyon)?]. the next subsection.
167j=1 From our results foey=Jy=gy=1, to achieve the thresh-
Qld accuracy of the 0.999 99 level needed for arbitrary long
quantum computationgt0—47, one needs to keep the noise
strength below the 186 level. Assuming a characteristic en-
ergy scale of 1 meV, this value corresponds to a decoherence
time y % in the us scale, which provides a serious challenge
The results of the averaged gate fidelity and gate purity afor experimentalists working on the realization of solid-state
a function of the strength of each individual type of noise arequantum computers.
shown in Fig. 4. For our generic study, we again set the The linear dependence of F-and 1-P on the noise
strengths of all the control fields to 1—i.esp=Jy=gpy=1.  strengths also indicates that the effecttioé sametype of
Clearly, different types of noise cause different amount ofnoise is additive in the weak-noise regime. To study the ad-
errors. However, they all follow the same trend. The devia-ditivity of differenttypes of noise, we calculate the averaged
tions of the gate fidelity and gate purity from the ideal CNOT gate fidelity when different types of noise coexist at the
values—i.e., 1+ and 1-P—are sensitive to the strength of same time. We define the total error of theoT gate opera-
the noise and saturate to 0.75 in the strong-noise limit; théion E as the deviation of the gate fidelity from the ideal
value 0.75 corresponds to a fully mixed state. In the weakvalue:
noise regime, both 1F and 1-P depend linearly on the
noise strength, as expectgth,1§. The proportionality con-
stant in this case is-10. In fact, the proportionality constant
depends on the strengths of the control fields and reflects the
total operation time required to complete theoT gate op- where we have explicitly expressed the total erfoas a
eration. As the strength of the control field increases, thdunction of the three different types of noise strengths:
total operation time decreases, and the qubits have less timg, and y,. In Fig. 5, we show the errors of thenOT gate
to undergo the dissipative processes, resulting in less degraperation where the different types of noise coexist and com-
dation. To minimize the effect of noise, we need to reducepare them to the total errors obtained by adding up the errors
the proportionality constant; therefore, we will want to oper-caused by the individual type of noise. Clearly, for all four
ate the device at the highest control fields possible. Howevesituations considered, these two lines collapse in the weak-
the situation will be different if increasing the strengths of noise regime. The results indicate that errors caused by dif-
the control fields will also introduce more noise. We will ferent types of noise are additive in the weak-noise regime.

P

The gate purity quantifies the effect of decoherence. For
perfect gate operation, the gate purity should be 1.

C. Dependence on the noise strength

E(v0, 71,72 =1 =F(%0, 71, 72), (24)
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1 v v y y v v T If the strength of the interqubit coupling, can be in-
» o — creased without introducing any extra disturbance in the sys-
L . i tem; then we expect operating the device in the strongiest
w2l * | achievable will give the best result. However, physically, ap-
plying a stronger field also means introducing stronger noise
103 ) due to the imperfectness of the field. In our model, this
uw means stronger fluctuations on the interqubttinteraction.
- 10~ | ) The extra noise can be expressed in the value ofjlterm.
To incorporate this effect, we allow, to depend on the
108} y strength of the interqubit coupling,. Figure 6 shows the
errors of thecNOT gate operation as a function gf at v,
10°} . =0.001, y;=0.001, =1, andJy=1. Three different noise
strength dependences are showf) constanty,=0.001
10‘20_8 ";_7 10'.3 10'_5 ";_4 ";4 1(;_2 10‘_1 (solid curve, (2) linear y,=0.0011+g,) (dashed curvg and
: — 2
Noise Strength (1/zo) (3) quadraticy,=0.00X1+g;) (dash-dotted curyeThe three
curves show the same behavior in the sngglikegime, in
1 y - y y y y r which the operation takes too much time and the system is
fully degraded. As the strength of the coupliggincreases,
107 the errors decrease due to the shorter operation time. When
" the strength of the coupling, approaches the strengths of
10 other control field9ey=Jy=1 in this casg the three curves
10 start to show different behavior. For both constant and linear
o v,, the errors generated by other operations
- 10~ [U, L) andU,(a)] dominate the errors of theNOT gate
operation; therefore, increasingy gains nothing and the
10°% curve saturates. Our result for the constaptcase is in
agreement with the result obtained previously using the
107® QUAPI method[15]. The situation is different when the
L strength of the noise depends gg quadratically. For this

