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The Weighted Histogram Analysis Method (WHAM), an extension of Ferrenberg and Swendsen’s Multiple 
Histogram Technique, has been applied for the first time on complex biomolecular Hamiltonians. The 
method is presented here as an extension of the Umbrella Sampling method for free-energy and Potential of 
Mean Force calculations. This algorithm possesses the following advantages over methods that are cur- 
rently employed: (1) It provides a built-in estimate of sampling errors thereby yielding objective estimates 
of the optimal location and length of additional simulations needed to achieve a desired level of precision; 
(2) it yields the “best” value of free energies by taking into account all the simulations so as to minimize the 
statistical errors; (3) in addition to optimizing the links between simulations, it also allows multiple overlaps 
of probability distributions for obtaining better estimates of the free-energy differences. By recasting the 
Ferrenberg-Swendsen Multiple Histogram equations in a form suitable for molecular mechanics type Hamil- 
tonians, we have demonstrated the feasibility and robustness of this method by applying it to a test problem 
of the generation of the Potential of Mean Force profile of the pseudorotation phase angle of the sugar ring 
in deoxyadenosine. 0 1992 by John Wiley & Sons, Inc. 

INTRODUCTION 

Several methods have been used to calculate the 
changes in the free energies between interacting 
molecules and to investigate relative stabilities of 
the different conformational states of a given mol- 
ecule with respect to a conformation coordinate of 
interest. Such calculations are especially impor- 
tant in providing valuable insight into the role of 
structure-function relationships in biomolecular 
interactions and in providing a rational basis for 
the design and modeling of new drugs. However, 
free-energy calculations for large molecules are 
computationally demanding, because the entropy 
that depends on the extent of the phase space of 
the molecular system cannot generally be ex- 
tracted from a simple ensemble average of some 
property of the given system. Hence, new methods 
for fast, efficient, and accurate determination of 
free-energy differences are needed. An increase in 
efficiency can be achieved in two ways: (1) by im- 
proving the efficiency of the simulational method 

*Author to whom all correspondence should be addressed. 

itself and (2) by maximizing the amount of infor- 
mation obtained from either Monte Carlo (MC) or 
Molecular Dynamics (MD) simulations. This article 
deals with (1) the Single Histogram (SH) method 
and (2) the Extended Ferrenberg-Swendsen 
(WHAM) algorithm, which belong to the latter cat- 
egory; the WHAM equations developed here are 
extensions of the Multiple Histogram equations de- 
veloped by Ferrenberg and Swendsen. 1-3 The 
SH and WHAM methods are applicable for both 
(constant temperature) MD and MC simulations. 
Methods for increasing the efficiency of the 
simulational protocol have been discussed else- 
 here.^-^ 

We will first describe the nature of the problems 
that can be treated by these methods. This will be 
followed by a brief description of the SH and 
WHAM equations that can be used for biomolecu- 
lar systems. An outline of the derivation of the 
WHAM equations will be given in the Appendix. 
Finally, we will apply these methods to generate 
the Potential of Mean Force (PMF) profile of the 
pseudorotation phase angle of the sugar ring in 
deoxyadenosine with the objective being to 
demonstrate the feasibility and robustness of the 
WHAM algorithm when applied to biomolecular 
systems. 

Journal of Computational Chemistry, Vol. 13, No. 8, 1011-1021 (1992) 
0 1992 by John Wiley & Sons, Inc. CCC 0192-8651/92/081011-11$04.00 
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BASIC STRUCTURE OF THE PROBLEM 

The problem of calculating free energies can be 
broadly divided into two classes for computational 
purposes: (1) those involving the generation of a 
PMF profile along a coordinate and (2) those in- 
volving the computation of free-energy differ- 
ences as a given molecular system is modified from 
a standard initial state to a final state. The latter 
are special cases of the former class. The ap- 
proaches that have been commonly used so far in 
the solution of these problems are Free Energy 
Perturbation (FEP), and Umbrella Sampling meth- 
o d ~ . ~ - ~ ~ *  In both the Umbrella Sampling and the 
FEP methods the Hamiltonian fiO(x) is replaced by 
a modified potential, EiCx,, of the form 

with A,, = 1 and VO(x) defined as being identical to 
f iO.  Circumflexes over the symbols denote func- 
tions.? Here the coordinates of the atoms of the 
molecule are represented by x; the L functions, 
Vl(x), V2(x), . . . , PL(x), are restraining potentials. 
The restraining potentials are functions of the mo- 
lecular coordinates x. The hi are coupling parame- 
ters. The symbol in braces, (A},  denotes the set of 
values X I ,  h2,  h3, . . . , hL. Thus { 0} indicates that all 
the hi (i = 1, 2, . . . , L)  have been set to zero; 
unless stated otherwise hO always takes on the 
value of unity. The restraining potentials are cho- 
sen in such a manner that the sampling distribution 
is shifted along a coordinate of interest such as a 
reaction coordinate. Multiple restraining poten- 
tials are useful for sampling “long” reaction path- 
ways where separate simulations with different 
coupling parameters { h }  are carried out to sample 
different regions of the reaction path. The reaction 
coordinate (termed 5 here) will be a function of x. 
By adjusting the values of hi in eq. (1) any region of 
interest along the coordinate [ can be preferen- 
tially sampled. Free energies (or PMF values) can 
then be obtained after corrections for the re- 
straining potential; relative free energies can 

*We are following terminology currently in use in the field of 
biomolecular simulations when we refer to methods described 
here as “Umbrella Sampling.” These same methods are some- 
times referred to as “Multistage Sampling” because of historical 
distinctions between the original Umbrella Sampling and Multi- 
stage Sampling methods. 

