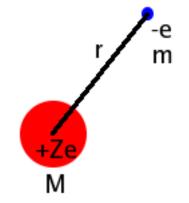
Quantum Mechanics and Atomic Orbitals

HYDROGEN ATOM

Hydrogen-like Atoms

- Spherical symmetry
- Single electron
- Point charge +Ze in the center
- Coulomb interaction between nucleus and electron so the electron experiences a Coulomb potential:

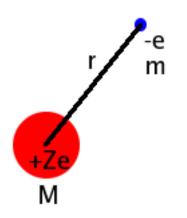
$$V(r) = -\frac{1}{4\pi\epsilon_0} \frac{Ze^2}{r}$$



Schrodinger Equation

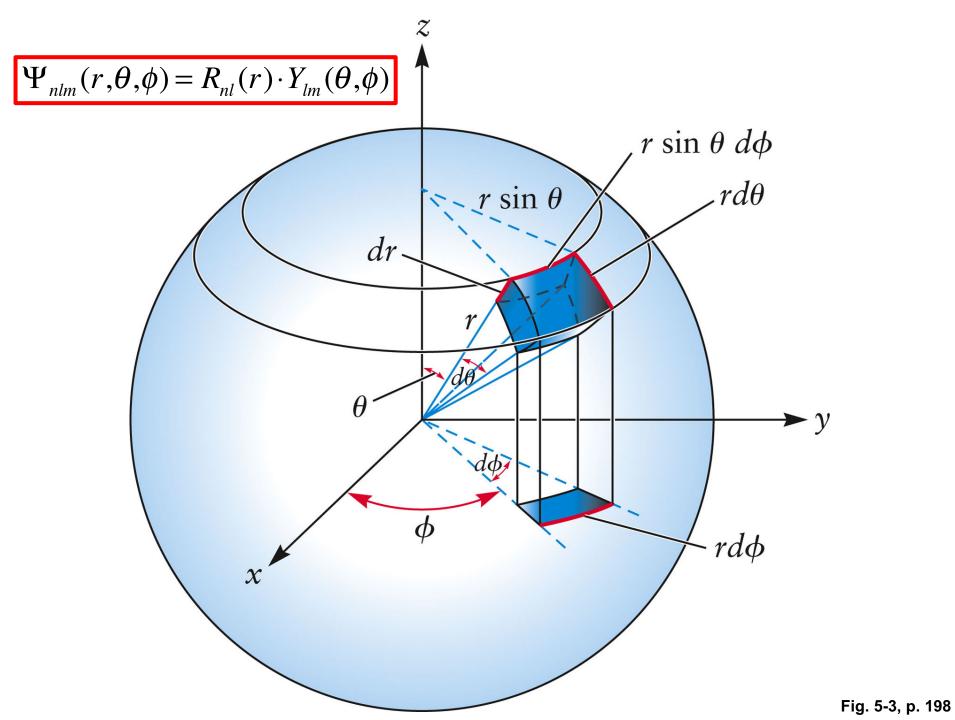
$$\left[-\frac{h}{8\pi^2 m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) - \frac{Ze^2}{4\pi\varepsilon_0\sqrt{x^2 + y^2 + z^2}}\right]\Psi = E\Psi$$

Spherical symmetry:



Cartesian coordinate \rightarrow spherical coordinate

$$\Psi(x,y,z) \rightarrow \Psi(r,\phi,\theta)$$



Solutions to the Schrodinger's Eq.

• Wavefunctions (three quantum numbers!):

