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We propose a model based on a generalized effective Hamiltonian for studying the effect of noise in
quantum computations. The system-environment interactions are taken into account by including stochastic
fluctuating terms in the system Hamiltonian. Treating these fluctuations as Gaussian Markov processes with
zero mean andd-function correlation times, we derive an exact equation of motion describing the dissipative
dynamics for a system ofn qubits. We then apply this model to study the effect of noise on the quantum
teleportation and a generic quantum controlled-NOT (CNOT) gate. For quantum teleportation, the effect of noise
in the quantum channels is found to be additive, and the teleportation fidelity depends on the state of the
teleported qubit. The effect of collective decoherence is also studied for the two-qubit entangled states. For the
quantumCNOT gate, we study the effect of noise on a set of one- and two-qubit quantum gates, and show that
the results can be assembled together to investigate the quality of a quantumCNOT gate operation. We compute
the averaged gate fidelity and gate purity for the quantumCNOT gate and investigate phase, bit-flip, and
flip-flop errors during theCNOT gate operation. The effects of direct interqubit coupling and fluctuations on the
control fields are also studied. We find that the quality of theCNOT gate operation is sensitive to the strengths
of the control fields and the strengths of the noise, and the effect of noise is additive regardless of its origin. We
discuss the limitations and possible extensions of this model. In sum, we demonstrate a simple model that
enables us to investigate the effect of noise in arbitrary quantum circuits under realistic device conditions.
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I. INTRODUCTION

Quantum information processing is of much current inter-
est [1]. The realization of quantum algorithms using nuclear
magnetic resonance(NMR) [2–5] and ion-trap[6] techniques
has shown that quantum computing is possible in principle.
Recent efforts for building quantum computers have focused
on techniques based on solid-state devices that are believed
to be more scalable[7–9]. However, such solid-state devices
usually require sophisticated manufacturing techniques, and
the inevitable interactions between a qubit and its surround-
ing environment(“bath”) introduce noise into the quantum
system, resulting in the degradation of the quantum superpo-
sition state. Thus, the extra degrees of freedom of a solid-
state system and the inherent system-bath interactions pose a
great problem for quantum computing with such devices.
The decoherence problem is the main obstacle towards the
realization of a universal quantum computer, and a sound
theoretical framework for the description of the decoherence
and population relaxation of qubit systems is necessary
[10,11].

Because the ability to compute and predict the behavior of
a quantum circuit under the influence of noise is crucial, a
model that can describe errors from the system-bath interac-
tions could be extremely useful. Such a model will also be
useful in the study of quantum error-correcting and error-
preventing schemes, as well as provide informative guide-
lines for the design of quantum computers. However, de-
scribing the nonequilibrium decoherence and population

relaxation of a many-qubit system is nontrivial. No general
model exists for this purpose. Classical noise models and
microscopic noise models have yielded some success, but
these formulations do not provide a general solution frame-
work for a many-qubit system.

Classical noise models that describe the decoherence and
population relaxation as exponential decays of the off-
diagonal and diagonal components of the density matrix are
widely used for the estimate of the error rates during quan-
tum computation[11,12], but generally these models lack
quantum features that are important for quantum computing,
such as the quantum interference effect.

Microscopic noise models based on the spin-boson
Hamiltonian that explicitly include the linear couplings be-
tween the system and the bath degrees of freedom have pro-
vided valuable insights about decoherence effects[10,11,13].
Recently, the decoherence and gate performance of a quan-
tum controlled-NOT (CNOT) gate operation for several differ-
ent physical realizations has been studied based on such
spin-boson-type Hamiltonians[14–17]. A number of differ-
ent techniques have been developed to solve the dynamics of
microscopic Hamiltonians[18]. However, these methods are
often complicated and difficult to generalize for systems with
more than two qubits. In addition, in many cases the exact
form of the system-bath interactions is unknown, or the pa-
rameters are difficult to obtain experimentally, and the mi-
croscopic models are difficult to use in these cases.

The Bloch-Redfield formalism is generally used to study
NMR spin dynamics[19,20] and has been applied to study
the dynamics of many-spin systems. However, this formal-
ism, while suitable in NMR systems, is not always applicable
in general qubit systems. Moreover, the Bloch-Redfield for-
malism is also known to violate the complete positivity of*Electronic address: silbey@mit.edu
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the reduced density operator at short times[21]. To apply the
Bloch-Redfield formalism to quantum computing, nonphysi-
cal additional time intervals have to be inserted between the
switching events[14,15]. These extra time periods will result
in an overestimation of the degradation of the qubit systems.

Thus, generally speaking, a method that can be used to
analyze the quality of a functional quantum circuit and ca-
pable of providing a quantitative result is still not available.
In this work, we propose a stochastic Liouville equation ap-
proach to describe errors in quantum computations. This ap-
proach originates from the Haken-Strobl-Reineker(HSR)
model first proposed by Haken and Strobl and later extended
by Reineker in the 1970s to describe charge and energy
transfer in organic crystals[22–24]. The HSR model is
known to be able to capture the coherent and incoherent
dynamics of quantum two-level systems. In this model, the
system-bath interactions are taken into account by allowing
the site energies and the off-diagonal matrix elements of the
system to fluctuate over time. We generalize the idea of
Haken and Strobl to describe a system ofn qubits. The re-
sulting stochastic Liouville equation is then solved to obtain
a set of equations describing the dynamics of a general
n-qubit system. To demonstrate the applicability of our
method, we study the effect of noise on quantum teleporta-
tion and a genericCNOT gate operation, and then compare
our results with previous work. We show that our model can
reproduce the main results obtained previously by using mi-
croscopic model Hamiltonians. The limitations and possible
extensions of our semiclassical model are also discussed.

II. STOCHASTIC LIOUVILLE EQUATION
APPROACH

Previous work on the study of the population relaxation
and dccoherence of qubit systems is usually based on the
spin-boson Hamiltonian, in which the qubits are coupled lin-
early to the bath degrees of freedom(the environment) and
the bath is treated explicitly as a system of harmonic oscil-
lators [10,11,18]. Due to the difficulty of applying the spin-
boson model to multiple-qubit systems, we take another ap-
proach. Instead of treating the bath explicitly, we follow the
stochastic Liouville approach of the HSR model and con-
sider an effective Hamiltonian that treats the effect of the
bath as a set of classical fluctuating fields acting on the sys-
tem [22–24]. To describe the dynamics of an array of qubits
under the influence of an external control field and environ-
mental noise, we consider a system ofn qubits and start from
a Hamiltonian with time-independent and time-dependent
parts. The general Hamiltonian of the qubit system can be
written as

Hstd=H0 + hstd= o
i,j=0

2n−1

fHij + hijstdgci
†cj , s1d

whereci
† and ci are the creation and annihilation operators

for the ith state of the 2n basis set. The time-independent part
H0 describes the interactions between qubits, while the time-
dependent parthstd describes the fluctuations of the interac-
tions due to the coupling to the environment. For simplicity,

we assume throughout this work that the external control
fields are switched on and off instantaneously, and the inter-
actions introduced by the external control fields are constant
in time; this corresponds to a rectangular pulse. More realis-
tic pulse shapes can be incorporated into our treatment with-
out too much additional work. In addition, a sequence of
different rectangular pulses can be divided into time periods
with a constant external field in each of them and then
treated separately using a different time-independentH0 for
each time period. Considering only constant external control
fields does not affect the generality of this model.

