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As access to computational resources continues to increase, free-energy calculations have emerged as a powerful
tool that can play a predictive role in a wide range of research areas. Yet, the reliability of these calculations
can often be improved significantly if a number of precepts, or good practices, are followed. Although the
theory upon which these good practices rely has largely been known for many years, it is often overlooked
or simply ignored. In other cases, the theoretical developments are too recent for their potential to be fully
grasped and merged into popular platforms for the computation of free-energy differences. In this contribution,
the current best practices for carrying out free-energy calculations using free energy perturbation and
nonequilibrium work methods are discussed, demonstrating that at little to no additional cost, free-energy
estimates could be markedly improved and bounded by meaningful error estimates. Monitoring the probability
distributions that underlie the transformation between the states of interest, performing the calculation
bidirectionally, stratifying the reaction pathway, and choosing the most appropriate paradigms and algorithms
for transforming between states offer significant gains in both accuracy and precision.

Introduction

The role of molecular-level, free-energy calculations in basic
theoretical research on chemical and biological systems is firmly
established. This is because free energies, or chemical potentials,
are the central quantities that determine the behavior of these
systems at or near equilibrium. They govern, for example, ligand
binding to macromolecules, partitioning of drugs and small
molecules across cell membranes, conformational changes of
proteins required for many cellular functions, and association
of molecules forming biological or nanotechnological structures.
This means that understanding and reliable predictions of how
these processes take place without knowledge of the associated
free-energy changes is quite difficult if not impossible. Fur-
thermore, free-energy calculations often provide an efficient
route to estimating kinetic and dynamic characteristics of
chemical and biological processes, such as rate constants,
permeability coefficients, or ionic conductance.

Progress in the theory of free-energy calculations, combined
with advances in other, related areas of statistical mechanics,
such as enhanced sampling techniques, as well as the steady
increases in computational capabilities, have brought the de-
termination of free-energy changes from numerical simulations
to the level of increasingly reliable, efficient, and well-
characterized research tools. As a result, these tools are being
used with increasing frequency in several important areas of
biotechnology, nanotechnology, and pharmacology, such as

computer-aided drug design or protein engineering. One avenue
to improving this methodology is to implement in standard
calculations the various theoretical advances that are already at
hand. Some of these advances were proposed quite some time
ago, but are still not fully appreciated or employed sufficiently
broadly. Others are relatively recent. Their common feature is
that they are simple to use and provide a better framework for
understanding free-energy calculations while reducing the
associated errors. For this reason, we call them “good practices”.
The main goal of this contribution is to review these good
practices and explain why they should be broadly applied.
Failing to follow these practices can lead to unreliable or
inefficient free-energy estimates. It should be pointed out,
however, that following good practices does not guarantee
satisfactory agreement between calculated free energies and
physical reality. Other problems, which are beyond the scope
of this paper and are due, for example, to inaccurate potential
energy functions, improper or inaccurate simulation algorithms,
or difficulties in adequate sampling of phase space caused by
slow time evolution of relevant degrees of freedom might also
contribute importantly to errors associated with the computed
free energies. Thus, good practices should be viewed as a
necessary, rather than a sufficient condition for obtaining free-
energy estimates both reliably and efficiently.

Among several general-purpose approaches to calculating free
energies,1 we focus on free energy perturbation (FEP) and
nonequilibrium work (NEW) methods. FEP is one of the oldest,
well-established, and most frequently used methods. It was
developed for statistical mechanics of condensed phases by Robert
Zwanzig in 1954,2 but its simple derivation can be found in the
earlier, classical statistical mechanics textbook by Lev Landau.3

In contrast, NEW is only 13 years old,4,5 and its potential is still
being explored. Even though these two methods have very different
histories, they share theoretical underpinnings. In fact, since the
inception of NEW, it has been appreciated that FEP can be
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considered as a limiting case of this method.4 For this reason, it is
convenient to consider them together.

Other general-purpose methods are also available for free energy
calculations. They are based either on probability distributions and
histograms or on thermodynamic integration using constrained or
unconstrained dynamics.1 These methods have an equally broad
range of applications and for many problems are the methods of
choice. Although a number of recommendations of good practices
formulated here would also hold for these methods, they are
generally and in many respects different from those relevant to
FEP and NEW. For this reason, they require separate treatments
beyond the scope of the present contribution.

In the next section, we present the theoretical background for
FEP and NEW. Then, we address the issue of both statistical and
systematic errors encountered in these methods. We start with a
somewhat qualitative discussion of the reasons for the frequently
observed poor convergence of these calculations, followed by a
more formal error analysis and the presentation of several
techniques aimed at controlling and reducing errors. In particular,
we discuss how introducing intermediate states in a transformation
between two states of interest (stratification) and carrying out these
transformations in both directions impacts errors. Each subsection
ends with a summary of recommended practices relevant to a given
topic. The subsequent section is devoted to good practices in what
is probably the most popular application of FEP: alchemical
transformations. The paper closes with a summary of good practices
recommended for both FEP and NEW calculations and suggestions
for future research directions that might further improve the
reliability and efficiency of free-energy estimates.

Theoretical Background

Although there are various ways to formulate the problem
of free energy estimation, perhaps the simplest begins with a
parameter-dependent Hamiltonian

Here Γ ) (x1, · · · , xN; p1, · · · , pN) denotes a point in the
phase space of the N-particle system of interest, and λ is an
external parameter or a collection of such parameters. For
convenience, we will often write U(Γ; λ), although it is
understood that the potential energy depends only on the
coordinates and not on the momenta. For a fixed value of λ,
the equilibrium state of the system at temperature T is described
by the Boltzmann-Gibbs distribution,
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where � ) 1/kBT, kB is the Boltzmann constant, and the
temperature (T) dependence of the partition function Qλ has been
suppressed. The free-energy difference between two states at
the parameter values λ ) 0, 1 is given in terms of the ratio of
the corresponding partition functions,

It is this difference that we wish to compute.
This parametric formulation of the problem encompasses a

wide variety of scenarios,1,6 and in practice, the calculations at
the heart of many free energy methods fit into this framework,
regardless of whether the physical problem of interest explicitly
involves an external parameter. For example, in “computer
alchemy”,7-10 λ is a parameter used to interpolate between two
different physical Hamiltonians, which effectively represent
systems with different chemical compositions. In such calcula-
tions, one molecule is mutated into another (for instance, by
the modification of interatomic interactions) through a sequence
of intermediate states with no physical relevance. The parameter
λ can also be used to specify an artificial confining potential,
restricting the system to a particular region of configuration
space. This approach is taken in the weighted histogram analysis
method11 and in steered molecular dynamics.12 Alternatively,
when determining the potential of mean force along a simple
reaction coordinate such as a dihedral angle, we can treat this
coordinate itself as an external parameter rather than a dynamical
variable. Finally, of course, λ might represent an actual
mechanical parameter or external field; for example, a magnetic
field acting on a system of interacting spins.

Methods of estimating ∆A using numerical simulations are
grounded in various identities of statistical mechanics. We now
briefly discuss the two classes of identities that are the focus of
this paper: free energy perturbation identities, which are
formulated in terms of equilibrium averages, and nonequilibrium
work identities, involving averages over nonequilibrium
trajectories.

The starting point for FEP is the identity2

where ∆U(Γ) ≡ U(Γ, λ1) - U(Γ, λ0) and the angular brackets
specify an equilibrium average,

In the most direct application of this identity, the system is
simulated in the equilibrium state 0 using either molecular
dynamics or Monte Carlo sampling. Then the right side is
evaluated by averaging directly over N sampled microstates,

where Γ1, · · · , ΓN are microstates generated during the simulation.
The application of eq 4 just described is unidirectional, from

a given sampling distribution (λ ) 0) to a given target
distribution (λ ) 1). Of course, the roles can be reversed: if

one samples from equilibrium state 1 rather than 0, then the
FEP identity is

It is also possible, and in fact beneficial, to estimate free
energy using bidirectional methods that combine samples from
both distributions. Such methods can be derived from the
identity,

where P0(∆U) is the distribution of values of ∆U obtained when
sampling from the equilibrium state at λ ) 0 and P1(∆U) is
defined similarly for λ ) 1. We will discuss these methods in
detail in the section on combining forward and backward
calculations.

In contrast to FEP, which is based on equilibrium sampling,
NEW relies on simulations of a system driven away from
equilibrium. The starting point is the identity4

Here, the brackets 〈 · · · 〉F denote an average over NF trajectories
generated during simulations, in which the system’s initial
conditions are sampled from equilibrium state 0, then the system
evolves as the parameter λ is varied from 0 to 1 using a
predetermined schedule, or protocol, λt

F (0 e t e τ). The
superscript F specifies “forward”, to distinguish from an average
over “reverse” trajectories, discussed below. WF is the external
work performed on the system during a single simulation, and
the sum on the right is now a sum over NF simulations (i.e.,
trajectories) rather than over sampled microstates. In this paper,
we will assume that each simulation is performed using
continuous-time molecular dynamics, although analogous results
hold for discrete-time Monte Carlo simulations.5,13 The value
of work is given by a path integral along the trajectory Γt,

where λt
F specifies the external protocol used to vary the work

parameter from λ0
F ) 0 to λτ

F ) 1.
When considering NEW, it is useful to adopt the perspective

that a trajectory Γt represents the microscopic history of the
system during a thermodynamic process. This point of view is
useful even when the simulations depict physically unrealizable
situations, as is the case with computer alchemy. With this in
mind, the inequality

which is an immediate consequence of eq 9, can be interpreted
as a statement of the second law of thermodynamics, in the
form of the Clausius inequality.14,15 Although the second law
places a bound on the average work performed during a
thermodynamic process, the NEW identity, eq 9, places a

∆A ≡ A1 - A0 ) -1
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constraint on the statistical fluctuations around this average. It
is this constraint that we exploit in order to estimate ∆A.

We can also imagine simulations in which initial conditions
are sampled from equilibrium state 1, then the system evolves
under the same MD scheme as when the work parameter is
switched from 1 to 0, using the reverse protocol,

In this case, the value of ∆A can be estimated using the
identity

where WR[Γt] ) ∫0
τ dt λ̇t

R ∂λU(Γt; λt
R).