?Thus Vi(z )  denotes the function and V, a particular value the 
function takes; circumflexes will be used only where ambigui- 
ties might arise. 

also be obtained as a function of the coupling 
parameters. $ 

In the problem discussed here, 5 is the Pseudoro- 
tation Phase Angle17-lg of the sugar ring in the nu- 
cleic acid base deoxyadenosine. The Hamiltonian is 
written as 

3 

&(x) = f iO(X)  + h c [1.0 + COS(Vi - ai + 7r)] 
i = O  

(2) 

The ui in eq. (2) refer to the usual sugar torsion 
angles and are restrained to the values ai. Here, 
a. = 36.14”, a1 = 337.6’, az  = O.O”,  and a3 = 
22.34’; &(x) is the AMBER all-atom force field of 
Kollman and coworkers.20~21 The Hamiltonian 
fix(x) of eq. (2) has only one restraining potential 
with 

3 

qx) = c [1.0 + COS(Vi - ffi + T) ]  (3) 
i=O 

The ai in eqs. (2) and (3) have been chosen so as to 
bias the sampling toward the energetically unfa- 
vorable region in the vicinity of the 04,-exo confor- 
mation. The restraint is on the torsion angles that 
determine the pseudorotation phase angle and is 
chosen to enhance sampling in the neighborhood 
of E = 270’. The pseudorotation phase angle is not 
a simple function of the coordinates, thus requir- 
ing a complicated restraining potential. Simula- 
tions can be carried out with the coupling parame- 
ter h set at various values so as to minimize 
statistical errors. 

The Umbrella Sampling and FEP equations for 
simulations carried out with multiple restraining 
potentials as given in eq. (1)  are given below pri- 
marily to explain the notations used here. 

The probability density P{xl,B(C;) obtained from a 
simulation with the Hamiltonian f i i k ,  [as in eq. (l)] 
can be written as 

P{h,,dE) = exP[-W{x,,p(E)l = - i ( X ) l ) { h , , P  

(4) 
The angular brackets denote ensemble averages 
and the subscripts refer to the values of the coup- 
ling parameters hi and to the parameter 0 given by 

$A recent method for calculating PMFs along “internal coor- 
dinates” of interest is due to Tobias and Brooks.16 In this 
method a holonomic constraint is used to fix the coordinate 
(analogous to the SHAKE algorithm) at  a series of values at  
which the relative free energies (or PMFs) are calculated. This 
method is well suited to simple reaction coordinates such as a 
hydrogen bonding distance. However, it is not clear how to ap- 
ply this method to situations where the coordinate of interest is 
a complicated function of internal coordinates as in the case of 
the pseudorotation phase angle that is discussed here; applying 
constraints to many internal coordinates could lead to improper 
sampling of conformational space. 
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/3 = l/kBT where kB is the Boltzmann constant and 
T is the temperature. W{X1,p([) is the PMF associ- 
ated with 4 when the simulation is carried out with 
the coupling parameters {A} at temperature T. 

If Pfo),p([)  is the probability density obtained 
from an unbiased sampling, i.e., with all the X i  (ex- 
cept Xo which is equal to one) set to zero, then 

P{o,,a(E) = exp[ - - P ~ { O ) , & ) l  (5) 
or 

where 2 is the partition function. If we restrict the 
restraining potential Vi(x) to be functions of the 
coordinate [ only-that is if 

Vi(X) = P&(X)] (7) 

then P{X,,p(E) will be related to P{o,,s([) by 

and W{h),P is related to W{O),p bys,g 

L 

W,o,,,(t) = - c X j m  + W{X,,d4> + C({h} ,  P )  
j =  1 

(9) 

where the functions D({X}, 0) and C({X}, 0) are 
given by 

C({X}, 0) = P-’ In D (10) 

The equations given above can be extended to 
situations where the parameter 0 is also varied. 
Equation (9) is the form that has been used most 
often in estimating free-energy differences and 
generating PMF profiles by using the Umbrella 
Sampling method. The method can also be used to 
calculate free-energy differences as a function of 
any coupling parameter X k .  The Umbrella Sampling 
method, for instance, can be used to estimate the 
free energy of binding between receptor and lig- 
and molecules, when the binding takes place along 
a suitable path of approach (or a reaction coordi- 
nate). By choosing a different set of hi for each 
simulation such that successive simulations sample 
overlapping regions along 4 ,  the function C( { A},  0) 
in eq. (9) can be determined so as to make W{,,,,([) 
agree in the regions of o~erlap.’’-~* 

The standard FEP equations can be readily gen- 

eralized to the case of multiple restraining poten- 
tials as follows: 

The FEP methods are generally used in situations 
where the Hamiltonian is changed in small steps so 
that a given molecule can be “mutated” to a de- 
sired end state gradually. By calculating the free- 
energy changes that occur at each step and by fi- 
nally summing these free-energy changes, the total 
free-energy change can be obtained. As a typical 
example, consider a Hamiltonian of the form 