The time-dependent part of the Hamiltonian describes the
influences of the environment via fluctuations of the system
energy. This term may include fluctuations from many dif-
ferent origins, such as the fluctuations of imperfect control
fields, the fluctuations induced by the bath on the qubit ex-
citation energy, the off-diagonal matrix element, and the in-
terqubit interactions. Following Haken and Strobl[22], we
consider the fluctuations as random Gaussian Markov pro-
cesses with zero mean andd-function correlation times:

khijstdl=0,

khijstdhklst8dl=Rij ;kl dst − t8d. s2d

Here the angular bracketsk l represent the thermal average
over all bath degrees of freedom, and the time-independent
correlation matrix elementRij ;kl is a real number describing
the correlations betweenhijstd andhklst8d. All Rij ;kl elements
form a 22n-dimensional correlation matrixR. In addition, we
have the following symmetry property ofR:

Rij ;kl = Rji ;kl = Rij ;lk = Rji ;lk = Rkl;i j . s3d

The value ofRij ;kl depends on the strength of the coupling to
the environment; therefore, it is a measure of the noisiness of
the environment. Thed-function correlation in time corre-
sponds to the limit of fast bath modulations, which assumes
that the correlation time of the bath is much smaller than the
characteristic time of the system. Therefore, this model
should be valid at the high-temperature limit. Also note that
although the effect of temperature can be included by con-
sidering temperature-dependent correlation matrix elements,
there is no explicit temperature dependence in this model.
We will discuss the consequences of this assumption and the
applicability of this model in more detail in Sec. V.

The time-independent part of the HamiltonianH0 and the
correlation matrixR determine the dynamics of the system.
The values ofH0 andR depend on the setup of the physical
system, the various types of noise considered, and the nature
of the bath. Note that in the HSR model, the system is lim-
ited to the one-exciton subspace, and the matricesH0 andR
can be obtained directly. However, in ourn-qubit system, all
2n states must be considered, and how to determineH0 and
R is less obvious. In the following sections, we provide ex-
plicit examples ofH0 andR for systems describing quantum
teleportation and generic quantum gates. Generalization of
the procedure to determineH0 and R for a generaln-qubit
system should be straightforward. Throughout this section
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we will only use the generic forms ofH0 andR to derive the
equation of motion that describes the time evolution of the
n-qubit system under the influence of noise.

The dynamics of the system is described by the stochastic
Liouville equations"=1d

r.std = − ifHstd,rstdg,

where rstd is the density matrix of the system at timet.
Using the statistical properties ofhstd fEq. s2dg and the sym-
metry property of the correlation functionsfEq. s3dg, we can
compute the exact equation of motion for the averaged den-
sity matrix elements of the system by applying the second-
order generalized cumulant expansion method to average
over all fluctuations. The result we obtain is in a simple
form:

d

dt
r̃ab=− io

j

Ha jr̃ jb + io
j

r̃a jHjb− 1
2o

k,l
Rlk;kbr̃al

− 1
2o

k,l
Rlk;kar̃lb + o

k,l
Rbl;kar̃kl, s4d

where all summations are over all 2n-state indices. In addi-
tion, we have defined the averaged density matrix of the
system,r̃std=krstdl. In Eq. s4d, the dynamics of the averaged
density matrix can be separated into a coherent part, due to
H0, and a incoherent part, due toR. The dissipation of the
system is governed by incoherent dynamics and is related to
the elements of the fluctuation correlation matrixR. Notice
that the form of Eq.s4d is similar to the form of the widely
used Redfield equation, with the relaxation matrix elements
given by the correspondingRij ;kl terms in the equationf25g.

Equation(4) forms a system of 22n linear ordinary differ-
ential equations(ODE’s). Given the values ofHij andRij ;kl,
the ODE system can be solved efficiently to yield the time-
dependent averaged density matrixr̃std. In fact, in most one-
qubit and two-qubit systems, the equations can be solved
analytically, and the analytical formula forr̃std can be ob-
tained. In general, we can calculateH0 and R from the
Hamiltonian of the system and the correlations between fluc-
tuations introduced by the environment. Once we haveH0
and R, it is then trivial to solve Eq.(4) to yield a r̃std that
fully describes the dynamics of then-qubit system. This pro-
cedure is straightforward and can be used to study the effect
of noise in complex quantum computations. We demonstrate
the applications of this model on the study of the effect of
noise on quantum teleportation and general quantum two-
qubit gates in the next two sections.

III. DISSIPATION IN QUANTUM TELEPORTATION

Since first proposed by Bennettet al. in 1993 [26], the
concept of “quantum teleportation” has received much atten-
tion. By exploiting the entangled nature of an Einstein-
Podolsky-Rosen(EPR) pair, a sender can transmit the quan-
tum state of a qubit to a receiver, without physically
transferring the qubit through space. In this section, we will
apply our stochastic Liouville approach to study the effect of
noise on quantum teleportation.

A. Quantum teleportation

We first consider the ideal scenario of teleporting one qu-
bit from Alice to Bob. Suppose Alice and Bob share a EPR
pair, labeled as qubita and b, emitted from an EPR pair
source, and Alice wants to teleport qubitc in state ucl
=c0u0l+c1u1l to Bob. The EPR pair source emits two en-
tangled qubits in one of the four Bell states at timet=0, and
then the two qubits are sent through separate channelsCa and
Cb to Alice and Bob, respectively. After receiving qubita,
Alice performs a Bell-state measurement on her qubits(a
and c) and sends the outcome of her measurement to Bob
through a classical channel. Alice’s measurement projects
qubit b onto one of the four corresponding states: i.e.,
I sc0u0lb+c1u1lbd, szsc0u0lb+c1u1lbd, sxsc0u0lb+c1u1lbd, and
isysc0u0lb+c1u1lbd. Bob then applies the corresponding in-
verse transformation(I , sz, sx, and −isy, respectively) to
recover his qubit in the stateucl.

In practice, errors can happen during the quantum telepor-
tation from several origins:(1) the noise in the quantum
channelsCa andCb, (2) the degradation of qubitc after the
preparation,(3) the imperfect Bell-state measurement per-
formed by Alice,(4) the further degradation of qubitb when
transmitting the result of Bell-state measurement through the
classical channel, and(5) the imperfect unitary transforma-
tions performed by Bob. Here, we only consider the first
situation where channelsCa andCb are noisy, and focus on
the errors due to the degradation of entanglement. We as-
sume all other operations are done perfectly. This means that
the result obtained in the following represents a lower bound
on the errors in quantum teleportation.

B. Effect of noise on a pair of entangled qubits

To study the degradation of a pair of entangled qubits, we
consider the effective Hamiltonian describing two uncorre-
lated qubitsa andb:

H=Ha + Hb= o
n=a,b

«nstdsz
snd + o

n=a,b
Jnstdsx

snd

= o
n=a,b

f«n + d«nstdgsz
snd + o

n=a,b
fJn + dJnstdgsx

snd, s5d

wheresz
snd andsx

snd, n=a,b, are Pauli spin operators on qu-
bits a and b; 2«a s2«bd is the averaged energy splitting be-
tween theu0l and u1l states of qubita sbd; Ja sJbd is the
averaged off-diagonal matrix element for qubita sbd;
d«astd fd«bstdg is the time-dependent fluctuating part of the
diagonal energy for qubita fbg ; dJastd fdJbstdg is the time-
dependent fluctuating part of the off-diagonal matrix element
for qubit a fbg. Following the assumption made in Sec. II, we
regardd«nstd and dJnstd , n=a,b, as Gaussian Markov pro-
cesses fully described by their first two moments:

kd«nstdl=kdJnstdl = 0,

kd«nstdd«mst8dl=g0
ndnmdst − t8d,

kdJnstddJmst8dl=g1
ndnmdst − t8d,
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kd«nstddJmst8dl=0, s6d

whereg0
a sg0

bd describes the strength of the diagonal energy
fluctuations of qubita sbd; g1

a sg1
bd describes the strength of

the off-diagonal matrix element fluctuations of qubita sbd.
Clearly,g0

a andg0
b are related to the system-bath interactions

involving sz system operators, andg1
a and g1

b are related to
the interactions involvingsx system operators. These phe-
nomenological parameters can be estimated experimentally
[24,27]. Notice that we treat the correlation between qubitsa
and b independently, because in quantum teleportation, the
two EPR qubits are sent through different channels to two
distantly separated places; thus the two qubits are coupled to
distinct baths. In addition, we assume the diagonal and off-
diagonal fluctuations are not correlated.