$$\Psi_{nlm}(r,\theta,\phi) = R_{nl}(r) \cdot Y_{lm}(\theta,\phi)$$

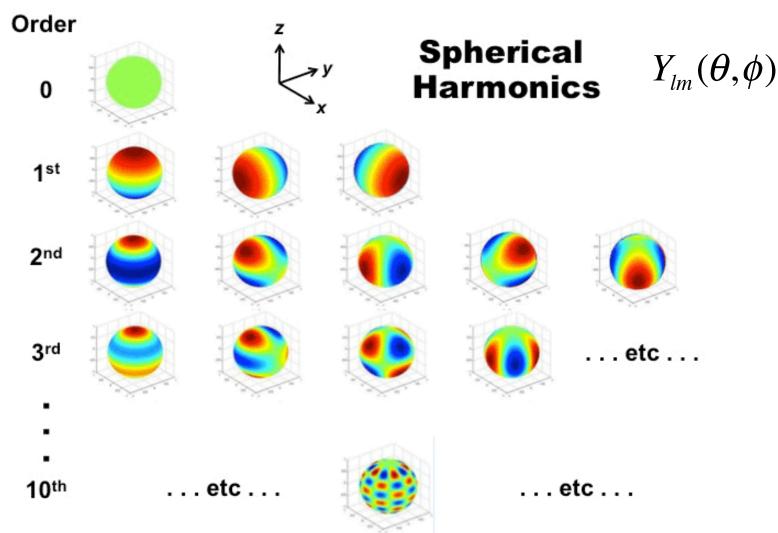
- radial part + angular part
- Energy levels:

$$E_n = -\left(\frac{Z^2 \mu e^4}{32\pi^2 \epsilon_0^2 \hbar^2}\right) \frac{1}{n^2} = -\left(\frac{Z^2 \hbar^2}{2\mu a_\mu^2}\right) \frac{1}{n^2} = -\frac{\mu c^2 Z^2 \alpha^2}{2n^2}.$$

 $E_n = -\frac{Z^2}{n^2}R$, R=13.6 eV (Rydberg constant)

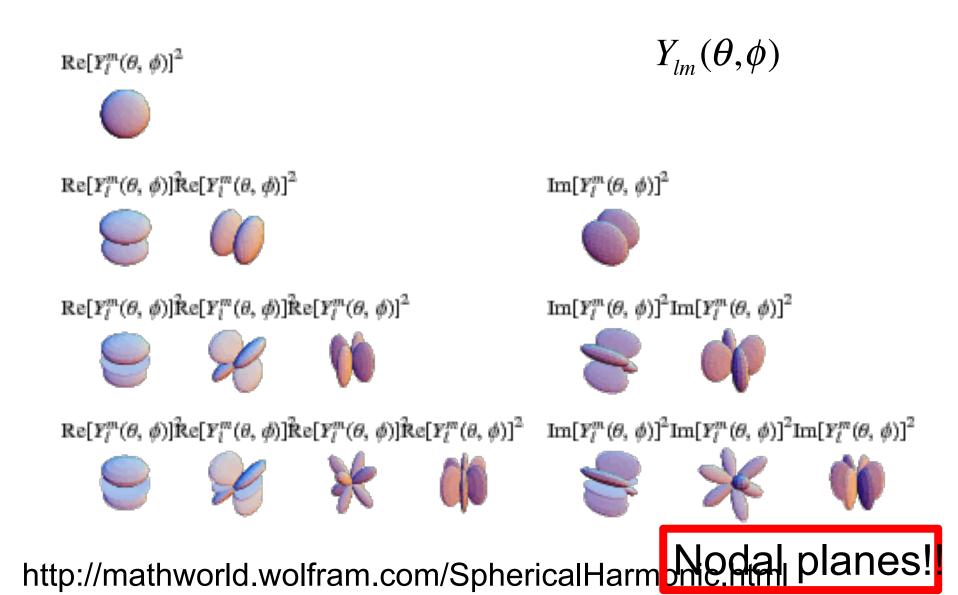
Y_{lm}(θ, φ) are the angular wavefunction (rotational eigenstates) → spherical harmonics (vibrational modes on the surface of a sphere!)

Spherical Harmonics on a Unit Sphere



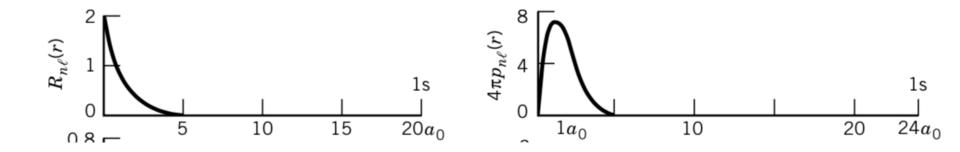
http://mri-q.com/how-to-map-bo.html

Spherical Harmonics (Parametric Plots)