H A  = (1 - A)& + X H f  = Hi + A(Bf - Hi) (12) 

where ki and I?f could be the Hamiltonian for a 
“wild-type’’ and mutated biomolecule; here, X is a 
coupling parameter and by varying A slowly from 0 
to 1 the system can be taken from its initial state to 
its desired end state. Equation (12) is a special case 
of eq. (1). For the special case of eq. (12) the dis- 
cretized forms of the FEP equations for the free 
energy A are 

P[A(A = 1) - A(X = O)] 
i=n 

= - C ln(ex~(-P[f i~,+,  - f i ~ ~ l ) ) ~ ~  (13) 
i =  1 

and 

A(X = 1) - A(X = 0) = 
X = O  

X = l  

n in eq. (13) is the number of intervals between 
X = 0 and X = 1 over which the summation is 
carried out. Equations (13) and (14) are the basic 
FEP equations. Sometimes the implementation of 
eq. (13) has been referred to as the “Windowing” 
method and that of eq. (14) as the “Integration” 
method in the literature. The FEP equations do not 
have an in-built estimate of errors which makes it 
difficult for estimating statistical errors in the 
results. The WHAM algorithm does provide for ob- 
jective estimation of statistical errors [see eq. (22)]. 

To summarize: PMF profiles and free-energy dif- 
ferences have been calculated thus far generally 
by using Umbrella Sampling techniques that use 
eqs. (7), (8), and (9) and by using FEP methods that 
utilize eqs. (la), (13), and (14). 

Normal Mode analyses7-” have also been used in 
the investigation of the relative stabilities of dif- 
ferent conformational states of a molecule.23 How- 
ever, conformational states of a biomolecule are 
characterized by transitions across several energy 
minima and therefore Normal Mode methods can- 
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not give a reasonable estimate of the entropy of 
the biomolecule. 

The basic problem then is this: What happens to 
the free energy as some parameter (or set of pa- 
rameters) is varied? We present below the Single 
Histogram and Multiple Histogram equations, 
which we can use to study the behavior of the free 
energy as some parameter-either a “coupling” 
parameter h or the temperature T-is changed. The 
WHAM equations presented here are essentially 
those of Ferrenberg and S ~ e n d s e n , ’ - ~  but have 
been extended to the case of molecular mechanics 
potentials that characterize biomolecules and can 
readily be applied to situations where free energies 
and PMFs are needed as a function of the coupling 
parameter(s) hi and/or the temperature T. 

We have tested the SH and WHAM equations on 
the problem of generating the PMF profile of the 
pseudorotation phase angle of the sugar ring in de- 
oxyadenosine, the main purpose of this study be- 
ing to test the feasibility and robustness of the his- 
togram equations when applied to molecular 
mechanics type potentials that characterize bio- 
molecules. Although the AMBER “All-Atom’’ 
force-field of Kollman and coworkers was used in 
this study the efficiency of the method should not 
depend upon the particular Hamiltonian that is be- 
ing used. Applications of these methods to larger 
systems are in progress. * 

SINGLE AND MULTIPLE 
HISTOGRAM METHODS 

The partition function Z{x),p of a system whose 
Hamiltonian is given by eq. (1) is 

where fl({ V } ,  4 )  is a generalized density of states 
given by 

L 

fl({V, 4 )  = s dx6[4 - i(41 “i - Vi(41 
i = O  

(16) 
a({ V } ,  4 )  is independent of {A} and 0. The SH and 
WHAM methods can be applied when the partition 
function is of the form given in eqs. (15) and (16). 

An outline of the derivation of the SH and 
WHAM equations is given in the Appendix. In this 
section, we will first describe how to obtain PMFs 
and probability densities from a single simulation 
using SH equations before generalizing to the case 
of multiple simulations. 

*For an interesting account of the history of Histogram tech- 
niques see Ferrenberg’s thesis.’ 

Single Histogram Equations 

The first description of the SH equations dates 
back to 1959 and is due to Salsburg, Jacobsen, 
Fickett, and Wood.24 We will present the “opera- 
tional” form of the SH equations as applied to 
biomolecular systems here. Using these equations, 
the objective generally is to generate the PMF pro- 
file of the coordinate 4 from a single simulation 
(and hence the term “Single Histogram”). Let us 
suppose that a simulation was carried out at tem- 
perature Tl = l/kBP1 with ho set to one and with 
the restraining potentials appropriately weighted 
by the coupling parameters A l l  h2,  . . . , hL (to en- 
hance sampling in high energy regions). The quan- 
tity of interest is then the probability Po,(() that 
the coordinate 4 would take if a simulation were 
done with ho = 1 and all the other coupling param- 
eters set to zero at a temperature T2 = l/kBP2. 
Generally, TI > T2 so as to enhance conforma- 
tional sampling in high energy regions along E .  By 
taking the logarithm of the probabilities PMF pro- 
files can be generated. The data is put into “bins” 
to generate histograms and the “operational” form 
of the SH equations becomes 

where the expression now gives the probability 
that has the value between E m L  and E,+I-the mth 
bin-at the temperature T2. V$:j is the value that 
the restraining potential Vi takes at the j t h  snap- 
shot of the kth bin. q(k)  is the total number of data 
points that the simulation yielded in the kth bin; it 
is just the value taken on by the histogram at the 
bin numbered k .  B is the total number of bins that 
the data has been divided into. 

