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Quantum circuits implementing fault-tolerant quantum error correction (QEC) for the three-qubit bit-flip
code and five-qubit code are studied. To describe the effect of noise, we apply a model based on a generalized
effective Hamiltonian where the system-environment interactions are taken into account by including stochas-
tic fluctuating terms in the system Hamiltonian. This noise model enables us to investigate the effect of noise
in quantum circuits under realistic device conditions and avoid strong assumptions such as maximal parallelism
and weak storage errors. Noise thresholds of the QEC codes are calculated. In addition, the effects of impre-
cision in projective measurements, collective bath, fault-tolerant repetition protocols, and level of parallelism
in circuit constructions on the threshold values are also studied with emphasis on determining the optimal
design for the fault-tolerant QEC circuit. These results provide insights into the fault-tolerant QEC process as
well as useful information for designing the optimal fault-tolerant QEC circuit for particular physical imple-

mentation of quantum computer.
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I. INTRODUCTION

Recent developments in the theory of quantum computa-
tion have generated significant interest in utilizing quantum
mechanics to achieve new computational capability [1]. A
quantum computer can outperform its classical counterpart
and provide efficient ways to solve many important prob-
lems. However, the intrinsic sensitivity of a quantum super-
position state to imperfect operations and interactions with
its surrounding environment prohibits the realization of a
scalable quantum computer. To combat the inevitable errors
and decoherence of quantum states during the process of
computation, quantum error correction (QEC) and fault-
tolerant methods of quantum computation have to be applied
in the construction of large-scale quantum computers. It has
become clear that the future of robustly storing and manipu-
lating quantum information relies upon the success of fault-
tolerant quantum error correction [2—4].

Fault-tolerant methods combined with concatenated cod-
ing yield the threshold result, which states if the noise level
per elementary operation is below a threshold value, then
arbitrarily long quantum computation can be achieved using
faulty components [5-9]. Using a t-error-correcting code,
fault-tolerant circuits constructed from faulty gates with error
rate € can achieve a logical error rate of O(€*!) per logical
gate. This fact together with the concept of concatenated
coding provides a method for possible large-scale quantum
computation and can lead to the realization of a scalable
quantum computer. Therefore, it is important to study fault-
tolerant methods and estimate the noise threshold values. In
addition, the noise threshold indicates the tolerable noise
level in a certain quantum circuit and provides a benchmark
for the efficiency of QEC circuits.
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A number of theoretical estimates of noise threshold and
improvements for the efficiency of QEC circuits have been
proposed [5-8,10-12]. In general, these analyses are all
based on the following standard assumptions in QEC: (1)
uncorrelated and stochastic errors, (2) depolarizing noise
channel, (3) maximal parallelism, (4) low noise level in stor-
ing qubits, (5) no leakage errors, (6) fresh supply of ancilla
qubits, and (7) no overhead for performing gates acting on
distant pair of qubits. Realistically, these assumptions are not
usually applicable, and the power of fault-tolerant QEC un-
der realistic physical conditions is still unclear (see Ref. [8]
for a thorough examination on these assumptions). In par-
ticular, assumptions (3) and (4) are unlikely to be fulfilled in
real physical systems, and these ad hoc classical stochastic
noise models all neglect device details. We emphasize that
noise threshold values are of little use if limitations of the
physical implementation and realistic noise sources are not
considered in the estimation. Therefore, it is of importance to
study fault-tolerant QEC circuits using a noise model that
reflects realistic device conditions.

In Ref. [13], we applied a stochastic Liouville equation
approach to study the effect of noise in quantum teleporta-
tion and controlled-NOT gate operation. Starting from a ef-
fective system Hamiltonian that incorporates stochastic fluc-
tuating terms to describe the effect of system-environment
interactions, this model can describe the dissipative dynam-
ics of a many-qubit system under realistic device conditions.
In this paper, the same approach is applied to investigate the
performance of fault-tolerant QEC circuits, implementing
three-qubit bit-flip and five-qubit codes. Relatively small
codes are studied because we perform a systematic investi-
gation of several variables that can affect the performance of
fault-tolerant QEC circuits. In Sec. II we first present the
model Hamiltonian we used to implement quantum gates and
briefly review the noise model we proposed. The stochastic
Liouville equation approach we used allows us to use a more
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realistic noise model and avoid standard assumptions (2),
(3), and (4). We then introduce the fault-tolerant QEC cir-
cuits studied in this work in Sec. IIT and show our estimates
of noise threshold in Sec. I'V. Finally, we go beyond standard
QEC and perform a systematic study on how factors like
imperfect measurement, collective bath, repetition protocol,
and level of parallelism affect the performance of fault-
tolerant QEC in Sec. V. This theoretical study will be useful
for the design and implementation of fault-tolerant QEC cir-
cuits. We then briefly conclude our results in Sec. VI.

II. INTERACTIONS AND NOISE MODEL

We study the performance of fault-tolerant QEC circuits
using a microscopic noise model described in Ref. [13]. In
this model, a n-qubit system is described by a Hamiltonian
with a controlled part and a time-dependent stochastic part.
The general Hamiltonian of the qubit system can be written
as (h=1)

H(z) = Hy(1) + h(7), (1)

where the controlled Hamiltonian H(7) describes the inter-
actions between qubits and the stochastic part h(¢) describes
the fluctuations of the interactions due to the coupling to the
environment. During the process of quantum computation,
H,(7) is controlled to implement gate operations, whereas
h(z) is stochastic and results in the decoherence of the quan-
tum system.