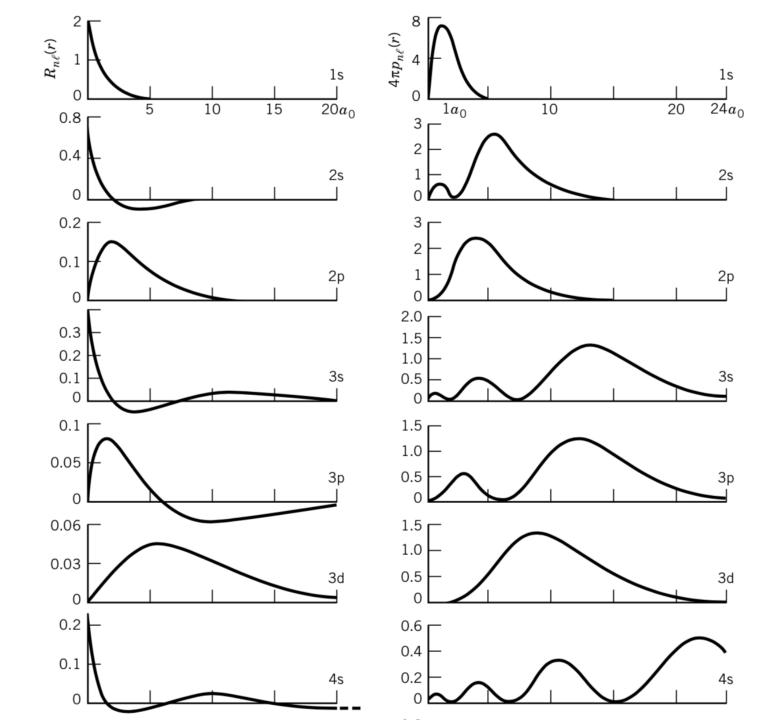
Radial Part

- $R_{nl}(r)$: radial function
- $r^2 R_{nl}^2(r)$: radial probability density



n l	m	
		Wavefunction
1 0	0	$\psi_{1s} = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \mathrm{e}^{-\sigma}$
2 0	0	$\psi_{2s} = \frac{1}{4\sqrt{2}\pi} \left(\frac{Z}{a_0}\right)^{3/2} (2-\sigma) e^{-\sigma/2}$
2 1	0	$\psi_{2p_z} = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \sigma e^{-\sigma/2} \cos \theta$
2 1	±1	$\psi_{2p_x} = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \sigma e^{-\sigma/2} \sin \theta \cos \phi$
		$\psi_{2py} = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \sigma e^{-\sigma/2} \sin \theta \sin \phi$
3 0	0	$\psi_{3s} = \frac{1}{81\sqrt{3\pi}} \left(\frac{Z}{a_0}\right)^{3/2} (27 - 18\sigma + 2\sigma^2) e^{-\sigma/3}$
3 1	0	$\psi_{3p_{z}} = \frac{\sqrt{2}}{81\sqrt{\pi}} \left(\frac{Z}{a_{0}}\right)^{3/2} (6-\sigma)\sigma \ e^{-\sigma/3}\cos\theta$
3 1	±1	$\psi_{3p_x} = \frac{\sqrt{2}}{81\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} (6-\sigma)\sigma \ e^{-\sigma/3}\sin\theta\cos\phi$
		$\psi_{3py} = \frac{\sqrt{2}}{81\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} (6-\sigma)\sigma \ e^{-\sigma/3}\sin\theta\sin\phi$
3 2	0	$\psi_{3d_{z^2}} = \frac{1}{81\sqrt{6\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \sigma^2 e^{-\sigma/3} (3\cos^2\theta - 1)$
3 2	±1	$\psi_{3d_{xz}} = \frac{\sqrt{2}}{81\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \sigma^2 e^{-\sigma/3} \sin\theta \cos\theta \cos\phi$
		$\psi_{3d_{yz}} = \frac{\sqrt{2}}{81\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \sigma^2 e^{-\sigma/3} \sin\theta \cos\theta \sin\phi$
3 2	± 2	$\psi_{3d_{x^2-y^2}} = \frac{1}{81\sqrt{2}\pi} \left(\frac{Z}{a_0}\right)^{3/2} \sigma^2 e^{-\sigma/3} \sin^2\theta \cos 2\phi$
		$\psi_{3d_{xy}} = \frac{1}{\alpha_1 \sqrt{2}} \left(\frac{Z}{\alpha_0} \right)^{3/2} \sigma^2 e^{-\sigma/3} \sin^2 \theta \sin 2\phi$