Equation (17) can also be expressed in terms of 

taken by the histogram at { V }  and 4 during the 
simulation at temperature Tl = l/ksPl and with 
the coupling parameters set to {A}. Again, pp2(E) 
refers to the probability of occurrence of the coor- 
dinate 4 during a simulation performed at tempera- 
ture T2 with no restraints. In terms of N{h),pl({ V } ,  
4 )  we havet 

N{h),B,({VL 4 )  where N{h),p,({vl ,  4 )  is the value 

?Summation over { V} as in eq. (18) denotes summation over 
the possible values of V,, V,, . . . , V,. Similar remarks apply to 
summation over {A}. 
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WHAM Equations 

The WHAM equations are a natural generalization 
of the SH equations. Simulations are carried out 
with various sets of coupling parameters to en- 
hance conformational sampling. PMFs are then cal- 
culated for the case when a simulation is done with 
the desired set of coupling parameters at a speci- 
fied temperature. We will state the main results 
first and an outline of the derivation of the WHAM 
equations will be presented in the next section. 

Consider R simulations with the i t h  simulation 
being carried out at temperature Ti = l /k& with 
the coupling parameters in eq. (1) set to { * ; also, 
let the number of snapshots taken from the i t h  
simulation be ni. Then the (unnormalized) proba- 
bility histogram P{h),o({ V } ,  4 )  is given 

R / \ 

m= 1 \ j = O  / 

and 

where Ni({ V } ,  5 )  is the value taken by the histo- 
gram at { V }  and 4 during the i t h  simulation, and& 
is the (dimensionless) free energy of the system 
described by the Hamiltonian of eq. (1) with coup- 
ling parameters = &Aj where Aj is identical 
to the (Helmholtz) free energy of the system during 
t h e j t h  simulation. Equations (19) and (20) were 
derived by minimizing the errors (see Appendix) in 
the overlapping probability distributions. By it- 

erating eqs. (19) and (20) the fi and, therefore, the 
free energies, can be determined self-consistently. 
For the case of a single simulation the WHAM 
equations reduce to the SH equations except for a 
normalization factor. 

We can compute thefi directly from the data (to 
reduce computational errors) by using the follow- 
ing expression: 

exp(-fJ = 
r L 1 

R nk 

In this expression Vj;! is the value that the restrain- 
ing potential V, takes at the tth snapshot of the Zth 
simulation. 

One can start with an arbitrary (but not too un- 
reasonable) set of values for the fi; a good starting 
point would be to set all the fi to zero initially. 
Convergence was generally very fast for the prob- 
lem discussed here with the number of iterations 
being less than 10 and no special care was needed 
for the initial assignment of values for the f i  to 
accelerate convergence. However, it is quite possi- 
ble that free-energy calculations for some systems 
could benefit from acceleration techniques; the 
interested reader is referred to Ferrenberg’s 
thesis.’ 

The relative error, &a({ V } ,  F ) / Q ( {  V } ,  E), (see Ap- 
pendix) can be shown to be’-3 

Thus, by knowing where the 6QIn are high more 
simulations can be done with the appropriate 
value of the coupling parameters thus reducing the 
error by increasing the statistics obtained from the 
simulations. An overall factor g, with g = 1 + 27 
where T is an integrated correlation timez5 for the 
simulations has been included in the equation; 
since only the relative magnitudes of the quantity 
so({ V } ,  4 ) / Q ( {  V } ,  4 )  are of interest the quantity g 
may safely be omitted. 

*{h}k  refers to the value of the coupling parameters during 
the kth simulation, that is, denotes the set { X I ,  h2, . . . , X L J k  
which is identical to {Xl ,k ,  X 2 , k ,  . . . , A L , k } .  

tIn the original formulation by Ferrenberg and Swendsen the 
equations for the probability distributions contained factors, gi,  
that depended upon the integrated correlation times of a simu- 
lation; these have been omitted here in eq. (19). For biomolecu- 
lar systems these factors are approximately equal for each simu- 
lation and therefore cancel out of eq. (19). In fact, for 
biomolecular systems, we have ascertained that these factors 
make negligible difference to the results even if they differed 
by factors of 9 or 10. The gi ,  however, should not be neglected 
when phase transitions are involved (see the Appendix and next 
section). 

APPLICATION OF THE 
HISTOGRAM EQUATIONS 

We will now demonstrate the use of Single and 
Multiple Histogram equations by applying them to 
estimate the PMF of the Pseudorotation Phase An- 
gle of the sugar ring in deoxyadenosine. While this 
system is small its Hamiltonian contains most of 
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ca- 
Figure 1. Stereoview of deoxyadenosine. 

the complexity of larger molecular systems and 
thus presents a good test case for the WHAM 
method. 

The system (Fig. 1) consists of 31 atoms; its Ham- 
iltonian is given in eq. (2) with &(x) being the AM- 
BER " All-Atom" force-field. The restraining po- 
tential Vl(x)  is necessary, for without it very poor 
statistics are obtained for the pseudorotation 
phase angle around the 04,-exo region ([ = 270") 
(Fig. 2). Figure 3 shows the corresponding histo- 
gram from a simulation carried out at 298 K with 
X = 1.4; the sampling in the 04,-exo region is seen 
to be better than when there was no restraining 
potential. 

