Lecture 13

Hydrogen-like Atom I

Study Goal of This Lecture

e Hamiltonian and Schrédinger equation
e Radial and angular equation

e Electronic energy levels

13.1 Review

Now we have discussed the quantization of rotational motions and quantum
angular momentum by considering the eigenvalues and eigenfunctions of the rigid

rotor Hamiltonian:
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quantum number [ donotes the length of L and m denotes projection of Lon 2.
The properties of the rigid rotor lay the fundation for solving the electronic

eigenfunctions of a hydrogen-like atom, which will soon be clear. So far, we have

been dealing with only ”physical” problems, and here we finally start to consider

”chemical” system = Hydroen-like atom.



13.2 A Hydrogen-like atom

A hydrogen-like atom consists of two particles, a nuclei and an electron, bond

by a simple Coulomb potential.

Figure 13.1: Nucleus and electron bond by Coulomb potential.

The many-body Hamiltonian of this system(two body) requires us to treat posi-
tions of the nuclei and electron. But, because the nuclei is so much heavier than the
electron, it is a good approximation to only consider the electron motion and have % ~

the nuclei fixed at the origin. We have the potential of electron

Figure 13.2: Fixed nuclei at the origin.
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Z is atomic number and ¢g is permitivity of vacuum.

So now the Hamiltonian becomes:
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Notice that the potential has spherical symmetry, it is thus natural to rewrite the

equation in the spherical coordinate using
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Note that we have used the spherical condition form of the angular momentum
operator
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The Schrédinger equation reads:
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The eqaution can be further rearranged:
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The LHS of Equ.13.9 depends only on 6 and ¢ and the RHS of Equ.13.9 depends
only on r. Thus we can apply the separtation of variable on . The solution must

be in the product form:

= R(r)A(0, o). (13.10)
Let’s plug it into
O(r) = L*v, (13.11)
then
A(0,9)O(r)R(r) = R(r)L*A(6, ¢), (13.12)
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We obtain
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= A(6, ¢) is an eigenfunctions of L2, we solved this before!

R(r) is radial part and
the A(0,¢) is angular

part wave function



the eigenvalues are ¢ = [(I + 1)h2. The solution to the angular part is the spherical
harmonics, this is actually not surprising.

Now the radial part:
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This equation can be further simplified by defining R(r) = SE,T), because
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The equation for S(r) is
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Notice that this looks exactly like a Schrodinger equation on one-dimension for the

electron in an one-dimension effective potential (r > 0):
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note that the centrifugal term is %2, while the Coulomb term is % Therefore, at
small 7, the centrifugal term dominant, and at large r, the Coulomb term dominant.
Exception is [ = 0, which does not rotate and has pure Coulomb term. Solving
the one-dimensional Schrodinger equation for electron in the effective potential gives

energy.

Stable orbitals on clas-
sical mechanics require
these two terms to bal-

ance out, not in Q.M.



Note that V,¢f(r) dependes on [. There is a simple physical picture to this. The
effective potential that an electron feels along the radial direction depends on the
rotational energy of the electron. If the electron rotates faster(i.e. [ 1), then there is
a tendency for the electron to move ”away” from the origin. This feels like that the

potential is ”"repulsive”. For more detail description:

Coulomb attraction

Figure 13.3: Plot of parts of effective potential(l # 0).

1. The centrifugal term is positive, thus ”destabilizing” the H-like atom.

2. The centrifugal term depends on [, i.e. the magnetude of the angular momen-
tum. This is because the centrifugal force depends on L2 ie. the greater the

[(i.e. rotates faster), the less attractive the Vs ¢(r)

3. The net result of point 2 is that the electrons in orbitals with greater [ will

locate farther from the nuclei.

4. The radial function R(r) depends on .

This is to sitting on
the same rotating frame
as the electron, in the

classcial sense.



13.2.1 Physical Picture

This is a 1-D problem, let’s consider the eigenfunctions without even solving the

equation ”qualitatively”. Since V.r; depends on [, then for [ =0, V,rr ~ —%
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Figure 13.4: The radial function and eigenfunctions for [ = 0.
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Figure 13.5: The radial function and eigenfunctions for [ = 1.

Actually, the bound states satisfying the equations for S(r) can be solved using,

again, the power-series method. By applying two boundary conditions:



e R(r =0) is finite
e R(r)y—=0atr=o00

one can prove that the energy FE is quantized by an additional quantum number n,

called the principle quantum number and the allowed energy levels are
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Now, we go back to the full eigenfunctions of the hydrogen-like atom, they are

described by three quantum numbers
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Since E, only depends on n, there are degenerate levels for n > 1. The degree of
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bital?

—nib S
-G\ B N ——
sy | =7 -

E (eV)

.6 — &——— ground state

Figure 13.6: Energy level for hydrogen-like atom.

Next time we will discuss the eigenfunctions and the physical implications for

hydrogen-like atom.