Table 10.1Real Hydrogenlike Wavefunctions^a



Orbitals and Quantum Numbers

- Orbital \rightarrow single-electron wavefunction
- Each orbital having a characteristic shape and energy is defined by a set of quantum numbers (n, l, and m)
 - Principal quantum number (n) defines the size and energy of the orbital
 - Angular momentum quantum number (/) magnitude of the angular momentum defines the shape of the orbital
 - Magnetic quantum number (m_i) projection of the angular momentum on the z-axis defines the orientation of the orbital

Principal Quantum Number (n)

- positive integral values from 1, 2, 3,...
- when n increases, the orbital become larger
- when n increases, the energy of the electron in the orbital is higher
 - for one-electron atom/ion

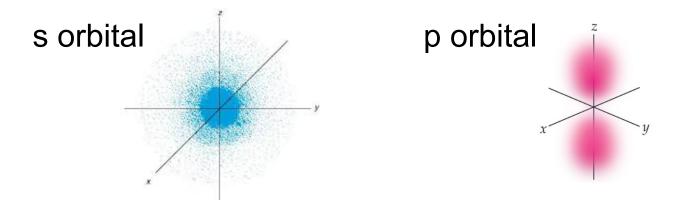
$$E_n = (-2.18 \times 10^{-18} J) \left(\frac{Z^2}{n^2}\right)$$

- *Z* : atomic number
- *n*: principal quantum number $(1, 2, 3, \cdots)$

Angular Momentum Quantum Number (/)

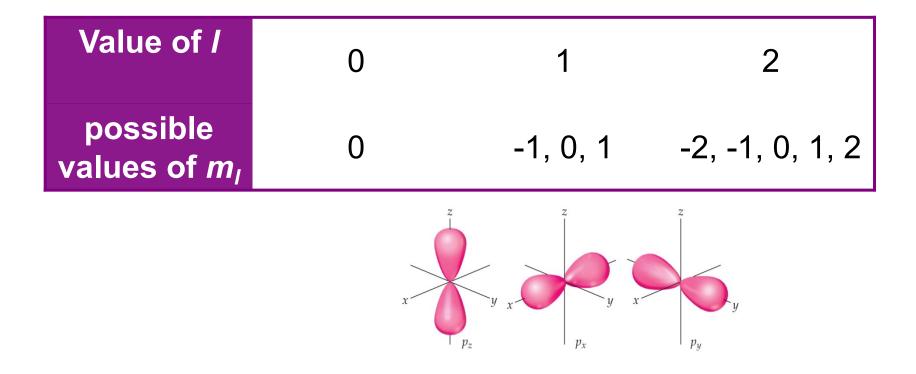
- positive integral values from 0 to (n 1) for each value of n
- Is related to the magnitude of electron angular moment
- Each / value is designated by a letter

The Angular Momentum Quantum Numbers and Corresponding Letters Used to Designate Atomic Orbitals							
Value of ℓ	0	1	2	3	4		
Letter Used	S	р	d	f	g		

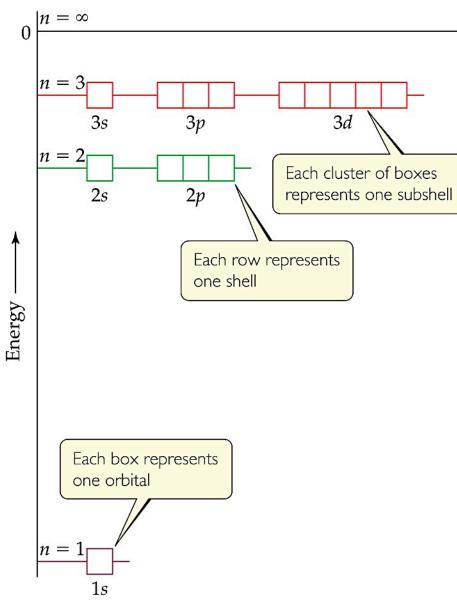


Magnetic Quantum Number (m_l)

- any integral value between –/ and /, including zero
- defines the orientation of the orbital



Energy Levels in Hydrogen Atom



- For a one-electron system, orbitals on the same electron shell have the same energy.
- That is, they are degenerate.