To simplify our computations, we choose to study the
dynamics of the system in the Bell-state basis. The four Bell
states are defined as

uB1l=
1
Î2

su0lau0lb + u1lau1lbd,

uB2l=
1
Î2

su0lau0lb − u1lau1lbd,

uB3l=
1
Î2

su0lau1lb + u1lau0lbd,

uB4l=
1
Î2

su0lau1lb − u1lau0lbd,

where subscriptsa,b label the state of different qubits. For
convenience, hereafter we will use the notation that uses the
first digit to denote the state of qubita and the second digit to
denote the state of qubitb—i.e., u1lau1lb;u11l. The Hamil-
tonian for the two-qubit system[Eq. (5)] in the Bell-state
basis is

H = 3
0 «a + «b + h12std Ja + Jb + h13std 0

«a + «b + h21std 0 0 Jb − Ja + h24std
Ja + Jb + h31std 0 0 «a − «b + h34std

0 Jb − Ja + h42std «a − «b + h43std 0
4 , s7d

where the nonzero transformed time-dependent matrix ele-
ments are

h12std=h21std = d«astd + d«bstd,

h13std=h31std = dJastd + dJbstd,

h24std=h42std = dJbstd − dJastd,

h34std=h43std = d«astd − d«bstd. s8d

From Eqs.(6) and (8), we can easily compute the corre-
lation matrix R of the system. In this case,R has only 32
nonzero elements that can be represented by the following 6
irreducible elements:

R12;12=g0
a + g0

b,

R12;34=g0
a − g0

b,

R13;13=g1
a + g1

b,

R13;24=g1
b − g1

a,

R24;24=g1
a + g1

b,

R34;34=g0
a + g0

b, s9d

Other nonzero elements ofR can be obtained using the sym-
metry property ofR [Eq. (3)]. Plugging the correlation ma-
trix elements[Eq. (7)] and the time-independent Hamiltonian
matrix elements[Eq. (9)] into Eq.(4), we obtain the equation
of motion for the averaged density matrix of the system,r̃std.

In the limit of zero averaged Hamiltonian matrix ele-
ments,«n=Jn=0, the equations of motion for the diagonal
density matrix elements are decoupled from those for the
off-diagonal density matrix elements. Therefore, the dynam-
ics of a system initially in one of the four Bell states(i.e., the
initial density matrix has only nonzero diagonal elements)
can be fully described by the equations for the diagonal den-
sity matrix elements:

d

dt
r̃11std=G0fr̃22std − r̃11stdg + G1fr̃33std − r̃11stdg,

d

dt
r̃22std=G0fr̃11std − r̃22stdg + G1fr̃44std − r̃22stdg,
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d

dt
r̃33std=G0fr̃44std − r̃33stdg + G1fr̃11std − r̃33stdg,

d

dt
r̃44std=G0fr̃33std − r̃44stdg + G1fr̃22std − r̃44stdg, s10d

where we have definedG0=sg0
a+g0

bd, and G1=sg1
a+g1

bd.
These equations have the form of a system of kinetic equa-
tions involving four states, and, clearly,G0 andG1 have the
meaning of the degradation rate constants. The symmetric
form of Eq. (10) suggests that all four states are equivalent
dynamically; hence we expect the degradation rates of the
systems initially in any of the four Bell states to be equal. In
this limit, the results of the teleportation based on different
Bell-state channels are the same. Later we will show that this
is only true when«n=Jn=0 and the two qubits are coupled to
distinct baths.

Equation(10) also shows that a system of two qubits ini-
tially in one of the maximumly entangled states degrades
into a statistical mixture of the four Bell states. Assuming
that the system is initially in the stateuB1l and stays in the
noisy quantum channels for a time periodt, the density ma-
trix for the entangled qubits Alice and Bob obtained can be
represented as the statistical mixture

r̃std = r̃11stduB1lkB1u + r̃22stduB2lkB2u + r̃33stduB3lkB3u

+ r̃44stduB4lkB4u. s11d

The populations can be obtained by solving Eq.s10d with the
initial condition r0= uB1lkB1u:

r̃11std=
1
4 + 1

4e−2G0t + 1
4e−2G1t + 1

4e−2sG0+G1dt,

r̃22std=
1
4 − 1

4e−2G0t + 1
4e−2G1t − 1

4e−2sG0+G1dt,

r̃33std=
1
4 + 1

4e−2G0t − 1
4e−2G1t − 1

4e−2sG0+G1dt,

r̃44std=
1
4 − 1

4e−2G0t − 1
4e−2G1t + 1

4e−2sG0+G1dt. s12d

From Eq.(12), the fidelity of the entangled pair, defined
as the overlap between the initial density matrixr0 and the
density matrix at timet, can be calculated:

Festd = Tr r0r̃std =
1

4
+

1

4
e−2G0t +

1

4
e−2G1t +

1

4
e−2sG0+G1dt.

s13d

Equations13d shows that whenG0 andG1 are both nonzero,
the fidelity Fes`d= 1

4 in the long-time limit. When eitherG0

or G1 is zero,Fes`d= 1
2. This result indicates that if we can

somehow transform the system and minimize either the di-
agonal energy fluctuations or the off-diagonal matrix ele-
ment fluctuations, the original quantum state can be better
preserved. In addition, Eq.s13d can be used to compute a
critical time scale beyond which the degraded entanglement
cannot be purified by any entanglement purification method
f28g. The fidelity required by a successful entanglement pu-
rification process,Festd.0.5, corresponds to a critical time
tc whereFestcd= 1

2. For any high-fidelity quantum telepor-
tation to be possible, the EPR pair should not be allowed
to stay in the noisy channels for a time period longer than
tc, which also defines the critical distance for possible
high-fidelity quantum teleportation, given the noise of the
channels described by the parametersG0 and G1.

C. Outcome of teleportation

Now we can use the result in the previous section to study
the outcome of teleporting a qubitc in state ucl=c0u0l
+c1u1l from Alice to Bob. We assume that the traveling time
that the EPR pair spends in the noisy channels ist, and the
averaged energy«n and off-diagonal matrix elementsJn for
both qubits are very small so that the limit of«n=Jn=0, n
=a,b, can be applied. After receiving the degraded EPR pair
described by Eq.(11), Alice and Bob then perform the Bell-
state measurement and corresponding unitary transformation
to complete the teleportation. Assuming that all measure-
ments and unitary transformations are carried out perfectly
and do not introduce more error, the teleportation outcome
that Bob obtains is

r8std = 3 1
2 + 1

2suc0u2 − uc1u2de−2G1t c0c1
* + c0

*c1

2
e−2G0t +

c0c1
* − c0

*c1

2
e−2sG0+G1dt

c0c1
* + c0

*c1

2
e−2G0t +

c0
*c1 − c0c1

*

2
e−2sG0+G1dt 1

2 + 1
2suc1u2 − uc0u2de−2G1t 4 . s14d

This result is similar to the result for the dissipation of a
two-level system in the HSR modelf24,27g. Notice that the
decoherence depends on the total diagonal fluctuations,G0
=g0

a+g0
b, and the population relaxation depends on the total

off-diagonal fluctuations,G1=g1
a+g1

b. Clearly, noise in both
channels affects the teleportation outcome additively. In fact,

the outcome is exactly the same as if the teleported qubit is
transferred physically from Alice to Bob through the noisy
channelCa and Cb, although the qubit Bob receives has
never traveled through channelCa physically.