Data from different MD simulations were taken. 
One simulation was carried out at 250 K; the rest 
were done at either 298 or 350 K. To eliminate the 
high frequency bond vibrations, bond lengths were 
constrained to the values in the AMBER2' database 

using SHAKE.26 All the simulations were done 
with the restraint given in eq. (2) but with a differ- 
ent value of the coupling parameter X [see eq. (l)]. 
The starting coordinates of the molecule were ob- 
tained from the AMBER database. Prior to the MD 
phase of each simulation, the molecular structure 
was relaxed using the method of Conjugate Gradi- 
e n t ~ ~ ~ , ~ ~  to an energy gradient of the order of lo-' 
kcal/..k2 mol. The MD updates were done with the 
AMBER program using the leap-frog algorithm35; 
temperature was maintained constant by coupling 
the system to a heat bath as proposed by Berend- 
sen et al.30 A distance-dependent dielectric func- 
tion" was used in this study. The details of the MD 
runs are summarized in Table I .  

RESULTS AND DISCUSSION 

The first test of the WHAM equations was to see 
whether or not the calculated free energies were 
independent of the arbitrarily assigned initial val- 
ues for the f J .  Since the correlation times were 
about the same in all the MD runs each gi (see sec- 
ond footnote on p. 1015 and the Appendix) was set 
equal to one. Convergence was very fast and was 
achieved in less than 20 iterations irrespective of 
the initial values of fj. The free energies obtained 
from different starting values of& are identical. It 
can be seen that the "All-Atom'' force field of 
Kollman and coworkers gives a barrier of about 
2.5 kcal/mol for a Cz,-endo (,$ = 144") to C3,-endo 
(,$ = 36") transition via the 04,-exo ( E  = 270") re- 
gion; about 0.5 kcalimol for the Cz,-endo -+ C3,-endo 

3000 

3 2500 
8 5 2000 

8 
B 
5 1000 

L n  
0 1500 

z 
500 

0 

-80 -60 -40 -20 0 20 4 0  6 0  80  100 120 140 160 180200 220 240 260 

Pseudorotation Phase Angle 

Figure 2. 
Table I). 

Histogram of the pseudorotation phase angle from simulation 1 (see 
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2.5 Table I. 

Simulation 
Summary of the simulations. 

2: 
no. n X O  X I  T(K) g 
1" 20,000 1.00 0.00 298 4.0 - 1.5 - 
2 20,000 1.00 0.20 298 4.0 B 

4 20,500 1.00 0.50 298 1.1 Y 
5 45,000 1.00 1.00 350 1.0 U 

8 45,000 1.0 1.40 250 1.5 0 :  

Q 1; 
3 20,000 1.00 0.40 298 1.7 

6 48,750 1.00 1.20 350 1.0 6 0.5 
7 52,500 1.00 1.40 298 1.1 

9" 60.000 1.0 0.00 298 1.7 

1017 

' " " " " ' 1 " " ' " 1 " " " ' ' ~ " ' ' " ' '  

- 

- 

- 

- 

- 

L l 4  
0 

5000 5 
4000 

3000 

2000 

1000 

0 
-80 -60 -40 -20 0 20 40  60 80 100 120 140 160 180200 220 240 260 

Pseudorotation Phase Angle 

Figure 3. Histogram of the pseudorotation phase angle with X = 1.4. 

transition via the 04,-endo (( = 90') region; and 
almost no barrier for the C3,-endo --+ Cz8-endo tran- 
sition via the O4<-endo region (see Fig. 4). 

Due to the difficulty in measuring correlation 
times accurately it is important that the free-en- 
ergy differences do not depend strongly on the rel- 
ative magnitudes of g,. The values of g, were now 
varied over a wide range (from 1-10) (keeping the 
initial values of f i  equal to zero) to ascertain that 
the calculated free energies would not differ 
greatly from the values determined with the g j  set 
to one. In spite of the wide variation in the ratios 
of the g,, we found that the discrepancies in the 
free energies were negligible. For example, when 
the WHAM calculations were carried out on simu- 
lation 2-7 with { g 2  = 3.6, g3 = 1.8, g4 = 1.0, g5 = 
1.0, g6 = 1.0, g7 = l . O }  and with {g2 = 10.0, g3 = 
1.8, g4 = 1.0, g 5  = 1.0, g6 = 1.0, g7 = 1.0) the 
maximum discrepancy in the relative values of the 
free energiesfi was less than 2 % . Therefore, differ- 

ences in the PMF profiles were also negligible. This 
aspect of the method makes it particularly suitable 
for free-energy calculations using the Hamiltonian 
of eq. (1) even if the correlation times tend to vary 
with the coupling parameter h; correlation times 
can be easily determined to within a factor of 2 or 
3 (and certainly to within a factor of 10.0). The g, 
reflect the weights assigned to each of the histo- 
grams; under conditions of biomolecular simula- 
tions where phase transitions do not occur, the ra- 
tio of the g ,  should not differ significantly from 
one. The last column of Table I gives the approxi- 
mate correlation time g, for the simulations. 