TABLE 5.1

Allowed Values of Quantum Numbers for One-Electron Atoms

n	1	2		3			
l	0	0	1	0	1	2	
m	0	0	-1, 0, +1	0	-1, 0, +1	-2, -1, 0, +1, +2	
Number of degenerate states for each ℓ	1	1	3	1	3	5	
Number of degenerate states for each <i>n</i>	1	1 4		9			

Degeneracy for each I: 2I+1

Degeneracy for each n: n²

Quantum Numbers for the First Four Levels of Orbitals in the Hydrogen Atom

TABL	TABLE 2.2 > Quantum Numbers for the First Four Levels of Orbitals in the Hydrogen Atom							
n	l	Sublevel Designation	m _e	Number of Orbitals				
1	0	1s	0	1				
2	0	2s	0	1				
	1	2p	-1, 0, +1	3				
3	0	3s	0	1				
	1	3 <i>p</i>	-1, 0, 1	3				
	2	3 <i>d</i>	-2, -1, 0, 1, 2	5				
4	0	4s	0	1				
	1	4p	-1, 0, 1	3				
	2	4d	-2, -1, 0, 1, 2	5				
	3	4f	-3, -2, -1, 0, 1, 2, 3	7				

Schrödinger's Equation

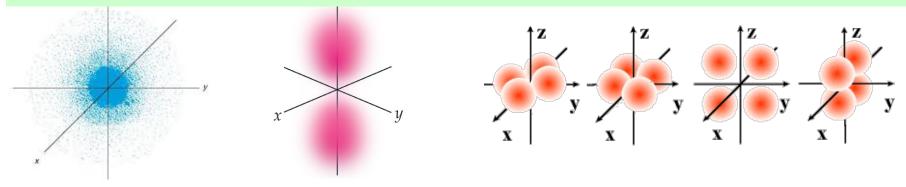
The general form of Schrödinger equation is

 $H\psi = E\psi$

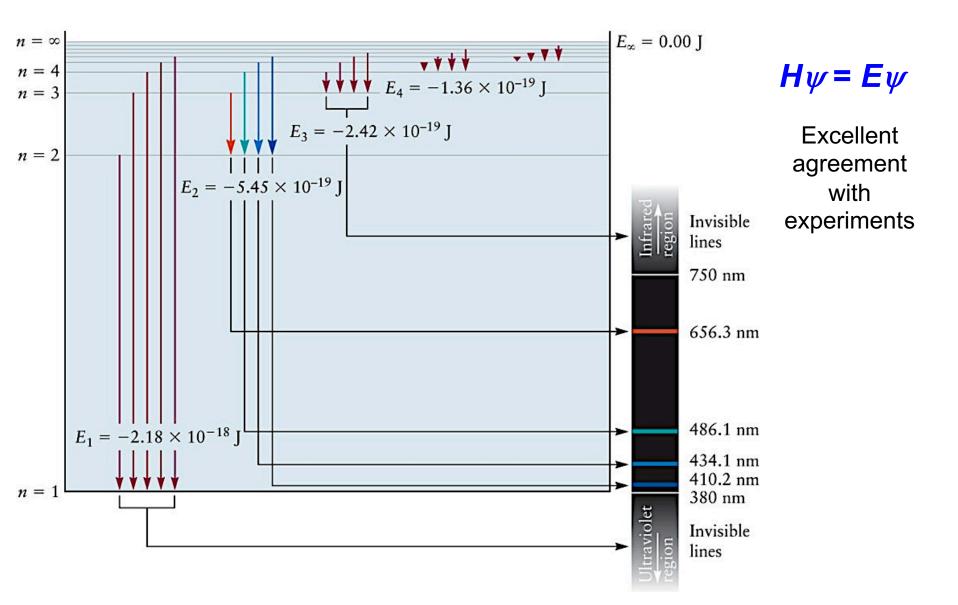
• *H* : total energy operator

Now we understand that different shapes of orbitals correspond to different rotational states: No nodal plane \rightarrow I=0, no rotation