We choose to simulate fault-tolerant QEC circuits using a
model control Hamiltonian with single-qubit X and Z and
two-qubit ZZ interactions:

n

Ho(1) = > &,(t)Z; + > J(X;+ > 8i/(0ZZ;, (2)

i=1 i=1 i=1,j<i

n

where Z; and X; are Pauli operators acting on the ith qubit
and &,(1), J,(1), and g;;(t) are controllable parameters that can
be turned on and off to implement desired gate operations.
For simplicity, all gate operations are simulated using step
function pulses with field strengths set to 1 (uniform field
strengths) and the “on-time” of each pulse is controlled to
obtain the desired unitary transformations. Note that by do-
ing so we adopt a dimensionless system in which a unit time
scale At is defined by the field strength e—i.e., Ar=1/e. We
consider fault-tolerant QEC circuits composed of single-
qubit bit-flip (X), phase-flip (Z), Hadamard (H) gates, two-
qubit controlled-Z, and controlled-NOT gates, plus measure-
ment of a single qubit in the computational basis. All these
operations can be easily implemented using the model
Hamiltonian in Eq. (2). Figure 1 shows the gate symbols and
corresponding unitary transformations used in our simula-
tions. More complicated transformations such as controlled-
Z and controlled-NOT gates can be trivially constructed using
these elementary gates; see Fig. 2.

Note that the set of quantum gates we use is not sufficient
for universal quantum computation. To address the noise
threshold of universal quantum computation, implementa-
tions of more complicated quantum gates such as the logical
Toffoli gate (controlled-controlled-NOT) or the logical /8
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FIG. 1. Quantum gate symbols used to denote unitary transfor-
mations implemented with single-qubit X and Z and two-qubit ZZ
interactions.

gate (/4 rotation about the Z axis) have to be considered
[4,14]. However, quantum circuits implementing these non-
trivial gates are more complicated and do not directly relate
to QEC. In addition, analysis on the noise threshold of the
fault-tolerant Toffoli gate has shown that with proper ar-
rangement of QEC blocks, the presence of Toffoli gates only
causes minor reduction in the threshold value [9]. Therefore,
to demonstrate our methodology and the effect of fault-
tolerant QEC, we will focus on quantum circuits performing
fault-tolerant QEC and calculate the noise threshold for
quantum memory and logical X gate in this paper. All the
fault-tolerant QEC circuits studied in this paper can be
implemented using the set of quantum gates shown in Fig. 1.

We adopt the ZZ-type two-qubit coupling in our model
Hamiltonian for illustrative purposes. The real form of the
interqubit interaction depends on the controllable interac-
tions available for each individual physical implementation.
Nevertheless, our model can handle other types of interac-
tions as well, and we expect that the model Hamiltonian we
use here can reproduce the same general physical behavior as
other two-qubit Hamiltonians.

The dissipative dynamics of the system is governed by the
stochastic part h(z). Following Haken and Strobl [15], we
consider the fluctuations as random Gaussian Markov pro-
cesses with zero mean and S-function correlation times:

_Z_Rz_
—Z—Rz—
JeH 2 HrHEF

FIG. 2. Constructions used to implement controlled-Z (upper
one) and controlled-NOT (bottom one) gates. The definitions of el-
ementary gates are shown in Fig. 1.
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(h;i(1)) =0,

<hij(t)hkl(t,)> = Rij;klfs(t - l"), (3)

where the brackets (---) mean averaging over the stochastic
variables and the time-independent correlation matrix ele-
ment R, describes the correlations between h;(t) and
hy(¢"). In this paper, we consider the following form of fluc-
tuations:

h(n) =2 SednZ;+ 2 811X, )

where J8g,(t) and 8J,(¢) describe the time-dependent diagonal
and off-diagonal fluctuations on the ith qubit, respectively.
This corresponds to stochastic single-qubit phase (Z) and
bit-flip (X) errors on each individual qubit. In addition, we
consider the fluctuations described by the following set of
equations:

(9e(1)) =8I (1)) =0,
(86,1 05,(1")) = 200,001~ ),
(81 (D) 8T (")) = y, 6,0t —1'),

(Ge(1)o7(1')) =0, (5)

where 7y, and 7, describe the strength of the diagonal energy
fluctuations and off-diagonal matrix element fluctuations, re-
spectively. For a free single-qubit system (e=J=0), 7, and
v, are well-defined physical quantities; i.e., ¥, and 7; are the
population relaxation rate and pure dephasing rate, respec-
tively [13]. Note that the noise strengths vy, and y; should be
interpreted as the error rate per unit time scale Ar=1/¢,
where € is the strength of the control fields. Also notice that
we treat the correlation between different qubits indepen-
dently, which means that each qubit in the system is coupled
to a distinct environment (bath). Later we will remove this
constraint and examine the effect of a collective bath on the
noise threshold value. We also assume that the diagonal and
off-diagonal fluctuations are not correlated.