Moreover, as with FEP, there is a bidirectional version of
NEW (see the section on bidirectional calculations), which
combines data from trajectories generated using both the forward
and the reverse protocols, λt

F and λt
R. The starting point is the

following fluctuation theorem obtained by Crooks,13,16 which
is the nonequilibrium analogue of eq 8:

Here, PF(W) is the distribution of work values obtained from
trajectories generated using the forward protocol, and PR(W) is
defined correspondingly for the reverse protocol. (Note the
minus sign in the denominator on the left side of the equation.)

We note that nonequilibrium simulations can also be used to
determine the potential of mean force (PMF) along a reaction
coordinate, rather than a free-energy difference between two
states 0 and 1.17-20 This topic is, however, outside the scope of
the present article.

There is an evident correspondence between the FEP identities
(eqs 4, 7) and the NEW identities (eqs 9, 13). The relationship
can neatly be understood by considering simulations performed
in the “sudden limit” of infinitely rapid switching, τ f 0. In
this situation, the system has no opportunity to evolve during
the process: Γt ) Γ0 for all 0 < t < τ. Equation 10 then reduces
to WF ) ∆U(Γ0), and the average over forward trajectories
becomes an average over microstates Γ0 sampled from state 0.
For the reverse process, similar comments apply, but with WR

) -∆U(Γ0). These observations allow us to interpret the FEP
identities as special cases of the NEW identities, emerging in
the limit of sudden switching, τ f 0.

Managing Errors in FEP and NEW Calculations

The Problem of Poor Convergence. Although the FEP and
NEW identities are exact, both methods suffer acutely from poor
convergence. Consider a straightforward implementation of
NEW involving a complex system with many degrees of
freedom. Simulations are performed, values of work are
computed, and the right-hand side of eq 9 is evaluated. Suppose
a running estimate of the free-energy difference, ∆Â, is tallied
and plotted to examine the convergence of the estimate as a
function of the number of simulations, N. In all likelihood, the
plot will not show steadily decreasing fluctuations as the current
estimate of ∆A, ∆Â, approaches an asymptotic value; rather,
we will see a characteristic sawtooth pattern, punctuated by
sudden drops in the value of ∆Â, as illustrated in Figure 1.

A sawtooth pattern indicates that the average is dominated
by rare events: the sudden changes in ∆Â are due to trajectories
with unusually low values of work. In this situation, the number
of simulations required to achieve reasonable convergence might
be prohibitively large. In this section, we discuss this issue in
detail, focusing our attention on those “rare events” that must
be sampled to achieve convergence.

In the context of FEP, convergence is closely related to the
phase space overlap between the equilibrium distributions p0

eq

) peq(Γ, 0) and p1
eq ) peq(Γ, 1).21,22 Specifically, when evaluating

the right side of eq 6 by simulating equilibrium state 0, the
dominant contribution to the exponential average comes from
those microstates that are typical of state 1. When there is little
phase space overlap between the distributions p0

eq and p1
eq, these

dominant microstates are generated very rarely, leading to slow
convergence.

Since the right sides of eqs 4 and 7 involve averages over
quantities that depend only on ∆U, these averages can be
expressed in terms of P0(∆U) or P1(∆U) instead of p0

eq or p1
eq.

That is,

and similarly for state 1,

From eqs 2 and 3, it follows that P0(∆U) and P1(∆U) are
not independent, but instead, they are connected through the
relation

(equivalently, eq 8). Thus, the integrand in eq 15 is proportional
to the probability distribution of ∆U sampled from state 1. This
reinforces the earlier observation that the integral, and therefore
∆A can be estimated reliably only if microstates representative
of state 1 have been sampled from state 0.

This idea can be illustrated quantitatively if one assumes that
P0(∆U) is Gaussian. Substituting

λt
R ) λτ-t

F (12)

exp(�∆A) ) 〈exp(-�WR)〉R (13)

PF(+W)

PR(-W)
) exp[�(W - ∆A)] (14)

Figure 1. Schematic illustration of the sawtooth pattern that often arises
when taking exponential averages. The sudden changes in ∆Â are the
signature of an average dominated by rare events.

∆A ) - 1
�

ln ∫ exp(-�∆U) P0(∆U) d∆U (15)

∆A ) 1
�

ln ∫ exp(�∆U) P1(∆U) d∆U (16)

exp(-�∆U) P0(∆U) ) exp(-�∆A) P1(∆U) (17)

P0(∆U) ) 1

√2πσ
exp[- (∆U - 〈∆U〉0)2

2σ2 ] (18)
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where σ2 ) 〈∆U2〉0 - 〈∆U〉0
2, we find that the integrand in eq

15 is also a Gaussian, but not normalized to unity and, compared
to P0, shifted toward lower values of ∆U by �σ2 or σ/kBT
standard deviations. The larger this shift, the more difficult it
is to sample the energies that contribute significantly to the
integral. If σ ) kBT approximately one in six sampled values
of ∆U will be on the left (low ∆U) side of exp(- �∆U) P0(∆U).
For σ ) 2kBT, this fraction is reduced to 1/40. If σ is further
increased to 5 kBT, the fraction drops to approximately
1/3 500 000, which means that, among statistically independent
configurations sampled in simulations of typical length, we
might never encounter a value of ∆U in this region. Thus, the
sampling of the integrand in eqs 4 and 7 might be strongly
biased, and convergence is poor.

A similar argument applies also to distributions that are not
Gaussian. This is illustrated in Figure 2. If probability distribu-
tions are narrow, as in the right panel, free energy estimates
are reliable. If they are broad, as in the left panel, the reliability
suffers. More generally, the relatiVe entropy, or Kullback-
Leibler diVergence,23,24

provides an information-theoretic measure of the degree to
which p0

eq is distinguishable from p1
eq. If the distributions are

identical, then D ) 0, whereas a value D . 1 indicates that
there is little overlap between them. From eqs 1-3 and 17, it
follows that

where D[P0||P1] is the relative entropy of P0(∆U) with respect
to P1(∆U). Combining this result with eq 19 then gives us
Gibbs’ inequality: 〈∆U〉0

eq g ∆A.
It is useful to think of the difference,

as the amount of work that is dissipated during an instantaneous
switching process from 0 to 1. For sampling from state 1, we
similarly introduce

and we have D[P1||P0] ) �Wd
1 g 0, the analogue of eq 20. These

quantities provide rough estimates of the number of samples
needed for FEP to converge, when sampling from either state
0 or state 1,25-28

There is a duality at play here (the convergence when
sampling from 0 is dictated by the dissipation when sampling
from 1, and vice versa) which has an interesting, if somewhat
counterintuitive, consequence often observed in practice. Namely,
if we compare the performance of eq 4 (i.e. sampling from 0)
with that of eq 7 (i.e. sampling from 1), then we find that better
convergence is achieved for the case of greater dissipation. A
familiar example is Widom’s particle insertion method.29

Estimating the excess chemical potential by inserting a particle
into a fluid works far better in practice than particle deletion,6

even though insertion is much more dissipative than deletion
when the fluid is dense.

Similar considerations apply to NEW, only here, we are
dealing with ensembles of trajectories (F/R) rather than canonical
distributions in phase space (0/1). We distinguish between the
typical trajectories obtained when simulating the forward process
and the dominant trajectories that contribute the most to the
average appearing in eq 9. As described more precisely
elsewhere, the dominant trajectories are exactly those realiza-
tions in which time appears to be running backward.27 Although
this statement provides some intuition regarding the convergence
of NEW, in practice, it is more useful to compare work
distributions. If we construct histograms representing PF(W) and
PR(-W) (the reader should note the minus sign here) then the
degree of overlap between these histograms provides an
indication of the likely convergence of eq 9, just as the overlap
between P0(∆U) and P1(∆U) indicates the convergence of eq

Figure 2. Histograms of probability distributions P0(∆U) and P1(∆U), and the corresponding integrands in eqs 15 and 16 obtained from FEP
calculations of the hydration free energy of 4-methylimidazole (i.e., the side chain of ε-L-histidine) (see the Supporting Information). Forward and
backward transformations correspond, respectively, to annihilation and creation of the solute. In these calculations, either an 8-window (a) or a
32-window (b) stratification strategy was employed. The probability distributions are given for a single stratum, that is, for a given value of the
coupling parameter, λ. From eq 17, it follows that P1(∆U) should differ from exp(- �∆U) P0(∆U) only by a constant factor. The same should be
the case for P0(∆U) and exp(�∆U) P0(∆U). For the 32-window strategy (b), the histograms obtained from calculations in both directions yield
expected results, and therefore, the free energy estimates are expected to be reliable. For the 8-window strategy (a), the histograms are markedly
broader, and the free energy estimates for annihilation are expected to be inaccurate. In this case, exp(-�∆U) P0(∆U) clearly has a different shape
from P1(∆U) because the low-∆U region in the shaded area is almost never sampled. Stratification, creation, and annihilation are discussed in
further detail in the text.

D[p0
eq|p1

eq] ) ∫ p0
eq ln(p0

eq

p1
eq) g 0 (19)

D[p0
eq|p1

eq] ) D[P0|P1] ) �(〈∆U〉0
eq - ∆A) (20)

Wd
0 ≡ 〈∆U〉0

eq - ∆A (21)

Wd
1 ≡ -〈∆U〉1

eq + ∆A (22)

N0 ∼ exp(�Wd
1) and N1 ∼ exp(�Wd

0) (23)
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4. This follows from Crooks’s fluctuation theorem (eq 14). As
before, the amount of overlap can be quantified using relative
entropy,

When the dissipated work, Wd
F, is much greater than kBT, then

there is little overlap between the work distributions, and one
must resort either to stratification or to longer switching
simulations to reduce dissipation. Just like with FEP, the rough
number of trajectories required for convergence of NEW is
governed by a duality between the forward and reverse processes

In summary, when applying FEP, it is good practice to assess
the degree of phase space overlap between states 0 and 1. This
is not as difficult as it might at first seem. The amount of overlap
between the many-dimensional distributions of microstates in
states 0 and 1 can be measured as the amount of overlap between
the one-dimensional distributions P0(∆U) and P1(∆U); that is,
the distributions of values of ∆U obtained when sampling from
the two states. Thus, when implementing FEP, it is useful to
sample from both states 0 and 1 and to construct histograms of
the sampled values of ∆U. Examples of such histograms are
shown in Figure 2. In many cases, one will see immediately
that the overlap between the histograms is poor, indicating that
the phase space overlap between the corresponding multidi-
mensional distributions is also poor. This is illustrated in the
left panel of Figure 2. In such situations, the direct application
of FEP to these two states will not provide meaningful results,
and stratification, which is discussed hereafter, will be most
likely required.