Qualitative behavior of systems under investiga- 
tion can also be obtained from histogram tech- 
niques. We have used the WHAM equations to ob- 
tain the PMF of the pseudorotation phase angle at 
temperatures 350 and 250 K (Fig. 5 ) ;  these PMFs 
were calculated for the case when h is zero. It can 

-0.5 
10 601000 1.0 0.50 298 1.7 

"The difference in the correlation times between runs -100 -50 0 50 100 150 200 250 300 
1 and 9 is due to the difference in the time step used in Pseudorotation Phase Angle 
the Verlet algorithmx3 and to the difference in the archi- 
val rates of the snapshots. Figure 4. PMF of at 298 K from all simulations. 
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agation from individual bins to the final PMF is not 
straightforward; however, one can look for errors 
by breaking all or some of the simulation runs into 
multiple runs and carrying out the WHAM calcula- 
tions. We carried out a variety of such calculations 
and the resulting PMF of was always found to be 
in agreement with Figure 4. 

GENERAL COMPARISONS 

-0.5 

-100 -50 0 50 100 150 200 250 300 
Pseudorotation Phase Angle 

Figure 5 .  
gle at 250, 298, and 350 K. 

PMF profiles of the pseudorotation phase an- 

be seen that the PMF varies much more with tem- 
perature between ( = 18" and ( = 144" than 
around ( = -90" (the 04,-exo region). This sug- 
gests that entropy contributes more to the PMF in 
the former region than the latter. That is expected 
since the energetics of the 04,-exo (( = -90") con- 
formation is dominated by steric clash between the 
C5, hydrogen atoms and the base.17 Kollman and 
coworkers2* found by energy minimization that 
the difference in energy between the Ca,-endo and 
Czr-endo region to be -0.6 kcal/mol. The differ- 
ence in the PMF values obtained in this work is 
seen to tend toward this value as the temperature 
is lowered (Fig. 5). Kollman et al. also report an 
energy barrier of about 3.7 kcal/mol for the C2,- 
endo to C3,-endo transition via the 04,-exo region. 
While the results of Kollman and coworkers are 
from energy minimizations keeping the sugar 
puckering a m p l i t ~ d e ' ~ - ' ~  fixed, the results ob- 
tained here include entropic effects also. This is 
the main cause for the apparent discrepancies be- 
tween the two results. 

The PMF profile of the pseudorotation phase an- 
gle ( depends on the size, nature, etc. of the mole- 
cule comprising the sugar ring. For instance, the 
Cz,-endo --t Cs,-endo transition via the 04,-exo re- 
gion for sugar rings in the dodecamer CGCGAAT- 
TCGCG is greater than the barrier reported here by 
about 2 kcal/m01.~' These will be reported in a fu- 
ture communication. Comparative studies be- 
tween the WHAM, FEP, and Umbrella Sampling 
methods will also be reported in a future communi- 
cation. 

Initially only four simulations (1-4 in Table I) 
were carried out. However, to decrease the rela- 
tive errors 6WQ [see eq. (22)] in the "outlying" bins 
([ = 270") of the histograms six more simulations 
(5-10 in Table I) were carried out with increased 
values for the coupling constant h. The error prop- 

As stated in the previous section we will report 
quantitative comparisons between the FEP, Um- 
brella Sampling, and WHAM techniques; neverthe- 
less, with the experience to date on the WHAM 
method certain general comparisons between the 
methods can be made and will be outlined in this 
section. 

The WHAM method is an extension of the Um- 
brella Sampling method but it has a number of ad- 
vantages over the conventional Umbrella Sampling 
method. The WHAM method, in addition to opti- 
mizing the links between simulations, also allows 
multiple overlaps of probability distributions for 
obtaining better estimates of the free-energy dif- 
ferences. The older method of obtaining a single 
distribution function by requiring that the proba- 
bility distributions agree at some point in the over- 
lap region will fail to yield unique free-energies if 
three or more distributions are involved in the 
overlap region.32 This algorithm provides a built-in 
estimate of errors that give investigators objective 
estimates of the optimal location and length of ad- 
ditional simulations to improve the accuracy of 
their results. With only two simulations, the 
WHAM method is still better than the conventional 
Umbrella Sampling, and actually reduces to Ben- 
nett's optimal solution for this special case.33 

Umbrella Sampling methods that rely on eq. (9) 
cannot use the most general form of the restraining 
potential (and it is this special form with all but one 
of the hi set to zero that has generally been used so 
far by researchers). The WHAM method, however, 
can be used with the most general form of the re- 
straining potential given in eq. (1); it lends itself 
particularly well to situations where the potential 
energy and/or the restraining potentials cannot be 
expressed as a direct function of the parameter(s) 
of interest. One of the limitations of the Umbrella 
Sampling method is in the determination of the 
value that the function C({h} ,  0) so as to make 
Wiol,o(() agree in the regions of ~verlap'"'~; the 
accuracy of C({h} ,  p )  is limited by the statistical 
errors in the distributions that are "stitched" to- 
gether. To achieve the same level of accuracy con- 
ventional Umbrella Sampling would require much 
longer simulations than the WHAM method pre- 
sented here. The WHAM method overcomes this 
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difficulty by taking into account all the simulations 
that produce overlapping distributions. 