For simplicity, we assume that the noise strengths are uni-
form; i.e., ¥, and 7, are constants. The noise strength is set
to be the same on all qubits at all times; therefore, we do not
distinguish storage and gate errors. By assuming that the
storage and gate errors are at the same level, the uniform
noise assumption overestimates the errors in the system. At
the same time it also avoids the weak storage noise assump-
tion usually made in standard QEC. This uniform noise as-
sumption also partly addresses the standard QEC assumption
of no overhead for gates acting on distant pair of qubits.
Realistically, to perform a quantum gate between two distant
qubits in a large-scale quantum circuit, multiple quantum
swap gates must be employed to shuffle quantum states
around [16]. Our uniform noise assumption reflects the
physical condition in this scenario. Note that the assumption
of uniform noise strengths is not required in our model; more
complex setups, in which control field and noise strengths
are different for each individual qubit, can be studied with
exactly the same method.
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The dynamics of the system is described by the stochastic
Liouville equation (=1)

p(1) == i[H(7),p(1)],

where p(7) is the density matrix of the system at time .
Using the method described in Ref. [13] and Egs. (1)—(5), we
can derive the exact equations of motion for the averaged
density matrix of the qubit system:

d _ . ~ N~ 1 _
2PB=" i> Hipip+ i> Pajtip— EE RixkpPat
j j Kl

1 _ _
- EE Rijrabip+ > Rg1.kaPuis (6)
k.l Kl

where all the summations are over all 2" state indices. In
addition, we have defined the averaged density matrix of the
system, p(r)={p(z)). In Eq. (6), the dynamics of the averaged
density matrix can be separated into a coherent part, due to
H,, and an incoherent part, due to R;;.;;. The dissipation of
the system is governed by incoherent dynamics. The time
evolution of the qubit system can be obtained by numerically
propagating the density matrix of the system using the equa-
tions of motion. In our numerical simulation, the density
matrix of a system with up to 12 qubits can be easily propa-
gated (bound by the size of physical memory on a personal
computer). This method provides an efficient way to simu-
late quantum circuits and obtain full dynamics of the qubit
system.

Although our noise model also assumes uncorrelated and
stochastic fluctuations, it is different from classical noise
models usually used in standard QEC analyses. The equation
of motion (6) treats coherent evolution and incoherent dy-
namics at the same time and thus includes interference ef-
fects between different noise channels and the controlled
Hamiltonian Hy(z). These effects do not exist in classical
noise models applied in standard QEC analyses. In addition,
our numerical simulation propagates the full density matrix
of the system in time; hence the effect of noise is naturally
followed by studying the continuous time evolution of the
system. Therefore, our method takes into account the state-
dependent dissipation and dephasing rates as well as correct
propagation of errors in quantum circuits. In standard QEC
analyses, state-dependent properties are usually ignored and
the propagation of errors is usually included using calcula-
tions that require additional approximations [5-8,10-12]. As
a result, our noise model not only provides a greater flexibil-
ity for including device conditions, but is also a more realis-
tic description than classical noise models.

III. FAULT-TOLERANT QEC CIRCUIT

In this paper, we study fault-tolerant QEC circuits imple-
menting the three-qubit bit-flip code and five-qubit code. We
choose to investigate these two codes, because they are rela-
tively small and allow us to perform systematic studies. Pre-
vious studies on the fault-tolerant QEC have been mainly
focused on Calderbank-Shor-Steane (CSS) codes, especially
the CSS [[1,3,7]] code [10,17,18]. Because fault-tolerant en-
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coded operations on CSS codes are easy to implement, CSS
codes are expected to be more useful for quantum computa-
tion than the three-qubit bit-flip code and five-qubit code.
Nevertheless, since we focus on variables affecting the per-
formance of fault-tolerant QEC circuits, we expect that re-
sults gained in our study can be applied to more general
codes. In this section, we introduce these two codes and the
methods we apply to perform fault-tolerant QEC.

A. Fault-tolerant QEC scheme

The discovery of quantum error-correcting codes enables
us to protect quantum information by encoding [9,17-19].
Although quantum error-correcting codes can correct errors
that occur during the storage of qubits, they are unable to
protect against errors due to faulty quantum gate operations
because multiple-qubit gates can propagate errors and result
in uncorrectable erroneous states. A significant achievement
in the theory of quantum computation is the discovery of
fault-tolerant methods [3]. In the framework of fault-tolerant
quantum computation, a quantum error-correcting code is
used to encode the quantum information in its logical states
(data qubits) and quantum computation is performed directly
on the encoded level without decoding. In addition, quantum
gates have to be implemented fault tolerantly, meaning that a
single error happening during a fault-tolerant operation will
not lead to more than one error in the outgoing data qubits.
Therefore, with high probability errors due to faulty gate
operations can be corrected in the subsequent QEC step. By
constantly applying fault-tolerant QEC to the data qubits, the
accumulation of errors can be decreased. A good introduction
to the principle of fault-tolerant QEC can be found in Refs.
[8,9].

We adopt the fault-tolerant QEC scheme proposed by Di-
Vincenzo and Shor [3]. This protocol utilizes cat states and
transversal controlled-X/Z gates to detect error syndromes
and achieve fault tolerance. The fault-tolerant QEC proce-
dure can be divided into three different stages: (1) ancilla
preparation and verification, (2) syndrome detection, and (3)
recovery.

To detect syndrome fault tolerantly, ancilla qubits have to
be prepared in maximally entangled cat states, and go
through a verification step to ensure that magnitudes of cor-
related multiple-qubit errors are small. For example, the
four-qubit cat state (1/+2)(J0000)+|1111)) is necessary for
the fault-tolerant QEC of the five-qubit code. Figure 3 shows
the circuit we used to prepare and verify four-qubit cat states
[8]. In this circuit, physical qubits are depicted by horizontal
solid lines and quantum gates are represented by boxes. An
extra qubit is used to detect correlated X errors in the cat
state; after the measurement, only states with measurement
result equal to zero are accepted. This verification step en-
sures that a single error in the circuit causes at most a single-
qubit error in the final cat state; therefore, the circuit fulfills
the fault-tolerant condition. Compared to other fault-tolerant
cat-state preparation circuits [1,20], an important feature in
the circuit in Fig. 3 is that only a projective measurement is
required to verify the cat state fault tolerantly. This is pos-
sible because the circuit takes into account the error propa-
gation pattern in the preparation step.
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FIG. 3. The fault-tolerant circuit for the preparation and verifi-
cation of the four-qubit cat state. Note that the final result is condi-
tioned by the outcome of the measurement at the end of the circuit.
If the measurement outcome is zero, we accept the state; otherwise,
the state is discarded and the circuit is started over again.