Error Analysis. The previous section highlighted an impor-
tant point: Due to poor overlap, free-energy calculations can
be burdened with substantial errors, which ought to be controlled
and estimated. Supplying an error estimate for the computed
∆A, however, has been frequently overlooked or simply ignored.
Yet, without any measure of error, free-energy calculations are
of limited utility; it is unclear how to interpret comparisons
between calculated and experimental free-energy differences or
how to improve the calculated estimates if they are not
satisfactory. In recent years, considerable progress has been
made in understanding the nature and sources of errors involved
in calculating ∆A.26,30-38 These studies revealed that the problem
is complex and reliable error estimates are often difficult to
achieve. Even though a complete and fully satisfying solution
to this problem is still not available, it is helpful to understand
the reasons for this state of affairs and to be aware of the tools
that can be used to estimate and manage errors. We will first
consider unidirectional calculations (see eqs 4 and 7) and then
discuss how to combine them to reduce error.

The first step toward calculating ∆A and the associated error
is to define an estimator ∆Â, a function that provides a
prescription for estimating ∆A from a sample of N independent
values of a random variable, ∆U, generated in computer
simulations. Then the mean-squared error of ∆Â, δ2ε∆Â ) E

[(∆Â - ∆A)2], where E [X] denotes the expected value of X,
can be represented as a sum of two terms,

The first term on the right-hand side of this equation, σ∆Â
2,

is the variance of the sample, which is a measure of the statistical
error. The second term, b2(∆Â) ) (E [∆Â] - ∆A)2, is the
square of the bias of the estimator. The bias is a difference
between the expected value of the estimator and the true value
of the quantity being estimated. It reflects systematic errors
associated with a given estimator. If an estimator is unbiased,
b(∆Â) ) 0, and the mean-squared error is equal to the variance.
Conversely, if an estimator is biased, then ∆Â is not expected
to be equal to ∆A, even when samples of size N are drawn
many times. In common terminology,1,39 the variance measures
the precision of the calculated free energy, the bias measures
its accuracy, and the mean-squared error measures the overall
reliability of the computation. Note that both δ2ε∆Â and σ∆Â

2

depend not only on a sample but also on an estimator. For the
same sample of ∆U, different estimators will yield, in general,
different values of ∆A. In fact, identifying efficient estimators,
which minimize the mean square error (or the variance), will
be one of the main themes in the discussion that follows.

The main problem with estimating errors in free energy
calculations is that ∆A is a nonlinear function of ∆U. Then, a
simple relation for linear functions, f, of a random variable X,
E[f(X)] ) f(E[X]), no longer holds. In nonlinear cases, estima-
tors of f(X) are often biased, and exact calculation of the variance
is not a simple matter. To deal with these difficulties, the delta
method40-42 is usually employed. In this method, the expectation
of f(X) is approximated by the expectation of a polynomial
approximation to f(X). This polynomial is generally a truncated
Taylor expansion centered at the mean of X, although other
polynomialsalsocanbeused.Mosterroranalysesof∆A26,30,34,35,37,43

are based on this approach, even if this is not explicitly stated.
The main theorem underlying the delta method44 states in a
slightly simplified form that for a function f(XN) of a sample
XN consisting of N independent values of a random variable,
the expectation value of f(XN) can be written as

providing that f is bounded, and the first n + 1 derivatives exist
and are also bounded. Here, Xj is the true value of the average
X and f j(Xj) denotes the jth derivative of f at Xj .

Equation 27 is an expansion of E[f] in the powers of N. If
the series is truncated after the first order,

it follows immediately that

D[PF| |PR] ) �(〈W〉F - ∆A) ≡ �Wd
F g 0 (24)

NF ∼ exp(�Wd
R) and NR ∼ exp(�Wd

F) (25)

δ2ε∆Â ) E[∆Â2] + ∆A2 - 2E[∆Â]∆A

) (E[∆Â2] - E[∆Â]2) +
(E[∆Â]2 + ∆A2 - 2E[∆Â]∆A)

) σ∆Â
2 + b2(∆Â)

(26)

E[f(XN)] ) f(X̄) + ∑
j)1

n
f j(X̄)

j!
E(XN - Xj)j + O(N-(n+1)/2)

(27)

E[f(XN)] - f(X̄) ) ∂f
∂X |

X)Xj
E(XN - Xj) (28)

σf(X)
2 ) [ ∂f

∂X]2
σ2(X) (29)
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This equation is frequently used to estimate the variance of
nonlinear functions of random variables. It is often called the
error propagation formula, although it should be kept in mind
that this is just the first-order approximation, which is satisfac-
tory if the estimator is asymptotically normal or if the variance
is small. Otherwise, accurate estimates of the variance might
require higher-order terms.

Probably the most commonly used estimator in FEP calcula-
tions is

and the corresponding estimator in NEW is

where ∆Ui and Wi are the energy difference and the work for
sample i. These two estimators, which have been already
introduced in eqs 6 and 9 are asymptotically unbiased, that is,
they converge to ∆A as N f ∞. For a finite N, however, they
remain biased. As has been illustrated in the previous section
(see Figure 2), low-∆U or low-W tails are undersampled, which
produces systematic errors. Thus, both the variance and the bias
have to be accounted for in error estimation. Other estimators
have also been proposed.26 They also can be mapped into
expansions using the delta method. At this point, it is not clear
that they have any advantage over ∆ÂN

FEP or ∆ÂN
NEW in general

cases.
The variance of the estimator can be calculated using the first-

order delta method, eq 29. If a sample of N0 values of ∆U has
been generated from the ensemble 0, then the variance of the
mean ∆A, σ∆A

2, can be approximated as

The bias of the estimators in eqs 30 and 31 can be obtained
by comparing the average of M separate evaluations of ∆A, each
obtained from N sampled values of ∆U or W, with ∆A estimated
from a single calculation, in which the sample size is MN. Since
the estimators are asymptotically unbiased, the difference
between these two estimates in the limit of M f ∞ is equal to
the bias. Wood et al.30 derived the leading-term approximation
to this bias. This result was subsequently extended and general-
ized by Zuckerman and Woolf33 in terms of the estimated first
three moments of exp(- �∆U) or exp(- �W): σ̂, µ̂, or µ̂3,

where

The first term can be considered as a special case of the second-
order delta method, eq 27. It has been shown that this result
applies to a broad class of functions f, which need not be
bounded.45 Limited numerical tests30,46 indicate that the first-
order bias correction appears to be reliable only when the
variance is small (i.e. is on the order of kBT) and P(∆U) is not
very far from a Gaussian. The range of applicability of the higher
order approximation that involves also φ2 has not yet been well
established.

There are also other sources of systematic errors that lead to
differences between the calculated and the actual values of ∆A.
The most common, and potentially the most serious ones, are
associated with inadequate sampling of ensemble configurations
due to the existence of long-lived, metastable states, or slow
degrees of freedom, as well as inaccuracies in the potential
functions. Other sources of systematic errors include persistent
long-time correlations, integration errors in molecular dynamics,
finite system size effects, and other artifacts of computer
simulations.47 Even though they are clearly important, their
assessment properly belongs to other areas of theory and,
therefore, fall beyond the scope of this paper.

So far, it has been assumed that a sample of N independent
measurements is available. However, configurations generated
in computer simulations are typically correlated. If this is the
case, a number of results presented above do not hold unless
the sample is uncorrelated or correlations are properly accounted
for. Depending on how the sample has been generated, a number
of techniques exist for this purpose.6,48,49 One of them is to use
averages from blocks of sampled configurations sufficiently large
to ensure almost complete decay of correlations between the
averages in consecutive blocks. If a sample has been generated
from a time sequence (e.g. from a molecular dynamics trajec-
tory), then the average number of independent configurations
in a sample of N0 configurations generated every ∆t is N0/(2τ/
∆t + 1), where τ is the correlation time.50 The variance from
eq 32 should then be divided by this factor instead of N0.

In summary, it is strongly recommended to provide error
estimates, which are an integral and essential part of free-energy
calculations. In FEP and NEW methods, both the variance and
the bias are, in general, expected to contribute to the error. The
variance can be approximated using the first-order delta method,
as was done in eq 32. Estimating the bias is usually more
complicated. At first sight, it might appear that for large sample
sizes, systematic errors should not be important because the
leading term in the bias decreases with N as 1/N, whereas the
standard deviation (i.e. the square root of the variance, which
is a measure of statistical errors) decays only as 1/�Nj . This
reasoning, however, is correct only if the variance is small or
the distribution is reliably Gaussian. Otherwise, the bias might
be much larger than the variance and higher terms in the
approximation, eq 27, are no longer negligible. Including them,
however, might not be very helpful because higher Boltzmann
moments are difficult to evaluate accurately and the convergence
of the expansion is not guaranteed. Taken together, there are
good reasons to keep the variance small, on the order of 1-2kBT.
In this regime, it is expected that for simulations of typical
lengths, the variance obtained from eq 32 should be fairly

∆ÂN
FEP ) - 1

�
ln( 1

N ∑
i)1

N

exp[-�∆Ui]) (30)

∆ÂN
NEW ) - 1

�
ln( 1

N ∑
i)1

N

exp[-�Wi]) (31)

σ∆A
2

)
1

N0�
2

1

〈exp(-�∆U)〉0
2 ×

[〈exp(-2�∆U)〉0 - 〈exp(-�∆U)〉0
2]

)
1

N0�
2

〈exp(-2�∆U)〉0

〈exp(-�∆U)〉0
2
- 1

N0�
2

(32)

E[∆ÂN] - ∆A )
φ1

�N
+

φ2

�N2
+ O( 1

N3) (33)

{φ1 ) σ̂2

2µ̂2

φ2 ) -
4µ̂µ̂3 - 9σ̂4

12µ̂4

(34)
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accurate, and the bias should be small. It has been suggested33,34

that the latter could be tested by plotting the estimate of ∆A,
∆Ân, for different sample sizes, n, as a function 1/n, with n e
N. It is expected that this relation will be linear for a sufficiently
small variance. How to manage the variance is the subject
addressed in the next section.