The calculation of free energies and the PMF of 
reaction or conformation coordinates using the 
FEP or the conventional Umbrella Sampling meth- 
ods are computationally expensive. This is a conse- 
quence of the convergence problem associated 
with these computational techniques where many 
simulations have to be carried out as the Hamilto- 
nian is gradually changed to propel the system 
along a certain coordinate. When using the FEP 
method Ah in eq. (14) or (hi+, - hi) in eq. (13) has 
to be made small to assure convergence and to con- 
trol the errors of discretization; moreover, errors 
propagate when connecting distributions at each 
step. The WHAM method is not a discretization. It 
uses multiple overlaps that do not have to be as 
close together as they have to be if the FEP 
method is used. The WHAM method links the dif- 
ferent simulations through the overlapping histo- 
grams in an optimal manner. The FEP equations do 
not have a built-in estimate of errors, which makes 
it difficult for estimating statistical errors in the 
results, while the WHAM algorithm does provide 
for objective estimation of statistical errors [see 

The WHAM equations can also be readily used to 
generate PMFs and free energies as a function of 
the coupling parameter(s) hi and/or the tempera- 
ture. This is useful as simulations can be carried 
out at a range of temperatures to improve confor- 
mational sampling and the results extrapolated (or 
interpolated) to the desired temperature. 

eq. (2211. 
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APPENDIX: DERIVATION OF THE 
WHAM EQUATIONS 

Consider R constant temperature simulations with 
the i t h  simulation being carried out at tempera- 
ture Ti and with coupling parameters Let the 
number of snapshots of the system taken from the 
i th  simulation be n,. The objective of the WHAM 
equations is then to obtain the best estimates of 
the probability density P{x,,p({ V } ,  4 )  at some {A} 
and p. The WHAM equations also yield the R free 
energies-A,, Az, . . . , A,-of the system associ- 
ated with the R simulations. 

An estimation of the generalized density of 
states from the k th simulation, Qk( { V }  , F) ,  can be 
written as 

( k  = 1, 2, . . . , R)  (23) 

where N{,l,,,,({V}, 4 )  has been shortened to 

estimates. The best value for the density of states, 
Q({ V } ,  4 )  is written as a weighted sum of the R 
estimates Qi({V},  4 )  (i  = 1, 2, . . . , R),  that is 

Nk({ v} ,  4 )  and fk = PkAk. There Will be R such 

R 

Q({V),  4 )  = c ~ j ( { V } ) Q j V } ,  4 )  (24) 
j =  1 

subject to the condition 

The set of wi that yield the best estimate of Q({  V } ,  
4 )  is derived by minimizing the statistical error, 
S2Q({ V } ,  [), in the best estimate of Q({  V } ,  4). If the 
restraining potentials Vi are functions of the coor- 
dinate 4 ,  then the weights wi will depend on 4 
through the restraining potentials. Now, the error, 
SzQ({ V } ,  [), arises out of the errors, S2Q1({ V } ,  l), 
s z Q 2 ( { v ) ,  41, sZQ3({v), 41, * . * 7 &"R({v}, 41, in the 
R estimates Ql({VI, 41, Qz({V), 41, Q3({VI, 8, . . . > 

QR({ V } ,  0, which in turn depend upon the errors 
in the histograms, 6' N l ( { V } ,  0, S2Nz({V}, 41, 
S2N3({ V } ,  [), . . . , S2NR({ V } ,  4) .  Equations (26) and 
(27) summarize this: 

R 

S2Q({ V } ,  4 )  = c .j"({ VI>SZQj({ v>, 4 )  (26) 
j =  1 

and 

x s2Nk({V}, 4 )  ( k  = 1, 2, . . . , R)  (27) 

Following Ferrenberg and Swendsen, 1-3 the error 
in Ni({  V } ,  4 )  is written as 

62Ni({v} ,  41 = S i K ( { V > ,  41 
( i  = 1, 2, . . . , R )  (28) 

where the bar indicates the expectation value with 
respect to all simulations of length ni and g ,  = 1 + 
2~~ where ri is the integrated correlation time of 
the i t h  ~ i m u l a t i o n . ~ ~  It should be noted that for 
biomolecular systems the gi (i  = 1, 2, . . . , R) are 
roughly equal to each other and hence cancel each 
other out of the WHAM equations. 

W e  now make an estimate of the Ni({ V } ,  t}  as 
follows: 

(i = 1, 2, . . . , R)  (29) 
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From eqs. (26) ,  (27), (as), and (29) we can obtain an 
expression for 6'Q({ V } ,  E ) .  The error is then mini- 
mized by setting the partial derivatives d[6'Q({ V } ,  
4)] /dwi (i = 1, 2 ,  . . . , R) equal to zero subject to eq. 
(25). From the resulting expression the WHAM 
equations 

P{X},P({ VI ,  4 )  

and 

can be derived. The density of state Q({  V } ,  4 )  can 
also be determined by setting d [ s 2 Q ( {  V ] ,  4) ] /dwi  to 
zero and is given by 

R 

(32) 
By inserting the expression for Q({  V } ,  4 )  into the 
expression for 6'Q({ V }  , C;) the relative error in 6Q/Q 
can be determined to be 

When the restraining potential is a function of the 
coordinate C; only the dimensionality of the histo- 
grams reduces from L + 2 to 2 and eqs. (30) and 
(31) simplify to 

P{A},a(VO, 4 )  = 
R L c gklNk(VO, C;) exp [ - P ~ , V 0  - P j =  c 1 A j 6 ( E ) ]  

k = l  
R r 1 

(34) 

(35) 

and 

exP(-f,) = c P{X}j,p,(vo, 4 )  
vo, E 

The WHAM equations can easily be generalized 
to situations where the objective is to generate 
multidimensional PMF profiles of multiple reaction 
coordinates. 