To ensure fault tolerance, the ancilla cat state is used to
perform transversal controlled-X/Z operations to transfer in-
formation about the errors from the data qubits to the ancilla
qubits. After decoding the ancilla state, a projective measure-
ment is then applied to obtain error syndromes. Because
there are more gates in the circuits than the number of mea-
surements, it is reasonable to assume that the measurement
has a smaller effect on the threshold result. Therefore, we
assume a perfect measurement. Later we will study the effect
of measurement errors. In addition, to ensure that we do not
accept a wrong syndrome and mistakenly apply bit-flip or
phase-flip gates on the data qubits, we must repeat syndrome
detection and take a majority vote. Following Shor’s proto-
col [3], the following repetition scheme is used.

Repetition protocol A (three majority vote):

(i) Perform the syndrome detection twice. If the same
measurement results are obtained, the syndrome is accepted
and data qubits are corrected.

(ii) Otherwise, perform one more syndrome detection. If
any two of the three measurement results are the same, the
syndrome is accepted and data qubits are corrected.

(iii) If all three measurement results are different, no fur-
ther action is taken.

This protocol is basically a simple majority vote in three
trials. Note that the choice of the repetition protocol is not
unique. In fact, later we will compare protocol A to another
protocol, and show that we can improve this protocol to in-
crease the efficiency of the fault-tolerant QEC procedure.

After a syndrome is detected and confirmed, a final recov-
ery operation is carried out to correct the detected error in the
data qubit. This completes a fault-tolerant QEC circle.

Combining all these elements, we can ensure that a single
error during the fault-tolerant procedure only leads to a
single-qubit error in the outgoing data qubits. As a result, all
multiple-qubit errors in the outgoing data qubits must be due
to multiple error events during the QEC procedure. For ex-
ample, if the fault-tolerant circuit is constructed from faulty
gates with error probability €, the probability of generating a
two-qubit error in the data qubit is of order €. In fault-
tolerant quantum computation, we constantly perform the
fault-tolerant QEC on the data qubits. As a consequence,
single-qubit errors in earlier computation and QEC steps will
be corrected in later QEC steps with high probability (sup-
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pose a single-error correcting code is used). Therefore,
single-qubit errors would not accumulate during the process
of computation; only multiple-qubit errors will accumulate at
a rate of O(€?). As a result, we can achieve longer computa-
tion when € is small.

B. Three-qubit bit-flip code

The three-qubit bit-flip code encodes a logical qubit in
three physical qubits using the following logical states:

|OL> = |000>,

|1L>=|111>‘

The three-qubit bit-flip code corrects the single bit-flip error
on any of the three data qubits. This code does not correct
phase errors; therefore, it is only useful when the degradation
of the quantum state is dominated by bit-flip errors. How-
ever, we believe insights gained by studying this code can be
applied to more general quantum error-correcting codes.
Figure 4 shows the fault-tolerant QEC circuit for the
three-qubit bit-flip code. The quantum circuit includes three
data qubits that take a encoded state as the input and two
pairs of ancilla qubits that will be prepared in the Bell state
(1/+2)(|00y+]11)) and used to measure the syndromes. Note
that the Bell state is invariant under correlated bit-flip errors
(i.e., XX); therefore, no verification step is needed. Figure 5

shows the syndrome detection circuit in detail. We want to
point out that only limited ability to perform operations in
parallel is assumed in constructing this circuit. In addition,
by arranging a two-qubit ZZ gate in front of a single-qubit R,
gate, the circuit minimizes error propagation from the ancilla
qubits to the data qubits. At the end of the circuit, two mea-
surements M, and M, are performed to obtain the error syn-
drome. After the syndrome is confirmed according to the
repetition protocol A, we then apply the corresponding re-
covery action to correct the detected error. Table I lists the
syndrome and the corresponding recovery actions for the
three-qubit bit-flip code.

Because the three-qubit bit-flip code only corrects bit-flip
errors, we only consider off-diagonal fluctuations on each
qubit when dealing with this code (y,=0). Note that the
circuit does not protect against Z errors; nor can it prevent
the generation of Z errors. To access its performance on con-
trolling X errors on the data qubits, we study the fault-
tolerant QEC procedure only when the data qubits are ini-
tially in the logical |0,) state. In our model, using the logical
|1,) state as the initial state will give the same result. This
selection of initial state is unrealistic, but it allows us to
avoid uncorrectable Z errors that will ruin the QEC proce-
dure.

C. Five-qubit code

The five-qubit code is the smallest quantum code that cor-
rects all single-qubit errors [21,22]. A scheme for fault-

FIG. 5. A circuit implementing
the fault-tolerant syndrome detec-

data 3
00>+11> {
data 2
[0C>+11> {
R,
data 1 R,

tion for the three-qubit bit-flip
code.
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TABLE 1. Measurement results and the corresponding actions
required to correct the error in the data qubit for the three-qubit
bit-flip code.