Stratification. Probably the simplest, universally applicable
strategy for reducing systematic errors is stratification, some-
times also called multistage sampling.51 In stratified calculations,
one defines a sequence of intermediate Hamiltonians corre-
sponding to values of λ between 0 and 1. The unidirectional or
bidirectional strategies are used to estimate free energy differ-
ences between adjacent pairs of equilibrium states in this
sequence (see Figure 3), which are then summed to give the
total value ∆A. This strategy essentially breaks the problem into
manageable pieces and allows for the sampling of all relevant
regions of phase space, even those associated with very low-
probability measures in the λ ) 0 and λ ) 1 states. Formally,
for FEP calculations, stratification relies on the identity

where M is an intermediate ensemble between 0 and 1. ∆A0,M

and ∆AM,1 are the free-energy differences between macroscopic
states 0 and M, and M and 1, respectively. Clearly, eq 35 can
be generalized to n strata by applying the identity serially,

Here, for convenience of notation, the final state is denoted
by the index n rather than 1; intermediate states are denoted by
the index i, i ) 1, · · · , n - 1; and ∆Ui ) U(Γ, λi+1) - U(Γ, λi).

If the potential energy is represented as a linear function of
a general extent, or coupling parameter, λ, where 0 e λ e 1,

which is a common, although not necessarily optimal choice,
then ∆A can be represented as

where ∆λi is the change of the coupling parameter between
states i and i + 1.

Stratification is almost always “good practice” because it
improves overlap between the probability distributions of ∆U
in two consecutive states. For example, if distributions for all
n strataareGaussianwith thesamevariance, theKullback-Leibler
divergence (eq 20) between two consecutive states is reduced
by a factor of n. This is, however, achieved at a possible cost
of reducing efficiency. Striking a perfect balance between these
two conflicting criteria is difficult because it would require prior
knowledge of the dependence of ∆A on λ. Yet, if linear scaling
of the Hamiltonian is employed, it is straightforward to manage
the variance by adjusting ∆λi. As can be seen from eq 38, only
the total ∆U needs to be calculated in each stratum, or stage. If
its sampled values have been stored, a ∆λ that yields the desired
value of the variance can then be determined at a postprocessing
stage. If ∆U is a complex function of λ, for example, as
discussed later on in the section on paradigms for alchemical
transformations, it might be beneficial to calculate ∆U at each
step for several values of the coupling parameter, which can be
done at only modest additional computational effort, and then
choose ∆λ that yields the variance closest to the target value.
In most instances, choosing equal variances in all stages is nearly
optimal, even though for nonlinear functions of a sampled
random variable it does not have to be strictly so. Keeping the

Figure 3. The influence of stratification on the free-energy estimates and the associated statistical errors is illustrated in the case of the hydrophobic
hydration of argon. Shown in the figure are the results of the reversible annihilation (see the section on alchemical transformations) of a single
argon atom in water using between 2 and 64 intermediate stages but maintaining the overall length of the simulation constant (the details of the
simulations are provided in the Supporting Information). Left: The net free-energy differences as a function of the number of stages for the forward,
annihilation and the backward, creation, transformations are shown as light, solid, and dashed lines, respectively. The BAR estimate is shown as
a dark, solid line. The target, experimental hydration free energy of +2.00 kcal/mol52 is displayed as a dashed horizontal line. Inset: Standard
deviation associated with the free-energy estimates obtained from the different stratification strategies. Line coding is identical as above. The
statistical error appears to level off as the number of strata increases, but the reader is reminded that because fewer samples are considered, determination
of accurate correlation lengths becomes more difficult, hence, casting doubt on the estimates of the standard deviation. Right: Underlying probability
distributions for a single stratum in the forward, P0(∆U) (dark lines); and backward, P1(∆U) (light lines) transformations based on a 4- (a) and a
64-window (b) free-energy calculation. Note that as the number of strata increases from 4 to 64, the probability distributions become significantly
narrower.

∆A ) - 1
�

ln(Q1

Q0
) ) - 1

�
ln(QM

Q0

Q1

QM
) ) ∆A0,M + ∆AM,1

(35)

∆A ) - 1
� ∑

i)0

n-1

ln〈exp(-�∆Ui)〉i (36)

U(λi) ) λiU0 + (1 - λi)U1 ) U0 + λi∆U (37)

∆A ) - 1
� ∑

i)0

n-1

ln〈exp(-�∆λi∆U)〉i (38)
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variance at each stage on the order of 1-2 kBT usually
guarantees good overlap between probability distributions in
two consecutive strata and a reliable error estimate. Assuming
that the values of the variance at each stage are uncorrelated,
the total variance can be subsequently obtained from the
Bienaymé formula for a random variable X, var(∑i)0

n-1 Xi) )
∑i)0

n-1 var(Xi). We note that since stratification reduces systematic
but not statistical error, increasing the number of strata while
keeping a fixed, total sample size is not useful when the former
becomes smaller than the latter.

Combining Forward and Backward Calculations. If both
equilibrium ensembles 0 and 1 have been sampled, it is generally
advantageous to construct the corresponding free-energy dif-
ference, ∆A, by combining both data sets. To use a universal
terminology for both FEP and NEW, we call calculations
initiated from 0 and 1 “forward” and “backward”, respectively.
The search for optimal solution to this problem can be
formulated in several ways. One is to consider additional
stratification, in which ∆A is obtained from the free-energy
differences between each end point, 0 or 1, and an intermediate
state M, so that

Probably the simplest choice of M is such that UM ) (U0 +
U1)/2. This choice has been proposed a number of times and is
sometimes referred to as “half umbrella”,53 or “simple overlap
sampling” (SOS).36 It is also closely related to the idea of
“double-wide sampling”.7 It yields

The choice of M, however, is arbitrary and can be optimized
subject to some criteria. To do so, one can define a function,
w(Γ, λ) ) exp{-�[UM - (U0 + U1)/2]} and rewrite eq 39 as

Here, for simplicity, the arguments of w have been suppressed.
The intermediate state M or, equivalently, the function w can
then be optimized by requesting that the variance of the mean
of ∆A, σ2, be minimized with respect to w, as described further
in this section.

Another approach to optimizing bidirectional calculations is
to introduce a finite function, w(Γ, λ), that weights contributions
from configurations sampled from ensembles 0 and 1 such that
the variance of ∆A is minimized. This is the essence of the
Bennett acceptance ratio (BAR) method.43 In this approach, free
energy can be expressed as

where w is the same as in eq 41. Since eq 42 is identical to eq
41, minimizing σ2 yields the same results in both cases.54 In
the first order approximation, eq 29, the optimal w is the
hyperbolic secant function

where

Here, N0 and N1 are the number of independent configurations
sampled from states 0 an 1. Substitution of w from eq 43 to eq
41 or 42 yields the formula for ∆A,

where

is the Fermi function. Note that in the original formulation of
BAR,43 a slightly different weighting function, w′ )
we�(U0+U1)/2, was used, but the final results remain unchanged.
The quantity C that appears in these equations must be solved
self-consistently: starting with an initial value for C, the estimate
of ∆A obtained from eq 45 is fed into eq 44, and these steps
are iterated until convergence is reached. This procedure is
implemented after all the samples have been drawn and
converges rapidly with insignificant computational overhead.

An alternative derivation of BAR begins with eq 8, in which
the factor exp(- �∆A) can be considered as a proportionality
constant connecting the distributions P0(∆U) and P1(∆U). By
applying the maximum likelihood (ML) method to determine
the value of ∆A that is most consistent with the sampled values
of ∆U, given that P0(∆U) and P1(∆U) must satisfy eq 8, one
again recovers eqs 43-46.28,35

Although the methods for combining forward and backward
calculations were originally developed for equilibrium sampling,
they can be also applied in NEW. From Crooks’s fluctuation
theorem, eq 14, one can derive the result55,56

exp(-�∆A) )
Q1

Q0
)

QM

Q0 /QM

Q1
)

〈exp(-�(UM - U0))〉0

〈exp(-�(UM - U1))〉1

)

AM,0 - AM,1 (39)

exp(-�∆A) )
〈exp(-�∆U/2)〉0

〈exp(�∆U/2)〉1
(40)

exp(-�∆A) )
〈w exp(-�∆U/2)〉0

〈w exp(�∆U/2)〉1
(41)

exp(-�∆A) )
Q1

Q0

)
Q1

Q0

∫w exp[-�(U0 + U1)/2] dΓ

∫w exp[-�(U0 + U1)/2] dΓ

)
Q1

Q0

∫w exp(-�∆U/2) exp(-�U0) dΓ

∫w exp(�∆U/2) exp(-�U1) dΓ

)
〈w exp(-�∆U/2)〉0

〈w exp(�∆U/2)〉1

(42)

w ) sech[�(∆U - C)/2] )
2

exp[�(∆U - C)/2] + exp[-�(∆U - C)/2]
(43)

C ) ∆A + 1
�

ln
N1

N0
(44)

exp(�∆A) )
〈f[-�(∆U - C)]〉1

〈f[�(∆U - C)]〉0
exp(�C) (45)

f(x) ) 1
1 + exp(x)

(46)
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As with eq 45, for NF forward and NR reverse trajectories, this
estimate is optimized when C ) ∆A + (1/�) ln(NR/NF).

Since both optimizing the intermediate state and the ML
approach are equivalent to BAR, all three approaches to
combining forward and backward calculations lead to the same
estimator of ∆A. Since eq 45 is an implicit equation for ∆A,
that is, this quantity appears on both sides of the equation, the
estimator, ∆ÂBAR is also implicit,

where ∆Uj
0 and ∆Ui

1 are the energy differences for configurations
sampled from states 0 and 1, respectively. The same estimator
can be applied in NEW by substituting ∆Ui

1f -Wi
R, ∆Uj

0 f
Wj

F, N1 f NR, N0 f NF.