108 10'_7 10'_5 10'_5 10'_4 10'_3 10'_2 10'_1 case, the errors start to increase affgr 1, because increas-
Noise Strength (1/t,) ing the interqubit coupling, introduces stronger noise that
cannot be compensated by shorter operation times. There-
FIG. 4. Dependence of the errors in theoT gate operation on  fore, in the quadratic case, there exists an optiggdbr the
the noise strength. The deviations of the gate fidglifyper panel  gate operation.
and gate purityflower panel from the ideal values are shown—i.e.,
1-F and 1-P. The effects of three types of noise are shown in both
plots: (1) diagonal fluctuations represented by (solid line), (2)
off-diagonal fluctuations represented by (dashed ling and (3) We have shown that the generalized HSR model is flex-
interqubit fluctuations represented by (dash-dotted ling The  jpje for realistic physical devices. Applications of this model
control-field strengths are set g=J,=go=1. The unit of noise {4 the effect of noise on the quantum teleportation andT
strength is set to b, with characteristic time scalgy=1/eo. gate operation gives us similar results compared to previous
studies based on microscopic models. In this section, we will
In other words, the following identity holds in the weak- briefly discuss the limitations and possible extensions of this
noise regime: stochastic Liouville equation approach.
_ A key step in the HSR model is to replace the microscopic
E(v0,71,72) = E(%0,0.0 + E(0,7,00 + E(0.0.%2). (29 g 1o bath interactions by stochastic processes. This proce-
Equation(25) justifies previous studies where different types dure has permitted a full description of the dissipative dy-
of system-bath interactions are treated independentljpamics of qubit systems and their response to the external
[15,16. fields. At the same time, we introduce phenomenological pa-
rameters to describe the strengths of fluctuatiogsy,, and
v, in our mode). These parameters have to be determined
experimentally or computed using a separate microscopic
The time required to finish a quantum gate operation ismodel [23,43,44. Generally,y,, 1, and y, should depend
inversely proportional to the strength of the control field on temperature and increase as temperature increases. How-
used, and longer operation time results in more errors. Therever, our model lacks an explicit temperature dependence for
fore, the quality of gate operations also depends on théhese parameters and thus cannot be used to study the tem-
strength of the control field. In this section, we analyze theperature dependence of the qubit dynamics. Fortunately,
dependence of the quality of the quantamoT gate opera- these parameters are directly related to physically measur-
tion on the strength of the interqubit coupling. able quantities and can be easily determined by experiments.

V. LIMITATIONS AND POSSIBLE EXTENSIONS

D. Dependence on the strength of the interqubit coupling
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FIG. 5. We show the error functiorts yq, y1, 7») of thecNOT gate operation in situations where the different types of noise caswikd

lines). For each case, the corresponding total error obtained by adding up the errors caused by the individual types of noise is also shown

(dotted line$. Four different combinations are compared: upper Eft;, I",0) vsE(I',0,0+E(0,I",0) (v andy,); upper right E(0,T",T’)
vs E(0,I',0)+E(0,0,T") (v, and y,); lower left, E(I',0,I") vs E(I',0,0+E(0,0,I') (y, and v,); and lower right, E(I",T",T") vs
E(I",0,0+E(0,I',00+E(0,0,I') (all types of noisg The strengths of all the control fields are set to 1—kg5Jy=gg=1. The character-
istic time scalery=1/¢o. We can clearly see that errors caused by different types of noise are additive in the weak-noise regime.

In our model,y,, v;, and vy, correspond to the decoherence of the gate performance is wefks,1G, which is reasonable
rate, population relaxation rate, and interqubit flip-floppingin the weak-coupling regime and the temperature range rel-
rate, respectively; all of them can be measured by one- anevant to solid-state qubit systems.

two-qubit experiments. In addition, recent theoretical studies The assumption of the fast modulation of the bath might
of the temperature dependence of the quality of quanturbe a more serious problem for the HSR model. The
CNOT gate operation suggest that the temperature dependenédunction correlation time corresponds to an infinite fast

1

0.1

1-F

0.01

FIG. 6. Dependence of the errors in theoT gate operation on
the strength of the interqubit couplirgg. Shown are the deviations

5=0.001
2=(0.001) (go+1)
mmme 4p=(0.001) (g2 +1)

e

0.001 0.01 0.1

100

1000

of the gate fidelity from the ideal value for three typesqef (i)
constant y,=0.001 (solid curve, (i) linear y,=0.00%1+g)

(dashed curve and (iii) quadraticy2=0.00](1+g§) (dash-dotted

curve). Other parameters are sety¥p=0.001,y,=0.001,69=1, and

J0=1.

decay of the bath correlations, which leads to incorrect short-
time dynamics and long-time equilibrium populations. Palma
et al. have studied the decoherence of a qubit and shown that
the dynamics exhibits a “quiet” and a “quantum” regime at
short times and a “thermal” regime at long timgd]. The
HSR model assumes that the bath relaxes infinitely fast and
thus neglects the dynamics of the system before bath relax-
ation takes place. Although the HSR model cannot predict
the short-time dynamics correctly, we expect the physics for
longer operations important for quantum computing are rea-
sonably well captured. Théfunction correlation can be re-
placed by an exponential function in time, and the extended
model for a dichotomic process has been solved exactly
without further assumptiong5-48. It will be interesting to
apply these extended models to quantum computations and
compare the results with th&correlation-function results.