Syndrome Action
M, M, Ur
0 0 I
0 1 16
1 0 XII
1 1 IXI

tolerant quantum computation using five-qubit code is pre-
sented by Gottesman in Ref. [4]. Here we adopt the
representation and fault-tolerant QEC circuit presented by
DiVincenzo and Shor in Ref. [3]. Their implementation uses
a nine-qubit system with five data qubits and four ancilla
qubits, which utilizes four-qubit cat state (1/v2)(|0000)
+[1111)) for syndrome detection. Moreover, four syndromes
are detected sequentially. It is straightforward to simulate the
syndrome detection circuit presented in their paper using our
choice of model Hamiltonian [Egs. (1)—(5)].

Ideally, multiple input states have to be studied to obtain
averaged performance of the QEC procedure. To avoid such
tedious computations, we use a logical qubit initially in the
following pure-state density matrix (in the {|0,),|1,)} basis):

1 1 1 1
& 2<I+ \"§X+ V’§Y+ \'EZ>.
This state provides an averaged measure for all possible logi-
cal states and thus should give us a reasonable estimate of
the averaged circuit performance.

The quantum circuit implementing the decoding, error
correction, and decoding of the five-qubit code has been
studied experimentally using a NMR quantum computer with
five qubits [23]. Note that our setup simulates a minimal
circuit for the fault-tolerant QEC using a five-qubit code with
limited physical resources. We expect such a nine-qubit sys-
tem can be realized on a liquid-state NMR quantum com-
puter using available technologies. An experimental study of
such a minimal fault-tolerant QEC circuit will be an excel-
lent test for our noise model and can also provide us invalu-
able information that is essential for the design of large-scale
quantum computers.

IV. ESTIMATE OF NOISE THRESHOLD

To estimate the noise threshold for a logical operation, we
simulate a computation in which fault-tolerant QEC is per-
formed after each logical operation on the encoded qubits
and compare the magnitude of logical errors to the magni-
tude of errors generated by the same operation on a bare
physical qubit without QEC. We use the crash probability P,
to describe the amount of logical errors in an encoded state
[11]. The crash probability is defined as the probability of
having an uncorrectable error in the data qubits and can be
obtained from the fidelity of the state after a perfect QEC
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process. For the single-error-correcting codes used in this
paper, the crash probability P, equals to the probability of
having more than one error in the data qubits.

We define a computational step as a logical gate followed
by a fault-tolerant QEC step. If the same computational step
is applied repeatedly on the data qubits n times, we can de-
scribe the crash probability as a function of n—i.e., P,
=P.(n). In general, P.(n) satisfies an exponential form

P =51 -0, )

We can perform simulation and compute crash probability at
each step, P.(n). By fitting our simulation result to the func-
tional form in Eq. (7), we obtain the crash rate constant per
computational step I',= dP.(n)/dn|,-,. In addition, we also
define the crash rate constant per unit time T,
= dP.(t)/dt|,-o=T,/ 7, where 7 is the time period required to
complete a computational step. Note again that the unit time
scale At is defined by the strength of control fields &, Az
=1/e.

We compute the noise threshold for a quantum memory,
where repeated fault-tolerant QEC is applied on the data qu-
bits to stabilize quantum information, and logical X gate,
where a logical X gate followed by a fault-tolerant QEC step
are applied on the data qubits. Figure 6 shows the crash rate
constants as a function of noise strength for the three-qubit
bit-flip code, as well as the results for the five-qubit code. In
Fig. 6, we clearly see that in the weak noise regime, the crash
rate constant is proportional to the square of the noise
strength. This is the standard result of fault-tolerant QEC
using single-error-correcting codes and reflects the power of
the fault-tolerant QEC procedures. The noise threshold can
be obtained from the critical value at which the crash rate
constant for encoded computation crosses over with the error
rate of a bare physical qubit. At noise strength below the
threshold value, the errors in the encoded state accumulated
slower than for the bare physical qubit. At noise strength
above the threshold value, the fault-tolerant QEC provides
no benefit. For the three-qubit bit-flip code, the noise thresh-
old is about 2X 1072 for quantum memory, and about 1
X 1073 for the logical X gate.

We also perform calculations on the five-qubit code. Table
II summarizes threshold values for the three-qubit bit-flip
code and five-qubit code. The five-qubit code corrects all
single-qubit errors, so we can compute the threshold for dif-
ferent types of noise. Clearly, there exist minor differences
between noise thresholds for different types of noise. In ad-
dition, the noise threshold of a quantum memory is about an
order of magnitude higher than the threshold of a logical X
gate. A closer look indicates that the difference is mainly due
to the different bases of comparison. For the quantum
memory, we must compare the crash rate constant per unit
time I', to the decay rate of a free physical qubit; however,
for the X gate, we need to use the crash rate constant per
computational step I',. The extra logical X operation has
little effect on the crash rate per computational step because
the fault-tolerant QEC circuit is much larger than the circuit
for the logical X gate. This observation suggests that other
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FIG. 6. Crash rate constants as a function of the noise strength. We show crash rate constants for a quantum memory using the three-qubit
bit-flip code (upper left) and five-qubit code (upper right) and for a logical X gate on the three-qubit bit-flip code (bottom left) and on the
five-qubit code (bottom right). For the five-qubit code circuits, curves for different types of noise are presented. To show the threshold result,
we also present curves for the error rate of a single physical qubit (dotted line). The noise threshold values are summarized in Table II.