If the values of ∆U or W sampled during both forward and
backward simulations have been stored, these two coupled
equations can be solved iteratively at a postprocessing stage
with only very small, additional computational effort. The
solution is always unique. Once it becomes available, it is
straightforward to calculate the variance in the first-order
approximation to the logarithmic function. Several equivalent
formulas for the variance have been given.28,35,43 A simple one
for numerical applications is43

where function f(x) is defined in eq 46 and x ) �(∆U - C). If
configurations generated in states 0 and 1 are correlated, then
N0 and N1 should be corrected for the correlation lengths in the
forward and backward transformations, as discussed in the
section on error estimation.

In addition to calculating variance, one can also construct
somewhat conservative error bounds on the estimate of ∆A
obtained with BAR.43 To do so, we return to eq 48, but before
optimizing C. For the optimized estimate of ∆ÂBAR, the
numerator and denominator on the right-hand side of this
equation must be equal. We abbreviate the corresponding value
of C as C×. If C1 and C0 are defined as the values at which the
numerator and the denominator are, respectively, equal to unity,

then ∆Â(C0) and ∆Â(C1) provide lower and upper error bounds,
respectively, on ∆ÂBAR,

as discussed in greater detail by Bennett.43 The same method
can be applied to simulated nonequilibrium trajectories, provided
that we substitute ∆Ui

0 with Wi
F and - ∆Ui

1 with Wi
R in eq 51.

From the fact that ∆ÂBAR is a maximum likelihood estimator,
it follows that it is asymptotically unbiased, that is, its bias
converges to zero as the sample size increases to infinity. It is
also asymptotically efficient, which means that no other
asymptotically unbiased estimator has lower asymptotic mean-
squared error.35 It is, however, not clear what these formally
satisfying properties tell us about the behavior of this estimator
for finite sample sizes typical of those obtained in free-energy
calculations because its convergence properties have not been
well characterized.

The functional form of w underscores again the importance
of sampling in the overlap region between P0(∆U) and P1(∆U).
Hyperbolic secant w is a positive definite, symmetric function
that reaches the maximum, sech(0) ) 1, when C ) ∆U. For N1

) N0, it corresponds to the value of ∆U for which P0(∆U) )
P1(∆U). This is the point of maximum overlap. The weight of
samples with values of ∆U away from this point in either
direction progressively decreases. Thus, good sampling in the
overlap region is essential to obtain a reliable ∆ÂBAR.28,43 This
is different from the condition for a good estimate of ∆A from
unidirectional calculations, which is more demanding: it is
required that sampling from state 0 yields good statistics in the
region of ∆U, in which P1(∆U) peaks. This region is located
farther in the low-∆U tail of P0(∆U).

The variance of ∆A depends on the choice N0 and N1. It is,
therefore, natural to ask: What is the best division of computer
resources between forward and backward calculations? Such
analysis is not simple and complicates even further if multistaged
stratification is carried out, as often happens in practice. With
the exception of the end points, configurations sampled at each
stage are used twice: to calculate ∆U in the forward and
backward directions. In multistage calculations, this leads to a
chain of coupled equations that would need to be minimized
simultaneously to determine the optimal number of steps for a
given total precision. These equations involve the values of ∆A
at each stage, which are initially unknown, but might be
approximated after an initial phase of calculations.57 In addition,
correlation times for forward and backward calculations could
be different. Considering these complicating factors, such an
approach to determining N0 and N1 does not seem practical.
Instead, Bennett suggested that keeping N0 and N1 equal should
be close to optimal.43 More generally, it is recommended that
all variances be monitored and the number of steps at each stage
be adjusted to keep them balanced. Hahn and Then28 have
recently proposed a specific dynamic strategy that begins with
Bennett’s choice (N0 ) N1) and then adjusts the ratio on the
fly.
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ln
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If optimization of w is interpreted as the search for the best
possible intermediate state, we observe that knowledge of M is
not necessary during the calculations of ∆A. However, once an
estimate of ∆A has been obtained, the potential energy of the
system in state M can be calculated as

From this equation, it is apparent that choosing UM ) (U0 +
U1)/2, as is done in SOS, or as any other linear combination of
U0 and U1, is not optimal in bidirectional calculations. Even
though SOS, eq 40, has been reported to perform well,36 there
is no compelling reason to use it instead of BAR. There is even
less justification to use simple or weighted averages of the free
energies obtained from the forward and backward calculations,

where 0 < η < 1 might be, in general, a function of N0 and N1.
Since the reliabilities of the contributing free energies are usually
not equal, this type of averaging might cause the free-energy
estimate to deteriorate rather than improve, as compared with
a properly chosen unidirectional estimate.31

These considerations raise a question: Is BAR more efficient
than unidirectional calculations, that is, η ) 0, N1 ) 0 for
forward simulations? In other words, given a fixed amount of
computer time, will BAR produce more reliable estimates of
∆A than unidirectional calculations? Numerical examples
indicate that this is, indeed, the case,36,37 as illustrated from two
different perspectives in Figure 4 for the point mutation of a
single amino acid and in Figure 5 for a force-field-independent,
zero-sum ethane-to-ethane alchemical transformation (details of
the simulations are given in the Supporting Information). This

observation can be justified for most cases, in which multistaged
free-energy calculations are carried out. In most instances of
practical interest, only a small fraction of interactions in the
system are directly affected by changing the alchemical
parameter, λ.

For example, in in silico point mutation studies of proteins,
only the part of the Hamiltonian that involves atoms in a single
amino-acid side chain is modified. This implies that for
sufficiently large N0 and N1, most of the computational effort
is expended on generating configurations from the equilibrium
ensemble at each stage, and by comparison, the computer time
spent on calculating ∆U in the forward or backward directions
is small. Let us assume that the forward calculations produce a
smaller variance of ∆A than the backward calculations and
consider the intermediate-state view of BAR. Since the choice
of state M is optimized to minimize the variance, it follows
that any other choice of the intermediate state will produce larger
σ2. This would, in particular, apply to a state that approaches
state 1. In this case, the variance of the free-energy difference
between states 0 and M approaches the variance in forward
calculations, while the variance of the free-energy difference
between states 1 and M approaches zero. This means that the
total, optimized variance in BAR is smaller than that associated
with unidirectional calculations. The computational effort
incurred in forward calculations is the same in both methods
for the same sample size. The additional computer time required
to carry out calculations in the backward direction when using
BAR is usually negligible because configurations sampled from
state 1 have to be generated anyway for the next stage of
multistaged calculations. Thus, BAR is expected to be more
precise than unidirectional simulations for a given amount of
computer time. It is also expected to be more accurate because
it is equivalent to introducing an additional stratification step,
which reduces systematic errors, as has been discussed previously.

In summary, BAR is not only the optimal method for
combining forward and backward simulations but also, in most
cases, it is expected to outperform unidirectional calculations,
especially if stratification is involved. In principle, it is free of
a problem commonly encountered in unidirectional calculations:
forward and backward transformations are not equally reliable.

Figure 4. L-Serine (Ser) to L-alanine (Ala) point mutation in the
hydrated, terminally blocked, tripeptide Ala-Ser-Ala carried out bidi-
rectionally with a stratification strategy consisting of two windows.
Here, the free-energy change corresponding to the stratum λ ) 0-0.5
is reported as a function of N, the number of samples, for the forward
(light, solid line) and the backward (light, dashed line) transformations
and the combination thereof, using the BAR scheme (dark, solid line).
The total simulation time for this calculation was equal to 12.8 ns. A
separate, stratified simulation based on 16 windows gives a reproducible
BAR estimate for the λ ) 0-0.5 transition equal to ∼1 kcal/mol; that
is, the dashed, black line of the graph. Inset: Statistical error shown as
a function of the number of samples, N, using the same line coding as
described above.

UM ) 1
�

ln{exp[�(U1 - C/2)] + exp[�(U0 + C/2)]} -

1
�

ln 2 (52)

∆A ) η
�

ln〈exp(�∆U)〉1 - (1 - η)
�

ln〈exp(-�∆U)〉0

(53)

Figure 5. Zero-sum ethane-to-ethane transformation, in which the
terminal methyl group of a pseudopropane molecule vanishes as the
other terminal group moiety is grown.58 In the limit of ergodic sampling,
the expected free-energy change is, therefore, zero. The statistical error
is shown as a function of the number of samples, n, for the forward
(light, solid line) and the backward (light, dashed line) transformations,
and the combination thereof, using the BAR scheme (dark, solid line).
Each point corresponds to an individual free-energy calculation relying
on a stratification strategy of 16 windows with an increasing sampling.
Inset: Free-energy change as a function of the number of samples.
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For these reasons, BAR is a recommended strategy in both FEP
and NEW. Statistical error of BAR calculations can be estimated
from eq 49. It should be borne in mind, however, that the
optimality of BAR relies on an assumption that the first-order
expansion of the logarithmic function is sufficiently accurate,
which is the case in the small-variance limit. More generally,
BAR is based on a specific, biased estimator, and it might be
possible to define other estimators that yield a smaller mean-
squared error. We will return to this issue in the last section of
this paper.

Overlapping Distributions: A Simple and Valuable Con-
sistency Check. In addition to the acceptance ratio method,
Bennett43 proposed an alternative method involving the inter-
polation of histograms. This approach is less known than the
acceptance ratio method. Although it is unlikely to yield
estimates of ∆A directly from the data that are superior to BAR,
the identity that underlies this method (eq 55 or eq 57, below)
provides a useful consistency check on the data generated by
either equilibrium or nonequilibrium sampling. This consistency
check is both easy to implement and sensitive to errors that
might otherwise remain undetected.

Consider the functions

They can be determined directly from the histograms of ∆U
values obtained by sampling from states 0 and 1. From eq 8, it
follows that functions g0 and g1 differ by a constant,

Because of this stringent condition, it is good practice to
construct explicitly functions g1 and g0 and to plot them together
with their difference (see Figure 7.2 of ref 6 for an illustration).
If there is sufficient overlap between P0(∆U) and P1(∆U), then
there will be a range of values of ∆U over which the difference
g1 - g0 will be constant, within statistical fluctuations. Fur-
thermore, this difference should be consistent with the free-
energy estimate obtained using, for instance, the acceptance ratio
method. If this behavior is not observed, then the estimate of
∆A should not be trusted. Either the amount of sampling is not
sufficient given the degree of overlap or there are underlying
errors in the sampling itself. In particular, if the difference g1

- g0 appears to converge to a nonconstant function of ∆U within
a region of significant overlap between P0 and P1, as is illustrated
in Figure 6, then this should be taken as a strong indication
that states 0 and 1 are not being sampled correctly. Note that
choosing the same coefficients, equal to 1/2, in front of �∆U
on the right-hand side of eq 54 is not required. Equation 55
remains true for any coefficients η0 and η1 as long as η1 ) 1 -
η0.