The fidelity of teleportation as a function of the traveling
time t is
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Ftelestd =
1

2
+

1

2
sc0

*c1 + c0c1
*d2e−2G0t +

1

2
suc0u2 − uc1u2d2e−2G1t

−
1

2
sc0

*c1 − c0c1
*d2e−2sG0+G1dt. s15d

The fidelity of teleportation decreases monotonically from 1
to 1

2 as the traveling timet increases. At the long-time limit,
the fidelity approaches12, which means that the result of the
quantum teleportation is a half-half mixture ofu0l and u1l
states; i.e., information aboutucl is totally lost. This result is
in agreement with recent studies of the effect of noise on
quantum teleportationf29g.

Equation(15) provides a simple interpretation for the phe-
nomenological parameterG0 and G1: G0 is the total decay
rate for the real part of the coherence, andG1 is the total
population relaxation rate. Recall thatg0

n, n=a,b, is defined
using the second moment of the diagonal energy fluctuation
d«nstd, n=a,b (coupling involving sz), and g1

n, n=a,b, is
defined using the second moment of the off-diagonal matrix
element fluctuationdJnstd, n=a,b (coupling involving sx).
We see clearly the effects of different types of noise: the
diagonal fluctuations introduce phase shifts that only affect
the coherence of the qubit; the off-diagonal fluctuations in-
troduce coupling between the two states and result in popu-
lation transfer. Note that the decay of the imaginary part of
the coherence depends on both diagonal and off-diagonal
fluctuations. In the terminology of quantum computing,
phase-shift errors are caused by the diagonal energy fluctua-
tions, bit-flip errors are caused by the off-diagonal matrix
element fluctuations, and the change in thesy component is
due to both types of fluctuations. Previous studies of the
dissipation of qubits using spin-boson types of Hamiltonian
give similar results for the effects of different types of
system-bath interactions[10,11,13]. Our model gives direct
relationships between the phenomenological parameters de-
scribing the strength of the fluctuations and the dissipation
rates. In addition, our model can take into account the effects
of both types of fluctuationssimultaneously, which is differ-
ent from most error models used previously.

D. Nonzero averaged matrix elements

When the time-independent part of the Hamiltonian con-
tains nonzero matrix elements— i.e.,«nÞ0 or JnÞ0, n
=a,b—the exact analytical expression forr̃std is not gener-
ally available. In addition, the effect of diagonal energy fluc-
tuations no longer can be clearly distinguished from the ef-
fect of off-diagonal matrix element fluctuations; both
population relaxation and decoherence depend ong0

n andg1
n,

n=a,b. More importantly, the four Bell states no longer de-
cay at the same rate, and we can see the effect of the coher-
ent dynamics depending on the value of the averaged energy
and off-diagonal matrix elements. In the weakly damped re-
gime where the averaged Hamiltonian matrix elements are
larger than the strength of the noise, the dynamics of a pair
of entangled qubits exhibits coherent oscillating behavior.
These oscillations can lead to errors of the quantum telepor-
tation. Figure 1 shows the fidelity of the four Bell states as a

function of traveling time at«a=«b=1, Ja=Jb=0.5, g0
a=g0

b

=0.1, andg1
a=g1

b=0.1. The different oscillating behavior of
the Bell states can be understood by considering the time-
independent part of the Hamiltonian. From Eq.(5), all the
nonzero time-independent matrix elements are

kB1uH0uB2l=kB2uH0uB1l = «a + «b,

kB1uH0uB3l=kB3uH0uB1l = Ja + Jb,

kB2uH0uB4l=kB4uH0uB2l = Jb − Ja,

kB3uH0uB4l=kB4uH0uB3l = «a − «b.

These matrix elements govern the coherent transition be-
tween the Bell states and result in the oscillating behavior of
the dynamics. In Fig. 1, the fidelity of theuB4l state decays
monotonically ast increases, because both matrix elements
couple this state to the other states are zero for the param-
eters used. This also explains why the fidelity of theuB4l
state provides an upper bound on the fidelity of other Bell
states in Fig. 1. The state that is coupled most weakly to
other states decays most slowly.

In the regime where the averaged Hamiltonian matrix el-
ements are smaller than the strength of the noise, the system
is overdamped and no oscillating behavior can be observed.
Figure 2 shows the fidelity of the four Bell states at«a=«b
=0.1, Ja=Jb=0.05,g0

a=g0
b=0.1, andg1

a=g1
b=0.1. In this re-

gime, all Bell states degrade monotonically as the traveling
time increases.

The fidelity of the EPR pair used in the quantum telepor-
tation is directly related to the fidelity of teleportation. There-
fore, the above discussion can be directly applied to the fi-
delity of teleportation performed using different Bell states.
When «nÞ0 or JnÞ0, n=a,b, the fidelity of the teleporta-
tion behaves differently when different Bell states are used.
To achieve the best result for the teleportation, we have to
choose the Bell state that is coupled most weakly to other
states. In general,«n.0, n=a,b, and Ja and Jb have the

FIG. 1. Fidelity as a function of the traveling time for the Bell
states in the coherent regime:«a=«b=1, Ja=Jb=0.5, g0

a=g0
b=0.1,

andg1
a=g1

b=0.1. The characteristic time scalet0=1/«a.
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same sign thus theuB4l state will have the weakest coupling.
The singletuB4l state is the preferred EPR state for the quan-
tum teleportation.

E. Effect of the collective bath

We have studied the dissipation of two entangled qubits
each coupled to a distinct bath, which is the typical situation
relevant for the quantum teleportation. Another interesting
case is when the two qubits are coupled to a common bath.
In this case, we use the Hamiltonian of Eq.(5); the differ-
ence in the state of the bath is reflected by different correla-
tion functions for the stochastic processes. When the two
qubits are coupled to a common bath, the first two moments
can be represented as

kd«nstdl=kdJnstdl = 0,

kd«nstdd«mst8dl=g0dst − t8d,

kdJnstddJmst8dl=g1dst − t8d,

kd«nstddJmst8dl=0, s16d

whereg0 describes the strength of the diagonal fluctuations;
g1 describes the strength of the off-diagonal fluctuations.
Note that because the qubits are coupled to a common bath,
the fluctuations on different qubits are correlated. From Eqs.
(8) and (16), we can derive the correlation matrixR for the
system in the Bell-state basis. In this collective bath limit,R
has only eight nonzero elements that can be represented by
the following two irreducible elements:

R12;12=4g0,

R13;13=4g1. s17d

Using Eq.(17), we can derive the equation of motion for
the dynamics of two qubits coupled to a common bath. In the
limit of zero averaged Hamiltonian matrix elementss«n=Jn