encoded single-qubit operations and transversal encoded
two-qubit operations should have similar threshold values.
For the five-qubit code, our estimate of the noise thresh-
old is about 4 X 107> for the logical X gate. Previous thresh-
old calculations have all adopted CSS codes. For compari-
son, we have followed Gottesman’s analysis in Ref. [9] and
calculated thresholds of the three-qubit bit-flip code and five-
qubit code. Following Gottesman’s model, we estimated for

the five-qubit code a threshold of 107> when storage errors
are negligible and 2 X 107+ when the strength of storage er-
rors are equal to gate errors. These values cannot be com-
pared directly to our threshold estimates because the defini-
tions of unit time and error rates are different. Nevertheless,
we can draw useful observations from the comparison.
Clearly, the limited parallelism in the circuits and the uni-
form noise assumption that treats gate errors and storage er-

TABLE II. Summary of noise threshold values. The noise strengths (y, and ;) should be interpreted as
the error rate per unit time scale, Ar=1/¢g, where ¢ is the strength of the control fields. For comparison,
thresholds obtained from a classical noise model are listed in the parentheses. These numbers are obtained by
following Gottesman’s analysis in Ref. 9, and all standard assumptions mentioned in Sec. I are applied.

Three-qubit bit-flip code

Five-qubit code

Memory X gate Memory X gate
X errors () 2.1x 1072 1.2X1073 (5.8 X 1073) 42% 10 3.5% 1075
Z errors () — — 5.1x1074 43x107°
Both X and Z errors — — 47%x 1074 3.9% 1073 (1X1073)
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rors on the same footing are responsible for the significantly
lower threshold we have obtained for the five-qubit code.
Previous calculations have indicated that including storage
errors would decrease the threshold value by almost an order
of magnitude. Our result implies that without maximal par-
allelism, there is an order of magnitude reduction of the
threshold.

We summarize the assumptions we made for these calcu-
lations: (1) stochastic and uncorrelated X and Z noises, (2)
each qubit coupled to a distinct bath, (3) uniform noise
strength, (4) perfect physical |0) states as initial states, (5) no
leakage errors, (6) no overhead for performing gates acting
on distant pair of qubits, and (7) perfect instantaneous pro-
jective measurement. Compared to the standard assumptions
in QEC, we do not assume maximal parallelism and weak
storage errors. In addition, our calculations include real con-
struction of quantum gates. Note that up to this point we
have basically reproduced the standard results of fault-
tolerant QEC using a more realistic noise model. In the next
section we will study factors that are usually overlooked in
standard QEC analyses and examine how these factors affect
the performance of fault-tolerant QEC.

V. EFFICIENCY OF FAULT-TOLERANT QEC CIRCUITS

In this section, we study several variables that can affect
the efficiency of the fault-tolerant QEC scheme. The effects
of these variables are usually overlooked in standard noise
threshold analyses. We perform a systematic investigation on
the performance of quantum memories stabilized by fault-
tolerant QEC and aim to generate a generic picture on how
these variables quantitatively change the efficiency of fault-
tolerant QEC circuits. Because our noise model can provide
a quantitative description of the efficiency of fault-tolerant
QEC circuits including realistic device conditions, the
method applied here can be used to benchmark different
quantum circuits and search for optimal circuit design for
real physical implementations.

A. Effect of imperfect measurement

Previous studies on the noise threshold of fault-tolerant
QEC typically treat the measurements as simple one qubit
operations [5,7,8,10]. Recently, Steane has studied the effect
of measurement time and found that a long measurement
time can significantly reduce the noise threshold [11]. Here
we test another type of errors due to measurement: namely,
projecting to an incorrect state due to imperfect measure-
ment. We assume that the measurement is instantaneous and
use the following POVM (positive operator-valued measure)
to describe an imperfect projective measurement on a single
qubit:

>

My =(1-1)|0)0] + 7[1X1

M, =(1-n)|1X1]+ 5[0)0

where M, (M) describes events in which the basis state |0)
(|1)) is measured and 7 is the probability of measurement
error—i.e., a projection onto the wrong basis state. Figure 7

s
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FIG. 7. T, as a function of noise strength for the fault-tolerant
QEC circuit using three-qubit bit-flip code at different level of mea-
surement errors. The error rate of a single physical qubit is also
shown (dotted line). The measurement error has little effect on the
threshold value.

shows curves for the crash rate constant per unit time I', at
different probabilities of measurement errors for a quantum
memory implementing the three-qubit bit-flip code. Clearly,
I', is insensitive to the measurement errors even when the
probability of measurement errors is significantly higher than
the noise strength ;. The probability of the measurement
error as high as 5% has only minor effect on the threshold
value. This result suggests that a short and less accurate mea-
surement is preferable to a long one.

B. Effect of a collective bath

A distinct feature of our noise model is the ability to de-
scribe the effect of a collective bath, in which all qubits are
coupled to the same environment. Such an environment is
relevant in physical implementations such as trapped-ion
quantum computers, where qubits are coupled to the same
collective phonon modes [24,25]. The effect of a collective
bath on the fault-tolerant QEC is an interesting topic. Be-
cause a collective bath seems to contradict the idea of uncor-
related and stochastic errors that is the foundation of fault-
tolerant QEC, several authors have suggested that collective
decoherence has to be avoided for fault-tolerant quantum
computing [8,26]. Also, in a collective bath the effects of
noise on different qubits add coherently; as a result, super-
decoherence states exist and might affect the efficiency of
fault-tolerant QEC [27].