For the case of nonequilibrium sampling, the forward and
reverse work distributions can be used to define the functions

Using eq 14, it then follows that

By analogy with the previous paragraph, it is good practice
to construct gF and gR using the trajectories from the forward
and reverse simulations and to plot them together with their
difference. If the difference does not appear as a constant
function in the overlap region or if the value of this difference
is inconsistent with the free-energy estimate, then something is
evidently amiss.

The Gaussian Approximation. If the probability distribu-
tions of ∆U are Gaussian estimates of statistical error, simplify
markedly. Although the estimator defined in eq 30 remains
biased,59-61 a simple, unbiased estimator, ∆Â0

G, from forward
calculations,

of the exact free energy,

with σ∆U
2 ) 〈∆U2〉0 - 〈∆U〉0

2, exists in this case.59

In the absence of correlations, the exact expression for the
variance of ∆Â0

G is available.59

A similar expression is obtained for backward calculations,

{g0(∆U) ) ln P0(∆U) - 1
2

�∆U

g1(∆U) ) ln P1(∆U) + 1
2

�∆U
(54)

g1(∆U) - g0(∆U) ) �∆A (55)

{gF(W) ) ln PF(+W) - �
2

W

gR(W) ) ln PR(-W) + �
2

W
(56)

Figure 6. Overlapping distributions: Samples were taken from
distributions P0 and P1 satisfying eq 8 (inset, solid curves), and from
these data the functions g0 and g1 were constructed in the overlap region.
Apart from statistical fluctuations, the difference g1 - g0 (solid circles)
is constant, in agreement with eq 55. The exact value of �∆A is shown
as a horizontal dashed line. For purposes of comparison, samples were
also taken from a perturbed, “erroneous” distribution P1 (inset, dashed
curve). The resulting difference g1 - g0 (open circles) clearly violates
eq 55, illustrating that this test is sensitive to faulty sampling.

gR(W) - gF(W) ) �∆A (57)

{∆Â0
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2
s2

∆U0 ) 1
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∑
i)1
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∆Ui
0
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∑
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∆A ) 〈∆U〉0 - �
2

σ∆U
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�2σ∆U
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from which it follows that combining forward and backward
calculations reduces the variance.59 Indeed, if N0 ) N1 ) N/2,
then

The same result can be obtained by combining the Gaussian
estimator with SOS given in eq 40. Considering this equivalence,
it is not surprising that in many instances SOS and BAR yield
similar estimates of ∆A.

Should the probability distributions of W be Gaussian, an
analogous estimator can be constructed in NEW by substituting
W for ∆U. The variance of ∆A is then given by

For long simulation times, it has been shown that (σG)2

scales linearly with time62 and, thus, behaves like linear
estimators. Moreover, it has been demonstrated theoretically and
confirmed in computer simulations that ∆ÂG is always more
efficient than the biased estimator given in eq 30.46 It is,
therefore, recommended that this estimator, especially in its
bidirectional implementation, be employed whenever the Gauss-
ian approximation is justified. Testing for Gaussian behavior
ought to be done with great care. Even though this approxima-
tion is at the heart of several classical theories63-65 and forms
the basis of a number of approximate theories for calculating
free energies,66-71 it turns out that in practice, probability
distributions of ∆U or W are frequently non-Gaussian. In
addition, although the central regions of the work distributions
P0(∆U) and P1(∆U) might be well described as Gaussians (in
accordance with the central limit theorem), this approximation
might fail in the tails, and precisely these tails provide the
dominant contributions to ∆A. Thus, it is prudent to construct
both P0(∆U) and P1(∆U) (or PF(W) and PR(- W)) to determine
that they have the same variance, as required for Gaussian
distributions. If this is not the case, the validity of the Gaussian
approximation becomes questionable. Substantial deviation from
Gaussian behavior causes the performance of the estimator ∆ÂG

to deteriorate markedly,46 and as a consequence, its use in such
instances is not recommended.

Alchemical Transformations

From a practical perspective, most free-energy calculations
relying upon perturbation theory can be categorized into three
classes of transformations: (i) creations and annihilations, (ii)
point mutations, and (iii) navigation along a geometrical reaction
coordinate. The latter category, which encompasses potential-
of-mean-force computations, is usually handled using alternative
methods1 that might be better suited for this purpose than FEP
or NEW.46,72 The remaining three types of system modifications
(creations, annihilations and point mutations) are usually called
alchemical transformations, even though, strictly speaking, only
the third type involves computational change of one chemical
species into another one. Creations and annihilations are standard
numerical schemes employed to measure solvation free energies,

which are here understood broadly, subsuming the particular
case of host:guest binding free energies, where, for instance,
the host is a protein and the guest is a ligand. Both terms should
not be taken literally; effectively, they mean that atoms,
molecular fragments, or whole molecules are coupled to or
decoupled from the rest of the system.

Since computational alchemy involves transformations through
nonphysical states of the system, it is prone to undesired artifacts
associated with these transformations. Without reviewing this
approach in detail, we briefly summarize a few good practices,
aimed at controlling, reducing, or eliminating these artifacts and,
by doing so, improving the convergence and efficiency of
alchemical transformations. These practices should be used in
combination with the methods discussed in the previous sections.
The focus is entirely on FEP, even though the same consider-
ations apply to NEW. This is because most computational
alchemy has been carried out so far using the free energy
perturbation approach. A number of good practices (for example
proper treatment of bond and angular constraints and the use
of soft potentials) also applied to other types of free energy
calculations, such as thermodynamic integration.

Thermodynamic Cycles. Computational transformations of
creation, annihilation, and point mutation share a common
conceptual basis. They rely on constructing an appropriate
thermodynamic cycle, a series of reversible transformations
connecting a reference and a target state of interest. Since free
energy is a state function, values of ∆A associated with each
transformation in the cycle add up to zero. Thus, it is possible
to replace direct calculation of the free energy difference in the
transformation of interest, which might be computationally
difficult, with estimating free energy differences associated with
the remaining transformations in the cycle, presumably simpler
to carry out.

This is illustrated in Figure 7. The cycle in the left panel of
this figure provides a prescription for calculating solvation free
energy of a single species at infinite dilution. It is often referred
to as absolute free energy,73-80 although in actuality it is the
difference between free energies of a solute in a solvent and in
the gas phase. The cycle in the right panel illustrates a procedure
for calculating relative free energy7 of a solute with respect to
another one. The need for such calculations arises, for example,
in ranking a series of ligands according to their affinity toward
a given protein. Calculations of relative free energies are
expected to converge much faster because the perturbation
required to transmute one molecule into another one is, in
general, markedly smaller than that involved in the creation or
annihilation of the same molecules.8,9

If feasible, it is valuable to close the thermodynamic cycle
by carrying out direct calculations of ∆Asolvation (along the
horizontal transformations in Figure 7). This can be done using,
for example, a method based on probability distributions or
thermodynamic integration.1 Since each method has different
sources of errors, closing the cycle to within its statistical error
markedly increases our confidence that free energy calculations
were carried out reliably (although the results might still be
burdened with errors due to inaccurate potential functions).
Conversely, if the sum of all free energy contributions along
the cycle differs markedly from zero, it most likely indicates
that something is wrong with free energy calculation for at least
one leg of the cycle or with sampling configurations for FEP.

Paradigms for Alchemical Transformations. Practical
implementation of the thermodynamic cycles outlined above
requires a numerical scheme to transform between the reference
and the target states of a chemical system. This is done using

(σG)2 )
σ∆U

2

N1
-

�2σ∆U
4

2(N1 - 1)
(61)

(σG)2 )
σ∆U

2

N
(62)

(σG)2 )
σW

2
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either a single-topology or double-topology paradigm.81 The
single-topology method was first implemented 25 years ago by
William Jorgensen, who carried out the first alchemical trans-
formation of practical interest to estimate the differential
hydration free energy of ethane and methanol.7 Within this
paradigm, a common topology for both chemical structures
serves as the reference state. van der Waals parameters and
charges associated with the mutation of atoms are modified from
those in state 0 to those in state 1 by varying λ from 0 to 1.
The missing atoms in the target structure are annihilated by
progressively setting their nonbonded parameters to zero. In the
mutation of ethane to methanol, in which the O-H group was
represented as a united atom, the former served as the common
topology. As one carbon atom was transformed to oxygen, two
hydrogen atoms of the methyl group were decoupled from the
rest of the system and turned into noninteracting ghost particles.
An opposite approach is also possible: starting from methanol
one could transform an oxygen atom to carbon and grow, or
create, two hydrogen atoms. In some instances, it is advanta-
geous to define a new common topology, M, which need not
correspond to any chemical structure that exists in nature, and
transform it to both 0 and 1. This will yield free-energy
differences ∆AM,0 and ∆AM,1, from which the free-energy
difference of interest, ∆A, can be obtained as ∆AM,1 - ∆AM,0.

The numerical trick used in single-topology paradigm poses
two obvious difficulties. When the van der Waals radii of
vanishing atoms become small as λ approaches 0 or 1, these
atoms can come quite close to other particles in the system.
Since the vanishing atoms still carry residual charges, electro-
static interactions could increase dramatically creating large
forces in the system and instabilities in integrating the equations
of motion. For this reason, it might be advantageous to decouple
electrostatic and nonelectrostatic transformations. Computational
effort associated with this procedure is smaller than it appears
because the variance of P(∆U) for a given change of λ is
reduced if each of these transformations is carried out separately,
as compared with the variance associated with the coupled
transformation. In addition, electrostatic interactions are usually
very well behaved once decoupled from other transformations
so that the corresponding P(∆U) becomes nearly Gaussian. In
fact, this observation forms one of the basis of the modern quasi-
chemical theory.71 Taken together, this allows fewer intermediate
λ-steps to be considered in each type of transformation.72,82-84

Another difficulty is associated with the modification of
chemical bonds or, more generally, bonded parameters involving
the transformed atoms, as the lengths and force constants may

change during the transformation. As can be seen from Figure
7, the resulting contributions to ∆A involving mutating atoms
nearly cancel out, provided that the bonds are not strongly
deformed in the bound state. Hence, potentially, they could be
ignored.85 It is, however, recommended that this contribution
be estimated either approximately from the averages of the
appropriate energy terms or, if needed, more accurately through
potential-of-mean-force-like calculations58 with the relevant
mass-metric correction.86-88 Special care should be taken to
account properly for bonds involving appearing or disappearing
atoms.87 The same considerations apply to planar angles.