^b 1 nodal plane \rightarrow I=1, first excited rotational state ^y 2 nodal plane \rightarrow I=2

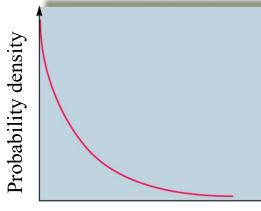


Energy Levels in Hydrogen Atom

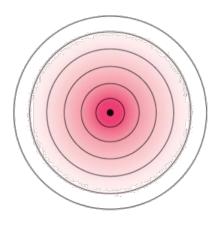


Probability Density

- The modulus squared of the wave function (|\u03c6/\u03c6|²) represents the probability density of finding the electron at a particular point in space
- The probability density of s orbitals at the nucleus is the highest but ...



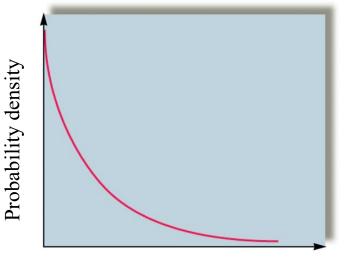
Distance from nucleus (r)



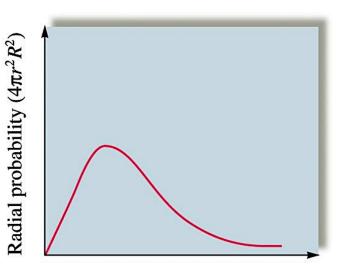
Probability = Probability density × Volume

Radial Probability Function

- Radial Probability Function
 - $= 4 \pi r^2 |\psi(r)|^2$
 - = sum of all $|\psi(r)|^2$ having the same given value of r



Distance from nucleus (r)



Distance from nucleus (r)