The white noise assumption in the HSR model also cor-
responds to a bath with infinite temperature; therefore, the
resulting equation of motion does not satisfy detailed balance
at finite temperatures. As a consequence, the system always
relaxes to equal populations regardless of the energy differ-
ences between the states. Extensions of the HSR model to
solve this problem have been proposed in R&d]. In quan-
tum computing, we are mainly concerned about the dynam-
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ics of an unbiased qubit system, and even when a bias field isath(collective decoherence caséhe|B,) state is superde-
applied to the system to perform gate operations, the timeoherent, while théB,) state is decoherence free.
period has to be short to avoid any population relaxation. Furthermore, we studied a generic two-qubit Hamiltonian
Since we will only operate the quantum computer in the timecontaining anXY-type interqubit interaction. The dissipative
scale that the population relaxation is negligible, we expectlynamics of a set of one- and two-qubit quantum gates was
that violation of the detailed balance condition will not causestudied, and the results were then combined to calculate the
serious problems for applications related to quantum comaveraged gate fidelity and gate purity for the quantxoT
puting. gate operation. The dependence of the quality of the quantum
The stochastic representation for the dynamics of a quareNoT gate operation on the noise strength and the strength of
tum two-level system has been investigated in Ref8] and  the interqubit coupling was investigated. We found that the
[50]. The correspondence between the phenomenological pguality of the cCNOT gate operation is sensitive to the noise
rameters describing the stochastic fig¢lg) and y; in this  strength and the strengths of the control fields. In addition,
work) and the two-level system microscopic quantities isthe effect of noise is additive regardless of its origin. We
also studied. The stochastic approximation is found to be&ompared our results to Thorwart and Hanggi's results ob-
able to reproduce the results by Leggettal. for the spin-  tained by the numericab initio QUAPI technique. In gen-
boson mode[18]. Our results presented confirm this obser-eral, our results are in good agreement with those obtained
vation. In general, the stochastic Liouville equation approactby the numerical QUAPI method.
presented in this work is applicable in the weak system-bath We also discussed the limitations of the HSR-type ap-
interaction limit relevant to quantum computations. proach. The consequences due to the procedure of replacing
the system-bath interactions by classical fluctuating fields
and the assumption of white noise were considered, and the
VI. CONCLUSION possible extensions were noted. Generally, the application of

In this work, we present a stochastic Liouville equationthe HSR-type model in the weak-coupling regime that is
approach that provides a simple way to evaluate the effect delevant to quantum computing is justified.
noise in quantum computations. This approach is generalized Finally, we emphasize that the model presented in this
from the HSR model. Using an effective system HamiltonianWork can be used to study the dissipative dynamics of a
that includes the system-bath interactions as stochastic flu€dany-qubit system with direct interqubit coupling, imper-
tuating terms with zero mean anéfunction correlation fectness of the control field, and other many-qubit effects. In
times, we derived the exact equation of motion describingiddition, because of thé&function correlation time assumed
the dissipative dynamics for a systemrofjubits. This gen- N the model, the resulting propagator satisfies complete
eralized equation of motion is similar to the form of the Positivity; therefore, no additional time period has to be in-

widely used Redfield equation, with the relaxation matrixSerted between switching events, as will be necessary for
elements given by the corresponding correlation matrix elemethods based on the Bloch-Redfield formalism. As a result,

ments. propagators computed for simple one- and two-qubit gates
We then applied this model to study the dissipative dy-can be directly assembled to study the dissipative dynamics
namics of a system of two independent qubits that mimic®f more complicated quantum circuits. We expect this
the EPR pair used in the quantum teleportation. We showefethod to be applied to evaluate the quality of quantum
that the phenomenological parameters used in our model-circuits under realistic device conditions. Such theoretical
i.e., v and y;—correspond to the decoherence and popu|astudies will be useful for thg dgsign and implementqtion c_)f
tion relaxation rates, respectively. To study the effect of noiséluantum computers. Work is in progress on applying this
on quantum teleportation, we calculated the fidelity of quaninethod to analyze the behavior of a quantum circuit imple-
tum teleportation. We found the effects of noise in the quanmenting quantum error-correcting codes under the influence
tum channels are additive, and the teleportation fidelity de©f various single- and multiple-qubit noise. The results will
pends on the state of the teleported qubit. When the two EPRe published in a subsequent paper.
qubits are degenerate and have no intraqubit coupling, the ACKNOWLEDGMENT
relative efficiencies of teleportation for the four Bell states
are the same; otherwise, the singlet st@g is the most This work has been partly supported by the National Sci-
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