The alternative dual-topology paradigm89 does not suffer from
the above shortcomings. In this algorithm, the topologies
reflecting the reference and the target states of the transformation
coexist, albeit never interact, either directly, through nonbonded
forces, or indirectly, through common bonded terms. In contrast
to the single-topology paradigm, all interactions, with a possible
exception of the bonded terms unique to each topology, are
scaled as a function of λ. In the simplest case, although not
optimal over the full range of λ, the potential energy at
intermediate state λ can be represented as U(λ) ) λU1 + (1 -
λ)U0. This approach, however, has its own drawbacks, which
primarily stem from the possibility of the incoming topology
to collide with atoms from the remainder of the chemical
systems, thereby creating very large forces that might cause
instabilities in the integration of the equations of motion, as
well as widening the probability distribution P(∆U). This occurs
most frequently at the tail ends of the transformation. The
simplest remedy consists of breaking down the reaction pathway
into a number of intermediate states using δλ of uneven width,
which becomes increasingly smaller as λ tends toward 0 or 1.
Unfortunately, even if intermediate states are spaced very
closely, as close as 10-6, the problem of spurious collisions
involving growing or disappearing particles is not completely
circumvented.

An alternative and more satisfying approach is to avoid
singularities that might arise when interatomic distances, rij,
approach zero during particle creation or annihilation at the end
points of the reaction pathway by scaling and shifting the
Lennard-Jones potential. This idea has been implemented in two
popular numerical schemes. Assume that λ varies between 0
and 1 such that atom i disappears for λ ) 1. One route to rewrite
the conventional Lennard-Jones potential is90

Figure 7. Examples of thermodynamic cycles used to estimate solvation free energies, ∆Asolvation. In cycles a and b, the solvation process is
described by the upper, horizontal leg, which corresponds to the transfer of the solute from the gas phase to the bulk solvent. The solvation free
energy (a) can be measured by coupling the solute to its environment, that is, ∆Asolvation ) ∆Acreation

1 - ∆Acreation
0 . This transformation is mirrored in

the vertical legs of cycle a. Symmetrically, double annihilation of the solute would yield the negative of the solvation free energy. The vocabulary
nothing utilized in the thermodynamic cycle implies that the perturbed topology is fully decoupled from the rest of the molecular system; that is,
both intra- and intermolecular interactions are turned off. Relative solvation free energies of two solutes can be determined by transforming one
into another in both the gas phase and in solution. This is depicted in the vertical legs of cycle b; that is, ∆Asolvation

1 - ∆Asolvation
0 ) ∆Aforward

1 -
∆Aforward

0 . To improve the free-energy estimates obtained following the thermodynamic cycles, it is recommended that the transformations be performed
bidirectionally, namely, forward and backward, or creation and annihilation, and their results be combined using the relevant algorithm, for example,
BAR.43
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where σij is the distance at which the van der Waals energy
between atoms i and j is zero, εij is the depth of the energy well
between these atoms, and R > 0 is a shifting parameter, which
ensures that the singularity is removed, changing the conven-
tional Lennard-Jones potential to a soft-core potential.

Another scheme is to modify the original Lennard-Jones
potential as follows:91

Here again, the Rλ2 term appearing in the denominator
reshapes the Lennard-Jones potential into a soft-core form,
devoid of singularity.

In both equations the original Lennard-Jones potential is fully
recovered at λ ) 0. At λ ) 1, both the energy and the forces
are finite and well-behaved, even if rij approaches zero. This
markedly improves stability of molecular dynamics simulations.
Thus, using soft-core potentials is strongly recommended. They
can be applied either throughout the transformation from the
initial to the final state or, after appropriate redefinition of states
0 and 1, only at both ends of this transformation. Note that once
a soft-core potential is employed, ∆U is no longer linear in λ,
and the strategy of choosing the stratification step in postpro-
cessing that follows from eq 38 no longer applies. Instead, the
values of ∆U in the forward and backward directions have to
be calculated during the simulation rather than in postprocessing.

Under certain circumstances, concomitant scaling of Coulomb
and van der Waals interactions may lead to a situation in which
the energy and forces are dominated by the former interactions
before the repulsive component of the latter is large enough to
avoid spurious collisions of the constituent atoms. As has been
already mentioned in the context of the single-topology para-
digm, this shortcoming can be circumvented by decoupling
electrostatic and van der Waals interactions. Without resorting
to this somewhat extreme procedure, it is possible to scale
Coulomb interactions with a sufficient delay to avoid scenarios,
in which Lennard-Jones repulsion is overwhelmed by electro-
static forces. See the Supporting Information for an example
of delaying strategies. Alternatively, the Coulomb potential can
be modified in the spirit of eqs 64 and 65, replacing the
interatomic distance, rij with a related soft-core term of the form
(Rλ2 + rij

2)1/2.91 Either route is recommended whenever the
problem arises to ensure numerical stability of the trajectories.
The reader is referred to recent investigations appraising the
relative merits of soft-core strategies.92

Standard Binding Free Energies. Perturbation theory is a
method of choice for calculating standard binding free energies,
often improperly termed absolute binding free energies.1,77,79,80

This quantity, which can be measured using a variety of
experimental techniques, including isothermal microcalorim-
etry,93 electrospray ionization mass spectrometry,94 or BIAcore,95

corresponds to the free-energy difference between two molecules
of interest (e.g. a host and a guest) in their bound and free states.
Recently, Deng and Roux proposed a formal framework to
reconcile the computational, microscopic estimate of the binding

free energy with its experimental, macroscopic counterpart.96

The main thrust of this section is to outline a series of
recommendations based on the current best practices for
estimating binding affinities computationally.

The underlying idea of carrying out binding free-energy
calculations is to mimic the reversible association of a guest to
a host, according to the thermodynamic equilibrium host + guest
h host:guest, governed by the equilibrium constant

where [host:guest], [host] and [guest] are the concentrations of
the complex, the free host and the free guest, respectively. The
standard binding free energy can be readily inferred from the
association constant, ∆Abinding

0 )-1/� ln(c0Ka), where c0 denotes
the standard concentration.

The binding free energy may be estimated computationally
using the thermodynamic cycle of Figure 8, which involves
double annihilation,97 or double creation of the guest in its free
and bound states. Microreversibility imposes that the forward
and backward transformations yield an equal binding free-energy
estimate, albeit of opposite sign. Achieving such reversibility
and, thus, a correct estimate of binding free energy often requires
additional computational steps.

Should the binding free energy be estimated from a double
annihilation of the guest, the right leg of the thermodynamic
cycle represents decoupling of the guest from the solvated host:
guest complex, whereas the left leg simplifies to decoupling of
the guest in a quasi-infinitely diluted solution from the rest of
the system. The association constant then reduces to Ka ) V
exp[-�(∆Aannihilation

0 - ∆Aannihilation
1 )], under the stringent as-

sumptions that the ligand holds steadily its initial position in
the bound state and diffuses freely in the accessible volume, V,
of the simulation cell in the free state. However, as the ligand
is annihilated in the bound state, its affinity to the host becomes
progressively weaker, so that it might move away from the
binding site. The same concern is valid in the reverse, creation
process. At early stages of the transformation, as electrostatic
and nonelectrostatic are progressively turned on, the guest is
only weakly coupled to the environment and, therefore, is
generally anticipated to move away from its initial position
instead of remaining steadily in the binding site of the host.

UvdW(rij;λ) ) 4εij(1 - λ)[( σij
2

rij
2 + Rλ)6

- ( σij
2

rij
2 + Rλ)3]

(64)

UvdW(rij;λ) )

4εij(1 - λ)n{ 1

[Rλ2 + (σij

rij
)6]2

- 1

Rλ2 + (σij

rij
)6} (65)

Figure 8. Thermodynamic cycle used to estimate binding free energy,
∆Abinding. In many instances, direct, computational determination of the
latter, following the upper horizontal leg of the cycle, might be difficult
and computationally very intensive. Assuming that the guest binds
tightly to the host, ∆Abinding can be inferred from a double annihilation
of the former in its bound and unbound state, ∆Aannihilation

0 - ∆Aannihilation
1 .

As has been already mentioned, annihilation of the guest should be
interpreted as its decoupling from the rest of the system. Imposition of
harmonic restraints during creation transformations to prevent the
growing guest from escaping the binding site of the host is tantamount
to a loss of configurational entropy, which ought to be accounted for
in the corresponding free-energy contribution ∆Arestraint.

Ka )
[host:guest]
[host][guest]

(66)
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A convenient approach to circumvent this difficulty consists
of introducing a series of harmonic restraints aimed at maintain-
ing the guest in the appropriate orientation in its binding site.98

This route is sometimes referred to as double decoupling.97

Imposing positional restraints in the free-energy calculation
corresponds to a loss of translational, rotational, and possibly
conformational entropy. This yields unfavorable, positive
contributions to the standard binding free energy that have to
be accounted for and subsequently subtracted from the calculated
standard free energy of binding. They can be determined
analytically and involve two terms of distinct nature.99 The loss
of translational motion imposed by the restraining potential can
be inferred from the Sackur-Tetrode equation and amounts to
-1/� ln(c0∆V), where ∆V is a volume element of the binding
site effectively explored by the center of mass of the guest. On
the other hand, the loss of rotational motion amounts to -1/�
ln(∆Θ/8π2), where ∆Θ is the orientational fluctuation of the
guest. In contrast to the translational term, this free-energy
contribution due to a loss of rotational freedom does not depend
on the concentration but, primarily, on the molecular mass of
the guest. The significance of accounting for positional restraints
in the determination of the binding affinity is illustrated in Figure
9 in the case of a potassium ion bound to the 18-crown-6 crown
ether in an aqueous environment (details of the simulations are
given in the Supporting Information).