=0,n=a,bd, we obtain a simple result for the populations in
the four Bell states:

d

dt
p̃11std=4g0fr̃22std − r̃11stdg + 4g1fr̃33std − r̃11stdg,

d

dt
r̃22std=4g0fr̃11std − r̃22stdg,

d

dt
r̃33std=4g1fr̃11std − r̃33stdg,

d

dt
r̃44std=0. s18d

Equation(18) describes the dynamics for a system of two
qubits coupled to a common bath in the Bell-state basis.
Interestingly, the population in theuB4l state,r̃44std, is invari-
ant in time. In addition, when only diagonal energy fluctua-
tions exist sg1=0d, the population in theuB3l state is also
invariant; when only off-diagonal matrix element fluctua-
tions existsg1=0d, the population in theuB2l state is invari-
ant. Compared to the result of two qubits coupled to distinct
baths [see Eq.(10)], Eq. (18) shows that the fluctuations
interfere constructively for theuB1l state, leading to a faster
decay rate, but destructively for theuB4l state. This result can
be understood easily in our stochastic model. In our model,
the effect of environment on the system is represented by a
fluctuating field, and the interaction Hamiltonian for the two
qubits isH int=si

sadVastd+si
sbdVbstd si =x,z; a andb are labels

for different qubits). When the two qubits are coupled to a
common bath,Vastd=Vbstd, we can factorize the interaction
into the formH int=ssi

sad+si
sbddVastd. Therefore, any stateuwl

that satisfieskwusi
sad+si

sbduwl=0 does not interact with the
fluctuating field and is invariant to the noise. We can see that
kB3usz

sad+sz
sbduB3l=0 andkB4usz

sad+sz
sbduB4l=0, and thus both

uB3l and uB4l states are not affected by phase-shifting noise;

kB2usx
sad+sx

sbduB2l=0 andkB4usx
sad+sx

sbduB4l=0, and thus both
the uB2l and uB4l states are not affected by bit-flipping noise.
This effect of the collective bath has been verified experi-
mentally [30] and studied in theoretical works related to the
ideas of “quantum error-avoiding codes”[31,32] and
“decoherence-free subspaces”[33,34]. Duan and Guo have
shown a similar result using a Hamiltonian that explicitly
includes the linear coupling terms between the system and
the boson bath[32,35]. The agreement indicates that our
simple stochastic model can handle both the independent and
the collective baths properly.

Recently, Kumar and Pandey have studied the effect of
noise on quantum teleportation[29]. They applied two dif-
ferent models—a stochastic model and a spin-boson type

FIG. 2. Fidelity as a function of the traveling time for the Bell
states in the overdamped regime:«a=«b=0.1, Ja=Jb=0.05,g0

a=g0
b

=0.1, andg1
a=g1

b=0.1. The characteristic time scalet0=0.1/«a.
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model—to this problem and studied the relative teleportation
efficiencies of the Bell states. Their main result is that for the
simple stochastic model, the four Bell states are equivalent,
but for the second model in which the effect of environment
is considered explicitly, theuB4l state is least affected by the
noise. We obtain a similar conclusion using the stochastic
Liouville equation approach. Based on our result, we under-
stand that theuB4l state is the least affected state because of
the assumption of a collective bath, not because the effect of
the bath is considered microscopically. Like spin-boson-type
models, a simple stochastic model when treated correctly can
provide the same result and gives a simple picture for the
effect of a collective bath versus a localized bath.

IV. ERRORS IN A QUANTUM CNOT GATE

Qubits and quantum gates are the basic elements of quan-
tum computing. A quantum circuit that performs a particular
quantum operation can be expressed as a composition of
elementary quantum gates[36]. In fact, quantum circuits can
be constructed using one- and two-qubit gates as basic build-
ing blocks. For example, the quantumCNOT gate together
with all one-qubit quantum gates forms such a set of univer-
sal quantum gates[37]. In reality, quantum computations are
performed by subjecting an array of qubits under a sequence
of control fields that control the Hamiltonian of the qubit
system and result in specific quantum gate operations. There-
fore, we consider the process of quantum computation as
preparing the qubit system in the initial state, then perform-
ing programmed control fields on the qubits in a sequence of
time steps, and finally measuring the output in the working
basis.

To understand the effect of noise on general quantum
computations and help the implementation of quantum com-
puters, we need a model that can be used to describe the
decoherence and population relaxation for a system of qubits
subjected to external control fields. The decoherence and
gate performance of aCNOT gate on various types of physical
realizations have been studied in Refs.[14–17,38]. In par-
ticular, Thorwart and Hänggi15 investigated the decoherence
and dissipation for a genericCNOT gate operation using the
numerical ab initio technique of the quasiadiabatic-
propagator path integral(QUAPI). They demonstrated that
this numerical method is capable of describing the full time-
resolved dynamics of the two-qubit system in the presence of
noise. To our knowledge, so far, the QUAPI method is the
most sophisticated method that has been applied to study the
decoherence during aCNOT gate operation. In this section,
we apply the stochastic Liouville equation approach to study
the same genericCNOT operation investigated by Thorwart

and Hänggi, and show that our model yields similar results.
In general, our model is easier to extend to many-qubit sys-
tems than the QUAPI method and can incorporate the effects
of noise from different sources at the same time.

A. Generic model for two-qubit quantum gates

In a physical system, a quantum gate can be expressed by
a Hamiltonian with terms representing the control fields that
result in the gate operation. Consider a elementary step in a
quantum gate operation where the control Hamiltonian is
switched on, a generic Hamiltonian describing the constant
external fields. and the time-dependent fluctuations(noise)
for a two-qubit system can be written as

Hstd= o
n=a,b

f«n + d«nstdgsz
snd + o

n=a,b
fJn + dJnstdgsx

snd

+ fg + dgstdgss+
sads−

sbd + s−
sads+

sbdd

; H0 + hstd s19d

where the two qubits are labeled as qubita and qubitb; the
first two terms comprise the Hamiltonian for two noninter-
acting qubits considered in Eq.s5d; the last term represents
the interqubit interaction withs±

snd=ssx
snd7 isy

sndd, n=a,b; g
anddgstd are the time-independent and time-dependent fluc-
tuating parts of the interqubit coupling. The controllable
fields are represented by the values of«n,Jn,n
=a , b, andg Quantum gates can be implemented by
switching these fields on and off in a controlled manner.
Notice that theXY type of coupling is adopted in our model
Hamiltonian. This interaction is just an illustrative example
and does not account for all possible interactions in a spe-
cific realization of solid-state devices. The real form of the
interqubit interaction term depends on the controllable inter-
actions available for each individual physical implementa-
tion. Nevertheless, our model can handle the other types of
interactions as well, and we expect that the model Hamil-
tonian we use here can reproduce the same general physical
behavior as other two-qubit Hamiltonians.

From Eq.(19), we can write down the time-independent
part of the Hamiltonian in the standard basis
hu00l , u01l , u10l , u11lj

H0 = 3
«a + «b Jb Ja 0

Jb «a − «b g Ja

Ja g «b − «a Jb

0 Ja Jb − «a − «b

4 , s20d

and the time-dependent part of the Hamiltonian is

hstd = 3
d«astd + d«bstd dJbstd dJastd 0

dJbstd d«astd − d«bstd dgstd dJastd
dJastd dgstd d«bstd − d«astd dJbstd

0 dJastd dJbstd − d«astd − d«bstd
4 s21d
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Furthermore, we assume the two qubits are close to each
other in space; therefore, we consider the correlation func-
tions suitable for two qubits coupled to a common bath.
Again, we assume the fluctuations have zero mean and
d-function correlation times. The nonzero second moments
are

kd«nstdd«mst8dl=g0dst − t8d,

kdJnstddJmst8dl=g1dst − t8d,

kdgstddgst8dl=g2dst − t8d, s22d

whereg0 describes the strength of the diagonal energy fluc-
tuations,g1 describes the strength of the off-diagonal matrix
element fluctuations, andg2 describes the strength of the
fluctuations of the inter-qubit interactions. As we have shown
in the previous section, these phenomenological parameters
are related to the kinetic rate of each separate dissipative
process and can be easily measured experimentally. Also
note that we directly include the interqubit coupling fluctua-
tions, which corresponds to two-qubit flip-flop errors that are
difficult to treat in the microscopic spin-boson-type Hamil-
tonians.