To address this question, we simulate the fault-tolerant
QEC circuit for the three-qubit bit-flip code using a noise
model in which all qubits are coupled to a common bath. The
following forms of correlation functions for the stochastic
process are used:

(6e(1)) =(8Ji(1)) =0,
(6e(1)Se(1")) = ool = 1'),

(aT(n)I(t"))y =y 8l —1"),
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FIG. 8. The crash rate per computational step, I, for the three-
qubit bit-flip code as a function of the noise strength. Curves for the
distinct bath system (solid line) and collective bath system (dotted
line) are shown. The result for the collective bath is close to the
result for localized baths. This result suggests that collective bath
has minor effect on the efficiency of fault-tolerant QEC.

(Gei(1) oI (t")) =0, (8)

Notice that in Eq. (8), fluctuations on different qubits are
fully correlated; this reflects the result of coupling to a com-
mon bath. Figure 8 shows the crash rate constant I', for
quantum memories using the three-qubit bit-flip code with
two different types of baths. The crash rate curve for the
collective bath case is only slightly higher than the curve for
the localized bath, and there is no significant difference be-
tween these two lines. This result suggests that a collective
Markovian bath, which exhibits spatial but not temporal cor-
relation, has little effect on the efficiency of fault-tolerant
QEC. Although superdecoherence states do exist when the
system is coupled to a collective bath, they have little effect
on the dynamics of the system, because those states represent
only a small fraction in the whole Hilbert space. The fault-
tolerant QEC circuit using the five-qubit code was also stud-
ied, and similar results were obtained.

Fault-tolerant QEC methods might not be the best way to
deal with collective decoherence in quantum computation. In
a collective bath setup, there exist states that are robust
against collective decoherence. These states form a subspace
called decoherence-free subspace (DFS) [28,29]. The exis-
tence of DFS’s has been verified experimentally [30-33]. In
addition, by encoding quantum information in the DFS’s and
performing quantum gates that are strictly inside the DFS’s,
universal fault-tolerant quantum computation can be
achieved without the extensive space and time overheads re-
quired for QEC [34-36]. Other proposals that utilize the
properties of a collective bath include concatenation of DFS
and quantum error-correcting codes [37] and supercoherent
qubits [38]. These passive error-preventing schemes are pref-
erable for fault-tolerant quantum computation in collectively
decoherent environments. Although our focus in this paper is
on QEC methods, it is worth noting that our stochastic Liou-
ville equation approach can be used to study these collective
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FIG. 9. The crash rate constant per step, I',,, as a function of the
noise strength for the two different repetition protocols for a quan-
tum memory using three-qubit bit-flip code. Using protocol B re-
duces the crash rate constant by a factor of 2.

decoherence models. In fact, in Ref. [13] we have theoreti-
cally demonstrated a decoherence-free state in a two-qubit
system using the same approach. Moreover, in a realistic
physical device such as solid-state qubits, the correlation be-
tween noise on different qubits is likely to be a function of
the distance between the qubits. For example, the correla-
tions of the diagonal fluctuations might exponentially decay
in space:

<681(t) 58](t’)> = ‘yoe_‘i_j‘/l‘é(l — t’)’

where L is a characteristic coherence length of the system.
Our stochastic Liouville equation approach can easily model
such partially collective baths, and it will be interesting to
apply our approach to study DFS methods in these realistic
bath conditions.

C. Repetition protocol

Our simulation propagates the density matrix of the sys-
tem in the process of computation; therefore, we obtain the
full information about the time evolution of the system. The
ability to obtain the full trajectory of the qubit system is
another important advantage of our simulation method. By
examining the trajectory of the system during the fault-
tolerant QEC process, we find the following repetition pro-
tocol yields the best performance.

Repetition protocol B (conditional generation):

(i) Perform the syndrome detection once. If this syndrome
is zero, do nothing.

(ii) Otherwise, perform the syndrome detection again. If
the same syndrome is obtained, accept the syndrome and
correct data qubits accordingly.

(iii) Otherwise, no further action is taken.

Figure 9 shows the crash rate constant I', for quantum
memories implementing the three-qubit bit-flip code using
different repetition protocols. Because the majority of the
measured syndromes will be zero in the weak-noise regime,
protocol B reduces the amount of time required for a fault-
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FIG. 10. A circuit implementing the fault-tolerant syndrome de-
tection for the three-qubit bit-flipping code. In this circuit, we as-
sume that the quantum computer can perform quantum gates on
different qubits in parallel.

tolerant QEC step by a factor of 2. As a result, the crash rate
constant per computational step, I',,, decreases by a factor of
2 when protocol B is used. Similar improvements on the
fault-tolerant QEC protocol have been suggested by other
groups [11,12,39]. The idea behind protocol B is that the
syndrome detection circuit is complicated and generates ex-
tra errors on the data qubits, therefore minimizing the num-
ber of syndrome detection and accepting a syndrome only
when two consecutive detections agree on the same syn-
drome improve the efficiency of the fault-tolerant QEC pro-
cedure.

D. Level of parallelism

An important factor related to the efficiency of a QEC
circuit is the level of parallelism in the circuit. The level of
parallelism available is determined by the computing device,
but previous threshold calculations typically ignore this is-
sue. The syndrome detection circuit shown in Fig. 5 assumes
a restricted level of parallelism. In fact, for a reasonable
physical implementation, gate operations on different qubits
might actually be operated in parallel to reduce the operation
time. For example, a quantum computer implementing Kane
architecture is capable of performing controlled-Z gates in
parallel on different pairs of qubits [40]. Figure 10 shows a
compressed version of the syndrome detection circuit that
has increased level of parallelism.