As an alternative to positional restraints, whereby the center
of mass of the guest is confined in a volume element of the
binding site, the guest may be anchored to the host by means
of a series of harmonic potentials aimed at preserving the
contacts formed between the two molecular compounds as their
interaction is perturbed from the reference to the target state.
One common approach to estimate the contribution due to these
restraints is perturbation theory,75 in which the force constant
of the confinement potential is progressively modified from its
nominal value to zero. A similar route can be followed for a
flexible guest by freezing its conformation adopted in the native
host:guest complex, thereby preserving the binding mode
throughout the transformation. This can be achieved by restrain-
ing the relevant dihedral angles to their nominal value. A
perturbative scheme, through which, for instance, the force
constant of the underlying restraints is progressively zeroed out,
may subsequently be employed to determine the free-energy
contribution due to these additional restraints. For consistency
with the remainder of the thermodynamic cycle, the free-energy

differences which have been computed on the basis of simula-
tions performed bidirectionally, it is advisible that the contribu-
tion arising from restraints be also measured from the combi-
nation of forward and backward runs.

Although necessary to prevent the guest from escaping or
isomerizing into a conformation distinct from that of the native
binding mode and, by doing so, ensuring microreversibility of
the transformation, positional restraints ought to be introduced
in the free-energy calculations with great care, because they
may constitute important contributions to standard binding
affinities and the associated errors. If a large number of restraints
have been applied, measuring such contributions with an
appreciable accuracy might be a challenging task. Furthermore,
restraints might limit access of the system to relevant parts of
the configurational space, introducing unwanted quasi noner-
godicity. Thus, restraints introduce an additional source of error,
which should be carefully quantified.

Summary and Outlook

When conducting free-energy calculations, it is essential to
follow good practices, which can be considered as the compu-
tational equivalent of proper experimental protocols. At a
modest, additional computational cost, and sometimes even
saving computer time, free-energy estimates can be markedly
improved. Equally importantly, it is possible to assign errors to
these estimates. Without this step, comparisons between cal-
culated and measured free-energy differences are difficult to
interpret, and reliance on the computed ∆A in such areas as
computer-aided drug design or in silico genetic engineering
becomes questionable.

A number of specific “good-practice” steps are particularly
recommended. They are discussed in detail in the preceding
sections and recapitulated at the end of each subsection, so here
we only provide a brief summary.

(a) All free-energy calculations should be accompanied by
an error estimate. Because of the nonlinear dependence of ∆A
on ∆U, obtaining these estimates is not simple. Reliable
estimates of both statistical and systematic errors can be made
only if the variance of the probability distributions, P0(∆U) and
P1(∆U) is small, typically on the order of 1-2 kBT. These
considerations, in combination with improved overlap, dictate
that it is prudent to keep the variance in this range.

(b) Since the reliability of free-energy estimates depends
critically on the overlap between P0(∆U) and P1(∆U), it is highly

Figure 9. Binding of a potassium ion to 18-crown-6. (a) Free-energy change for the annihilation of the guest in the free state (light, solid line) and
in the bound state (dark, solid line). Details of the simulations are provided in the Supporting Information. A positional restraint is enforced to
prevent the alkaline cation to move astray from the center of mass of the crown ether when the two species are weakly coupled (i.e. at the end of
the annihilation transformation) or at the beginning of the creation one. The free-energy contribution due to this positional restraint, -1/� ln(c0∆V),
is equal to +4.80 kcal/mol. Reversible annihilation of the potassium ion in the free and the bound states yields a free-energy change of +53.82 and
+62.25 kcal/mol, respectively, on the basis of BAR estimates. Following the thermodynamic cycle of Figure 8, the overall binding free energy is
equal to -3.64 ( 0.14 kcal/mol, in good agreement with the experimentally measured value of -2.91,100 as well as the pioneering simulation of
Liem Dang and Peter Kollman.101 Top (b) and (c) side views of typical host:guest arrangements in the course of the simulation.
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advisible to plot the histograms of these distributions and the
integrands in eqs 15 and 16 to assess the degree of overlap. If
the overlap is poor, the resulting free-energy estimate is likely
to be unreliable.

(c) Stratification provides an effective, general method for
reducing the variance and improving overlap at each stage.
Choosing appropriate increments of λ in each stratification step
allows the variance to be adjusted such that it remains close to
the desired value. However, applying stratification is not a
sufficient justification to reduce sample size at each stage, since
all degrees of freedom, including the slowest ones, should be
adequately sampled at every stage.

(d) Combining forward and backward simulations using the
BAR estimator, eq 48, is strongly recommended. This approach
is simple to implement as a postprocessing algorithm and will
almost always improve the reliability and the efficiency of free-
energy calculations, as compared with the unidirectional method.

(e) A graphical test of consistency, as described in the section
on overlapping distributions, is very valuable because it offers
a possibility to detect problems associated, for example, with
inadequate sampling of slow degrees of freedom that are
otherwise difficult to diagnose. Again, this test is quite easy to
implement in postprocessing.

(f) If the probability distributions are Gaussian, then the
Gaussian estimator, eq 58, is both simpler and more accurate
than the estimator given in eqs 30 and 31. Combining forward
and backward calculations, as described herein, is always
beneficial. It is, however, crucial to establish that the distribu-
tions are Gaussian, including in the region of overlap between
the two distributions. A comparison of the variances provides
a simple consistency check: if the variances are not equal, then
the Gaussian approximation should not be applied.

(g) For alchemical transformations, both single- and double-
topology paradigms can be used. They suffer from somewhat
different shortcomings, but it does not appear that, in general,
one of them should clearly be preferred over the other.
Considering their respective advantages and drawbacks, the
application will dictate the choice of the best suited paradigm.
Decoupling electrostatic and van der Waals nonbonded interac-
tions allows for avoiding instabilities in integrating the equations
of motions whenever charged atoms are created or annihilated
in the system. In addition, soft-core nonbonded potentials ought
to be used under those circumstances, at least when the coupling
parameter, λ, approaches 0 or 1. Special care should be taken
to account correctly for the change in free energy due to
modifications of parameters that describe chemical structures
(e.g. chemical bonds, planar angles, dihedral angles) of the
molecules in the system. Similar considerations apply to artificial
potentials employed to restrain ligands near the host in
determining free energies of host:guest binding. Whenever
feasible, it is recommended to carry out additional free-energy
calculations to close the appropriate thermodynamic cycle to
confirm that its total free energy is, indeed, close to zero.

Many good practices can be applied at a postprocessing stage
of calculations. A well-designed analysis package integrated with
the main simulation software can readily handle even a large
number of ligands. This does not mean, however, that free
energy calculations can or should be fully automated. Careful
inspection of results is always good practice.

Our increasing ability to calculate ∆A does not imply that
further theoretical work aimed at improving the efficiency and
the reliability of FEP and NEW calculations is not worth
pursuing. Indeed, several research directions along these lines
hold potential promise.

One is the targeted free-energy perturbation,102 or its non-
equilibrium counterpart.103 The underlying idea of this approach
is to map one of the end states, for example, state 0, into another
state, M, that overlaps with state 1 better than 0. The free-energy
calculation between M and 1 should then converge faster than
calculating ∆A directly.

An interesting line of research is to identify estimators of
∆A that are more efficient than that given in eqs 6 and 9. An
example is the recent extension of the BAR to include data from
multiple stages or simulations.38,104,105

Another approach to improving estimators of ∆A is to model
the probability distributions P0(∆U) and P1(∆U) as analytical
functions, or power-series expansions that depend on a small
number of adjustable parameters. Thus, what is being directly
estimated from the data are these parameters rather than
exp(-�∆A). The underlying assumption is that they can be
determined from the whole distributions with sufficient accuracy
so that the model represents correctly the relevant tails. As a
result, these probability distributions should be correct, even in
the regions that are sampled only rarely. This would, in turn,
allow for larger stratification steps without sacrificing accuracy.
For unidirectional calculations, this approach can be considered
as an extrapolation technique, whereas for bidirectional methods,
it becomes an interpolation strategy, which is usually more
accurate. The simplest example of model probability distribution
is a Gaussian,106 but, as has been already discussed, this
approximation is often of limited accuracy. Other functional
forms, more suitable in general cases, have been tried and appear
to yield improved estimates of ∆A.107-109 The advantages and
disadvantages of this potentially very fruitful approach still
remain to be explored.

Another promising research direction of considerable practical
interest, especially for rapid screening of ligands that might
effectively bind to protein targets or for in silico genetic
engineering, is to generate sample configurations from a
judiciously chosen reference state that is common to a number
of different ligands or amino acid side chains.72,82-84 Such a
reference state need not be physically meaningful; it is sufficient
that it contains configurations representative of each of the end
point structures. Then the relative free energies of several
systems can be determined from a single set of configurations
at a potentially considerable computational gain.

Since the ultimate goal of molecular-level computer simula-
tions is to describe physical, chemical, or biological processes
and phenomena, methods for calculating free energies cannot
be considered separate from other topics that are beyond the
scope of this paper, but might influence considerably the quality
of the results obtained from FEP or NEW. One is efficient
sampling of representative microstates from the underlying
ensembles. This could be impeded, among others, by long-lived
metastable states, or the existence of slowly equilibrating degrees
of freedom in the system. This is frequently the case, especially
in biological systems, and leads to a biased sample, which, in
turn, yields a biased ∆A. A number of enhanced sampling
techniques,1 ofwhichparallel tempering,orreplicaexchange,110-112

is probably the most popular, have been developed to deal with
this problem. Another issue that impacts both FEP and NEW
calculations is the choice of the coupling parameter, λ. Although
∆A will not depend on the choice of λ, if the latter is not a
dynamical variable, the efficiency of the calculations might vary
to a considerable extent. Finally, the reliability of free-energy
calculations is limited by the accuracy of the current force fields.
In the framework of classical mechanics, perhaps the most
promising extension is to add explicit contributions arising from

Feature Article J. Phys. Chem. B, Vol. 114, No. 32, 2010 10251



polarization effects to the usual pairwise-additive model of
interatomic interactions and, by doing so, to improve the
description of induction effects,113-117 especially in anisotropic
environments. Further progress in applying FEP and NEW to
problems in chemistry and biology depends on successfully
combining advancements in the theory of free-energy calcula-
tions and in these related areas.
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