Equation(22) can be used to compute the elements of the
correlation matrixR. Using R together with the averaged
Hamiltonian matrix elements in Eq.(20), we can obtain the
equation of motion describing the dynamics of the two-qubit
system subjected to arbitrary one- and two-qubit control
fields. As a result, we can study the dissipative dynamics of
the qubit system during arbitrary gate operations. Although
we only consider an operation done by a set of constant
external fields, the behavior of more complicated gates that
involve more than one step can be studied by combining the
result for each elementary operations. In our model, the re-
sults for a set of universal quantum gates can be assembled
to compute the results for a general quantum circuit.

B. Quantum CNOT gate

The quantumCNOT gate plays a central role in the quan-
tum computation, because, as we noted above, the set of all
one-qubit gates together with theCNOT gate is universal[37].
In the standard basishu00l , u01l , u10l , u11lj, the idealCNOT

gate is represented as

UCNOT
ideat = 3

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
4 .

This gate operates on two qubits and inverts the state of the
second qubit if the first qubit is in the stateu1l. The CNOT

gate cannot be constructed in one step using our model
Hamiltonian. Instead, we must construct theCNOT gate using
multiple elementary one- and two-qubit gates.

To begin with, we define the one-qubit rotations on qubit
a andb,

Unzsad = eiasz
snd/2, n = a,b,

Unxsad = eiasx
snd/2, n = a,b,

and the two-qubit operation

Ujsad = eiass+
sads−

sbd+s−
sads+

sbdd.

All these operations can be easily implemented using our
model HamiltonianfEq. s19dg. swith all control fields set to
zero initiallyd: Unzsad, n=a,b, can be done by switching on
«n=−«0 sgnsad for a time period oft=a /2«0; Unxsad, n
=a,b, can be done by switching onJn=−J0 sgnsad for a
time period oft=a /2J0; Ujsad can be done by switching
on g=−g0 sgnsad for a time period oft=a /g0, where the
sign function sgnsad returns −1whena,0, and
1 whena.0. Using the corresponding averaged Hamil-
tonian H0 for each operation and the correlation matrix
presented in the previous section, the equation of motion
describing the dynamics of the two-qubit system subjected
to any of these operations can be easily obtained. Actu-
ally, for arbitrary initial conditions, the analytical solution
for the time-dependent two-qubit density matrixrstd dur-
ing Unxsad, Unzsad , n=a,b, andUjsad operations is avail-
able in the Laplace domain and can be used to study ar-
bitrary quantum circuits composed by these three
elementary operations.

The CNOT gate can be expressed by the following se-
quence of one- and two-qubit gate operations[9]:

UCNOT = UbxSp

2
DUbzS− p

2
DUbxs− pdUjS− p

2
DUaxS− p

2
D

3UjSp

2
DUbzS− p

2
DUazS− p

2
D . s23d

Table I lists the required control fields and time span to
implement each step using our model Hamiltonian. In Table
I, we use«0, J0, andg0 to denote the strength of the control-
lable single-qubit bias, intraqubit coupling, and interqubitXY
interaction, respectively. In addition, we assume that the con-
trollable field strengths and noisesdefined by parametersg0,
g1, andg2 as mentioned in the previous sectiond for the two
qubits are identical. The value of these parameters should
depend on the specific physical realization of the qubit sys-
tems. The total time required to perform theCNOT gate is
tCNOT=p /2«0+p /J0+p /g0. For a typical energy scale of 1
meV (suitable for quantum dot qubits), the operation time is
on the picosecond time scale.

Using the parameters listed in Table I, we can calculate
the time-dependent two-qubit density matrixrstd during
CNOT operations under different noise conditions defined by
g0, g1, andg2. Figure 3 shows the time-resolvedCNOT op-
eration for two qubits initially in theu11l state. We set the
strengths of the control fields equal to 1—i.e.,«0=J0=g0
=1. The ideal operation(solid line) starts at population 1 in
the u11l state and ends its total population in theu10l state,
showing a successfulCNOT operation. Three different noisy
operations are shown in Fig. 3:(1) operation with the
strength of the diagonal energy fluctuationsg0=0.05(dashed
line), (2) operation with the strength of the off-diagonal ma-
trix element fluctuationsg1=0.05 (dash-dotted line), and(3)
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operation with the strength of the interqubit coupling fluc-
tuationsg2=0.05 (dotted line). The effect of noise on the
CNOT operation can be clearly seen. In previous work, Thor-
wart and Hänggi derived the same time-resolvedCNOT op-
eration result[15]. Our result is very close to their numerical
ab initio QUAPI result. The agreement between our time-
resolved result with the QUAPI result gives us confidence
that our model captures the correct physics.

We use the gate fidelity and gate purity to characterize the
performance of theCNOT gate. Other gate quantifiers includ-
ing the quantum degree and entanglement capability are also
calculated[39], but we do not show the results here because
they follow the same trend as the gate fidelity and gate pu-
rity. In our formalism, the density matrix for the two qubits
after the noisyCNOT operation,rstCNOTd=UCNOTr0UCNOT

† ,
can be calculated for any initial density matrixr0. Following
Thorwart and Hänggi, we average the gate fidelity and gate
purity over 16 initial states to account for the general perfor-
mance of theCNOT gate. The 16 unentangled input states
uc0

i jl, i , j =1,2,3,4, aredefined asuc0
i jl= uwila ^ uw jlb with

uw1l= u0l , uw2l= u1l, uw3l=su0l+ u1ld /Î2, uw3l=su0l+ u1ld /Î2,
uw4l=su0l+ i u1ld /Î2, anda,b denoting the state for different
qubits. These states span the Hilbert space for the two-qubit
operations and should give a reasonable result for the aver-
aged effect[15,39].

The gate fidelity is defined as the overlap between the
ideal output and the output of the real gate operation. Using
the 16 initial states, the averaged fidelity can be written as

F =
1

16 o
i,j=1

4

kcout
i j urCNOT

i j ucout
i j l,

where we have defined the idealCNOT output ucout
i j l

=UCNOT
ideal uc0

i jl and the output of the realCNOT operation
rCNOT

i j =UCNOTuc0
i jlkc0

i j uUCNOT
† . The gate fidelity is a measure

of how close the real operation is compared to the ideal
operation. For a perfect gate operation, the gate fidelity
should be 1.

Similarly, the averaged gate purity is defined as

TABLE I. Parameters of the model Hamiltonians used to perform theCNOT gate in seven steps. The
required control fields and time span for each step are listed. Note that we only list the nonzero field
parameters.