References 

1. A.M. Ferrenberg, PhD Thesis, Carnegie Mellon Uni- 
versity, Pittsburgh, PA, 1989. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. 
Lett., 61, 2635 (1988). 
A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. 
Lett., 63, 1195 (1989). 
D. Bouzida, S. Kumar, and R.H. Swendsen, in Com- 
puter Simulation Studies in Condensed Matter 
Physics III, Springer Proceedings in Physics 53, 
D.P. Landau, K.K. Mon, and H.-B. Schuttler, Eds., 
Springer-Verlag, Berlin, 1991. 
R.H. Swendsen, D. Bouzida, and S. Kumar, Almost 
Markov Processes in Monte Carlo Simulation of Bio- 
logical Molecules, Technical Report 91-121-NAMS- 
27, Carnegie Mellon University, Pittsburgh, PA, 
1991. 
D. Bouzida, S. Kumar, and R.H. Swendsen, Phys. 
Rev. A (to appear). 
D.A. McQuarrie, Statistical Mechanics, Harper & 
Row, New York, 1976. 
J.A. McCammon and S.C. Harvey, Dynamics of Pro- 
teins and Nucleic Acids, Cambridge University 
Press, Cambridge, UK, 1989. 
C.L. Brooks, M. Karplus, and M. Pettitt, Proteins: A 
Theoretical Perspective of Dynamics, Structure and 
Thermodynamics, Advances in Chemical Physics, 
vol. LXXI, John Wiley & Sons, New York, 1989. 
P.A. Bash, U.C. Singh, R. Langridge, and P.A. 
Kollman, Science, 236, 564 (1987). 
S.H. Northrup, M.R. Pear, C.-Y. Lee, J.A. McCam- 
mon, and J .  Karplus, Proc. Natl. Acad. Sci. USA, 79, 
4035 (1982). 
C. Pangali, M. Rao, and B.J. Berne, J .  Chem. Phys., 
71, 2975 (1979). 
G.N. Patey and J.P. Valleau, J. Chem. Phys., 63, 
2334 (1975). 
J.P. Valleau and D.N. Card, J .  Chem. Phys., 57, 
5457 (1972). 
M. Mezei, P.K. Mehrotra, and D.L. Beveridge, J .  
Am. Chem. Soc., 107, 2239 (1985). 
D. J .  Tobias, C.L. Brooks 111, Chem. Phys. Lett., 142, 
472 (1987); D.J. Tobias, C.L. Brooks 111, J .  Chem. 
Phys., 89, 5115 (1988). 
W. Saenger, Principles of Nucleic Acid Structure, 
Springer-Verlag, New York, 1984. 
C. Altona and M. Sundaralingam, Tetrahedron, 24, 
13 (1968). 
D. Cremer and J.A. Pople, J.  Am.  Chem. Soc., 97, 
1354 (1975). 
P.K. Weiner and P.A. Kollman, J .  Comp. Chem., 2, 
287 (1980). 
S.J. Weiner, P.A. Kollman, D.T. Nguyen, and D.A. 
Case, J. Comp. Chem., 7, 230 (1986). 
H. Goldstein, Classical Mechanics, Addison-Wesley, 
Reading, MA, 1980. 
K.K. Irikura, B. Tidor, B.R. Brooks, and M. Karplus, 
Science. 229. 571 (1985). 

24. Z.W. Saisburg, J.D: Jacobson, W. Fickett, and W.W. 
Wood, J .  Chem. Phys., 30, 65 (1959). 

25. H. Muller-Krumbhaar and K. Binder, J. Stat. Phys., 
8, l(1973). 

26. J.-P. Ryckaert, G. Ciccotti, and H. J.C. Berendsen, J .  
Comp. Phys., 23, 327 (1977). 

27. W.H. Press, B.P. Flannery, S.A. Teukolsky, and 
W.T. Vetterling, Numerical Recipes. The Art of Sci- 
entific Computing, Cambridge University Press, 
New York, 1986. 

28. D.H. J. Mackay, A. J. Cross, and A.T. Hagler, in Pre- 
diction of Protein Structure and the Principles of 
Protein Conformation, G.D. Fasman, Ed., Plenum 
Press, New York, 1989. 

29. R.W. Hockney and J.W. Eastwood, ComputerSimu- 



WEIGHTED HISTOGRAM ANALYSIS METHOD 1021 

lation Using Particles, Adam Hilger, Bristol, UK, 31. S. Kumar, PhD thesis, University of Pittsburgh, 
1988. Pittsburgh, PA, 1990. 

30. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gun- 32. G.M. Torrie and J.P. Valleau, Chem. Phys. Lett., 28, 
steren, A. DiNola, and J.R. Haak, J. Chem. Phys., 
81, 3684 (1984). 33. C.H. Bennett, J.  Comp. Phys., 22, 245 (1976). 

578 (1974). 