Furthermore, because the interactions used to implement
the controlled-Z gate commute with each other (Z; and Z,Z,
commute), in principle the controlled-Z gate can be made in
one step:

controlled-Z = e~ 24 pimZ A )14 _ p=im(212y=21-2,)14
This makes it possible to perform a controlled-Z operation in
a single pulse. This maximal parallelism design is a theoret-
ical model used to benchmark the maximal gain available
from the increase of parallelism. This design does not corre-
spond to any physical implementation, and is a special case
for our choice of model interactions (ZZ coupling).

Figure 11 shows the crash rate constant per unit time I,
for quantum memories implementing the three-qubit bit-flip
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FIG. 11. The crash rate constant per unit time, I',, as a function
of the noise strength for quantum memories using the three-qubit
bit-flip code. Curves for three syndrome detection circuits different
in the level of parallelism are shown. The solid line is for the circuit
shown in Fig. 5, the dashed line is the increased parallelism circuit
shown in Fig. 10, and the dash-dotted line is the maximal parallel-
ism circuit that finishes all controlled-Z operations in a single pulse.
We see dramatic improvement in the noise threshold values when
the level of parallelism is increased. The result indicates that by
increasing the level of parallelism, the threshold value can be sig-
nificantly improved.

code. Results for three syndrome detection circuits with dif-
ferent levels of parallelism are shown. The noise thresholds
for the original circuit (Fig. 5), increased parallelism circuit
(10), and maximal parallelism circuit are approximately 1.5
X 1072, 2.3X 1072, and 4.6 X 1072, respectively. The results
indicate that by increasing the level of parallelism, the noise
threshold can be significantly improved. Note that the reduc-
tion of the operation time in higher level of parallelism can-
not account for all of the improvement on the threshold val-
ues; because the crash rate constant per unit time I', has been
scaled by the amount of time needed to complete a fault-
tolerant QEC step (I',=I",/7), any difference in I'; is from
sources other than difference in 7. The improvement in the
threshold value is because when the level of parallelism is
increased, the number of pathways that generate uncorrect-
able errors decreases. Finally, we emphasize that our method
can access the real threshold value, reflecting the limitations
of an individual computing device.

VI. CONCLUSION

We have applied a noise model based on a generalized
effective Hamiltonian to study the effect of noise on the per-
formance of fault-tolerant QEC circuits. The model includes
realistic physical interactions for the implementations of
quantum gates and describes the effect of system-bath inter-
actions by including stochastic fluctuating terms in the sys-
tem Hamiltonian. As a result, this method simulates quantum
circuits under physical device conditions and gives us a full
description of the dissipative dynamics of the quantum com-
puter.
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Fault-tolerant QEC circuits implementing either the three-
qubit bit-flip code or the five-qubit code were investigated,
and the noise threshold for quantum memory and logical X
gate were calculated by comparing the logical crash rate to
the error rate of a bare physical qubit. The noise threshold of
quantum memories using the three-qubit bit-flip code and
five-qubit code is about 2 X 1072 and 5 X 1074, respectively.
The noise threshold of logical X gates using the three-qubit
bit-flip code and five-qubit code is about 1X 1073 and 4
X 1073, respectively. Note that in our dimensionless system,
these noise strength values should be interpreted as the error
rate per unit time scale, Ar=1/¢, where ¢ is the strength of
the control fields. These threshold values are obtained from a
uniform noise model where the magnitudes of storage errors
and gate errors are the same. This result indicates that fault-
tolerant quantum computing is possible in systems with
strong storage errors. A possible scenario for such a system is
the linear nearest-neighbor architecture, where only nearest-
neighbor interactions are available for two-qubit gates, and
an excess amount of quantum swap gates have to be added to
the circuit to perform two-qubit gates between qubits distant
in space.

We have also carried out a systematic study on several
variables that can affect the performance of the fault-tolerant
QEC procedure for the three-qubit bit-flip code. Our results
show that both collective bath and imperfect projective mea-
surements have minor effects on the threshold value. How-
ever, changing the repetition protocol and level of parallel-
ism can significantly change the performance of the fault-
tolerant QEC procedure. Our density matrix results indicate
that accepting a syndrome only when two consecutive syn-
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drome detections agree (protocol B), which reduces the num-
ber of required syndrome detection steps, is the optimal rep-
etition protocol. Compared to the simple majority vote
algorithm (protocol A), protocol B increases the efficiency of
fault-tolerant QEC at least by a factor of 2. Regarding the
level of parallelism in the syndrome detection circuit, in gen-
eral, a higher level of parallelism results in a more efficient
fault-tolerant QEC circuit. The improvement cannot be fully
explained by the shorter operational time for a more paral-
lelized circuit; we suggest the major contribution for the im-
provement comes from the reduction of possible pathways
for error propagation. Since the level of parallelism is actu-
ally limited by available physical resources in reality, it will
be interesting to examine and simulate this factor according
to a specific physical implementation of quantum computers
(such as ion traps or NMR).

Finally, we emphasize that without specifying the specific
noise model and physical device conditions, noise threshold
values are of little use. Our noise model is based on well-
defined parameters that reflect realistic device conditions and
provides a full description for the dissipative dynamics of the
quantum computer. As a result, this noise model enables us
to access the real performance of fault-tolerant QEC for in-
dividual physical implementations. We believe that such in-
formation can be useful for the design and optimization of
quantum computers.
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