No. Operation Control fields Time

1 UbzS− p

2
DUazS− p

2
D «a=«0, «b=«0

t1 =
p

4«0

2 UjSp

2
D g=−g0

t2 = t1 +
p

2g0

3 UaxS− p

2
D Ja=J0

t3 = t2 +
p

4J0

4 UjS− p

2
D g=g0

t4 = t3 +
p

2g0

5
Ubxs− pd

Jb=J0
t5 = t4 +

p

2J0

6 UbzS− p

2
D «b=«0

t6 = t5 +
p

4«0

7 UbxSp

2
D Jb=−J0

t7 = t6 +
p

4J0
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P =
1

16 o
i,j=1

4

TrfsrCNOT
i j d2g.

The gate purity quantifies the effect of decoherence. For a
perfect gate operation, the gate purity should be 1.

C. Dependence on the noise strength

The results of the averaged gate fidelity and gate purity as
a function of the strength of each individual type of noise are
shown in Fig. 4. For our generic study, we again set the
strengths of all the control fields to 1—i.e.,«0=J0=g0=1.
Clearly, different types of noise cause different amount of
errors. However, they all follow the same trend. The devia-
tions of the gate fidelity and gate purity from the ideal
values—i.e., 1−F and 1−P—are sensitive to the strength of
the noise and saturate to 0.75 in the strong-noise limit; the
value 0.75 corresponds to a fully mixed state. In the weak-
noise regime, both 1−F and 1−P depend linearly on the
noise strength, as expected[15,16]. The proportionality con-
stant in this case is,10. In fact, the proportionality constant
depends on the strengths of the control fields and reflects the
total operation time required to complete theCNOT gate op-
eration. As the strength of the control field increases, the
total operation time decreases, and the qubits have less time
to undergo the dissipative processes, resulting in less degra-
dation. To minimize the effect of noise, we need to reduce
the proportionality constant; therefore, we will want to oper-
ate the device at the highest control fields possible. However,
the situation will be different if increasing the strengths of
the control fields will also introduce more noise. We will

explicitly discuss the effect of the control-field strength in
the next subsection.

From our results for«0=J0=g0=1, to achieve the thresh-
old accuracy of the 0.999 99 level needed for arbitrary long
quantum computations[40–42], one needs to keep the noise
strength below the 10−6 level. Assuming a characteristic en-
ergy scale of 1 meV, this value corresponds to a decoherence
time g−1 in the ms scale, which provides a serious challenge
for experimentalists working on the realization of solid-state
quantum computers.

The linear dependence of 1−F and 1−P on the noise
strengths also indicates that the effect ofthe sametype of
noise is additive in the weak-noise regime. To study the ad-
ditivity of differenttypes of noise, we calculate the averaged
CNOT gate fidelity when different types of noise coexist at the
same time. We define the total error of theCNOT gate opera-
tion E as the deviation of the gate fidelity from the ideal
value:

Esg0,g1,g2d = 1 −Fsg0,g1,g2d, s24d

where we have explicitly expressed the total errorE as a
function of the three different types of noise strengths:g0,
g1, andg2. In Fig. 5, we show the errors of theCNOT gate
operation where the different types of noise coexist and com-
pare them to the total errors obtained by adding up the errors
caused by the individual type of noise. Clearly, for all four
situations considered, these two lines collapse in the weak-
noise regime. The results indicate that errors caused by dif-
ferent types of noise are additive in the weak-noise regime.

FIG. 3. Time-resolvedCNOT gate operation on theu11l input state. Shown are the populations in the four basis statesPi j std
=ki j urstdui j l as a function of time. The strengths of all the fields are set to 1 in the calculation—i.e.,«0=J0=g0=1—and the corresponding
time steps are defined in Table I. We show the results for four differentCNOT gate operations:(1) ideal operation without any noise(solid
line), (2) operation with the strength of the diagonal fluctuationsg0=0.05 (dashed line), (3) operation with the strength of the off-diagonal
fluctuationsg1=0.05 (dash-dotted line), and(4) operation with the strength of the interqubit coupling fluctuationsg2=0.05 (dotted line).
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In other words, the following identity holds in the weak-
noise regime:

Esg0,g1,g2d = Esg0,0,0d + Es0,g1,0d + Es0,0,g2d. s25d

Equations25d justifies previous studies where different types
of system-bath interactions are treated independently
f15,16g.

D. Dependence on the strength of the interqubit coupling

The time required to finish a quantum gate operation is
inversely proportional to the strength of the control field
used, and longer operation time results in more errors. There-
fore, the quality of gate operations also depends on the
strength of the control field. In this section, we analyze the
dependence of the quality of the quantumCNOT gate opera-
tion on the strength of the interqubit couplingg0.

If the strength of the interqubit couplingg0 can be in-
creased without introducing any extra disturbance in the sys-
tem; then we expect operating the device in the strongestg0
achievable will give the best result. However, physically, ap-
plying a stronger field also means introducing stronger noise
due to the imperfectness of the field. In our model, this
means stronger fluctuations on the interqubitXY interaction.
The extra noise can be expressed in the value of theg2 term.
To incorporate this effect, we allowg2 to depend on the
strength of the interqubit couplingg0. Figure 6 shows the
errors of theCNOT gate operation as a function ofg0 at g0
=0.001, g1=0.001, «0=1, andJ0=1. Three different noise
strength dependences are shown:(1) constant g2=0.001
(solid curve), (2) linearg2=0.001s1+g0d (dashed curve), and
(3) quadraticg2=0.001s1+g0

2d (dash-dotted curve). The three
curves show the same behavior in the small-g0 regime, in
which the operation takes too much time and the system is
fully degraded. As the strength of the couplingg0 increases,
the errors decrease due to the shorter operation time. When
the strength of the couplingg0 approaches the strengths of
other control fieldss«0=J0=1 in this case), the three curves
start to show different behavior. For both constant and linear
g2, the errors generated by other operations
fUnzsad andUnxsadg dominate the errors of theCNOT gate
operation; therefore, increasingg0 gains nothing and the
curve saturates. Our result for the constantg2 case is in
agreement with the result obtained previously using the
QUAPI method [15]. The situation is different when the
strength of the noise depends ong0 quadratically. For this
case, the errors start to increase afterg0.1, because increas-
ing the interqubit couplingg0 introduces stronger noise that
cannot be compensated by shorter operation times. There-
fore, in the quadratic case, there exists an optimalg0 for the
gate operation.

V. LIMITATIONS AND POSSIBLE EXTENSIONS

We have shown that the generalized HSR model is flex-
ible for realistic physical devices. Applications of this model
to the effect of noise on the quantum teleportation andCNOT

gate operation gives us similar results compared to previous
studies based on microscopic models. In this section, we will
briefly discuss the limitations and possible extensions of this
stochastic Liouville equation approach.

A key step in the HSR model is to replace the microscopic
system-bath interactions by stochastic processes. This proce-
dure has permitted a full description of the dissipative dy-
namics of qubit systems and their response to the external
fields. At the same time, we introduce phenomenological pa-
rameters to describe the strengths of fluctuations(g0, g1, and
g2 in our model). These parameters have to be determined
experimentally or computed using a separate microscopic
model [23,43,44]. Generally,g0, g1, and g2 should depend
on temperature and increase as temperature increases. How-
ever, our model lacks an explicit temperature dependence for
these parameters and thus cannot be used to study the tem-
perature dependence of the qubit dynamics. Fortunately,
these parameters are directly related to physically measur-
able quantities and can be easily determined by experiments.

FIG. 4. Dependence of the errors in theCNOT gate operation on
the noise strength. The deviations of the gate fidelity(upper panel)
and gate purity(lower panel) from the ideal values are shown—i.e.,
1−F and 1−P. The effects of three types of noise are shown in both
plots: (1) diagonal fluctuations represented byg0 (solid line), (2)
off-diagonal fluctuations represented byg1 (dashed line), and (3)
interqubit fluctuations represented byg2 (dash-dotted line). The
control-field strengths are set to«0=J0=g0=1. The unit of noise
strength is set to 1/t0, with characteristic time scalet0=1/«0.
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In our model,g0, g1, andg2 correspond to the decoherence
rate, population relaxation rate, and interqubit flip-flopping
rate, respectively; all of them can be measured by one- and
two-qubit experiments. In addition, recent theoretical studies
of the temperature dependence of the quality of quantum
CNOT gate operation suggest that the temperature dependence

of the gate performance is weak[15,16], which is reasonable
in the weak-coupling regime and the temperature range rel-
evant to solid-state qubit systems.

The assumption of the fast modulation of the bath might
be a more serious problem for the HSR model. The
d-function correlation time corresponds to an infinite fast
decay of the bath correlations, which leads to incorrect short-
time dynamics and long-time equilibrium populations. Palma
et al.have studied the decoherence of a qubit and shown that
the dynamics exhibits a “quiet” and a “quantum” regime at
short times and a “thermal” regime at long times[11]. The
HSR model assumes that the bath relaxes infinitely fast and
thus neglects the dynamics of the system before bath relax-
ation takes place. Although the HSR model cannot predict
the short-time dynamics correctly, we expect the physics for
longer operations important for quantum computing are rea-
sonably well captured. Thed-function correlation can be re-
placed by an exponential function in time, and the extended
model for a dichotomic process has been solved exactly
without further assumptions[45–48]. It will be interesting to
apply these extended models to quantum computations and
compare the results with thed-correlation-function results.

The white noise assumption in the HSR model also cor-
responds to a bath with infinite temperature; therefore, the
resulting equation of motion does not satisfy detailed balance
at finite temperatures. As a consequence, the system always
relaxes to equal populations regardless of the energy differ-
ences between the states. Extensions of the HSR model to
solve this problem have been proposed in Ref.[44]. In quan-
tum computing, we are mainly concerned about the dynam-

FIG. 5. We show the error functionsEsg0,g1,g2d of theCNOT gate operation in situations where the different types of noise coexist(solid
lines). For each case, the corresponding total error obtained by adding up the errors caused by the individual types of noise is also shown
(dotted lines). Four different combinations are compared: upper left,EsG , G ,0d vs EsG ,0 ,0d+Es0,G ,0d (g0 andg1); upper right,Es0,G , G d
vs Es0,G ,0d+Es0,0,G d (g1 and g2); lower left, EsG ,0 ,G d vs EsG ,0 ,0d+Es0,0,G d (g0 and g2); and lower right,EsG , G , G d vs
EsG ,0 ,0d+Es0,G ,0d+Es0,0,G d (all types of noise). The strengths of all the control fields are set to 1—i.e.,«0=J0=g0=1. The character-
istic time scalet0=1/«0. We can clearly see that errors caused by different types of noise are additive in the weak-noise regime.

FIG. 6. Dependence of the errors in theCNOT gate operation on
the strength of the interqubit couplingg0. Shown are the deviations
of the gate fidelity from the ideal value for three types ofg2: (i)
constant g2=0.001 (solid curve), (ii ) linear g2=0.001s1+g0d
(dashed curve), and (iii ) quadraticg2=0.001s1+g0

2d (dash-dotted
curve). Other parameters are set tog0=0.001,g1=0.001,«0=1, and
J0=1.
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ics of an unbiased qubit system, and even when a bias field is
applied to the system to perform gate operations, the time
period has to be short to avoid any population relaxation.
Since we will only operate the quantum computer in the time
scale that the population relaxation is negligible, we expect
that violation of the detailed balance condition will not cause
serious problems for applications related to quantum com-
puting.

The stochastic representation for the dynamics of a quan-
tum two-level system has been investigated in Refs.[49] and
[50]. The correspondence between the phenomenological pa-
rameters describing the stochastic field(g0 and g1 in this
work) and the two-level system microscopic quantities is
also studied. The stochastic approximation is found to be
able to reproduce the results by Leggettet al. for the spin-
boson model[18]. Our results presented confirm this obser-
vation. In general, the stochastic Liouville equation approach
presented in this work is applicable in the weak system-bath
interaction limit relevant to quantum computations.

VI. CONCLUSION

In this work, we present a stochastic Liouville equation
approach that provides a simple way to evaluate the effect of
noise in quantum computations. This approach is generalized
from the HSR model. Using an effective system Hamiltonian
that includes the system-bath interactions as stochastic fluc-
tuating terms with zero mean andd-function correlation
times, we derived the exact equation of motion describing
the dissipative dynamics for a system ofn qubits. This gen-
eralized equation of motion is similar to the form of the
widely used Redfield equation, with the relaxation matrix
elements given by the corresponding correlation matrix ele-
ments.

We then applied this model to study the dissipative dy-
namics of a system of two independent qubits that mimics
the EPR pair used in the quantum teleportation. We showed
that the phenomenological parameters used in our model—
i.e., g0 and g1—correspond to the decoherence and popula-
tion relaxation rates, respectively. To study the effect of noise
on quantum teleportation, we calculated the fidelity of quan-
tum teleportation. We found the effects of noise in the quan-
tum channels are additive, and the teleportation fidelity de-
pends on the state of the teleported qubit. When the two EPR
qubits are degenerate and have no intraqubit coupling, the
relative efficiencies of teleportation for the four Bell states
are the same; otherwise, the singlet stateuB4l is the most
efficient one. When the two qubits are coupled to the same

bath (collective decoherence case), the uB4l state is superde-
coherent, while theuB1l state is decoherence free.

Furthermore, we studied a generic two-qubit Hamiltonian
containing anXY-type interqubit interaction. The dissipative
dynamics of a set of one- and two-qubit quantum gates was
studied, and the results were then combined to calculate the
averaged gate fidelity and gate purity for the quantumCNOT

gate operation. The dependence of the quality of the quantum
CNOT gate operation on the noise strength and the strength of
the interqubit coupling was investigated. We found that the
quality of theCNOT gate operation is sensitive to the noise
strength and the strengths of the control fields. In addition,
the effect of noise is additive regardless of its origin. We
compared our results to Thorwart and Hänggi’s results ob-
tained by the numericalab initio QUAPI technique. In gen-
eral, our results are in good agreement with those obtained
by the numerical QUAPI method.

We also discussed the limitations of the HSR-type ap-
proach. The consequences due to the procedure of replacing
the system-bath interactions by classical fluctuating fields
and the assumption of white noise were considered, and the
possible extensions were noted. Generally, the application of
the HSR-type model in the weak-coupling regime that is
relevant to quantum computing is justified.

Finally, we emphasize that the model presented in this
work can be used to study the dissipative dynamics of a
many-qubit system with direct interqubit coupling, imper-
fectness of the control field, and other many-qubit effects. In
addition, because of thed-function correlation time assumed
in the model, the resulting propagator satisfies complete
positivity; therefore, no additional time period has to be in-
serted between switching events, as will be necessary for
methods based on the Bloch-Redfield formalism. As a result,
propagators computed for simple one- and two-qubit gates
can be directly assembled to study the dissipative dynamics
of more complicated quantum circuits. We expect this
method to be applied to evaluate the quality of quantum
circuits under realistic device conditions. Such theoretical
studies will be useful for the design and implementation of
quantum computers. Work is in progress on applying this
method to analyze the behavior of a quantum circuit imple-
menting quantum error-correcting codes under the influence
of various single- and multiple-qubit noise. The results will
be published in a subsequent paper.
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