Probability of finding the electron = area under the curve

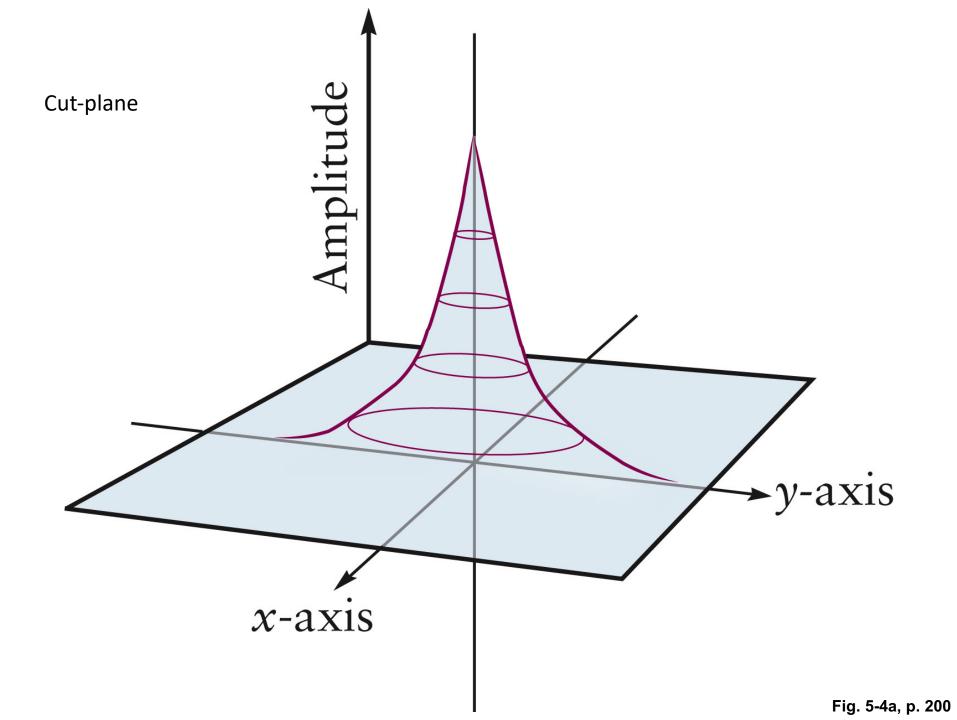
Quantum Numbers

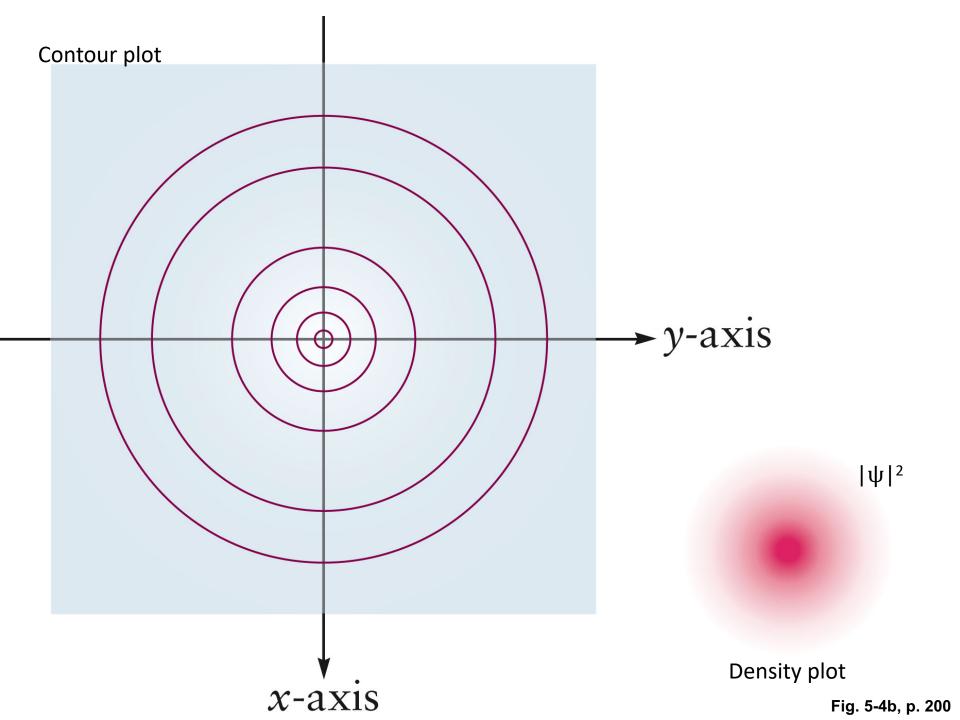
- Orbitals with the same value of *n* form a **shell**.
- Different orbital types within a shell are subshells.

TABLE 6.2 • Relationship among Values of *n*, *l*, and m_l through n = 4

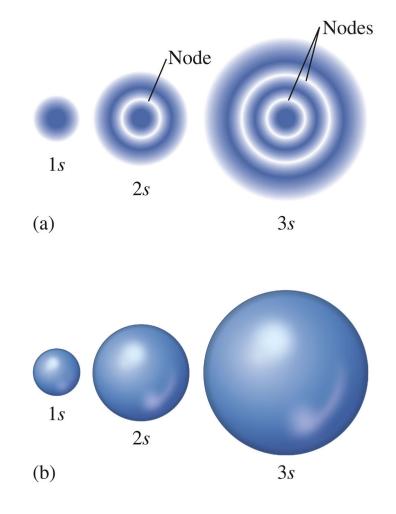
n	Possible Values of <i>l</i>	Subshell Designation	Possible Values of <i>m_l</i>	Number of Orbitals in Subshell	Total Number of Orbitals in Shell
1	0	1 <i>s</i>	0	1	1
2	0	2 <i>s</i>	0	1	
	1	2 <i>p</i>	1, 0, -1	3	4
3	0	35	0	1	
	1	3p	1, 0, -1	3	
	2	3 <i>d</i>	2, 1, 0, -1, -2	5	9
4	0	4 <i>s</i>	0	1	
	1	4p	1, 0, -1	3	
	2	4d	2, 1, 0, -1, -2	5	
	3	4f	3, 2, 1, 0, -1, -2, -3	7	16

How do we plot these 3-D objects?

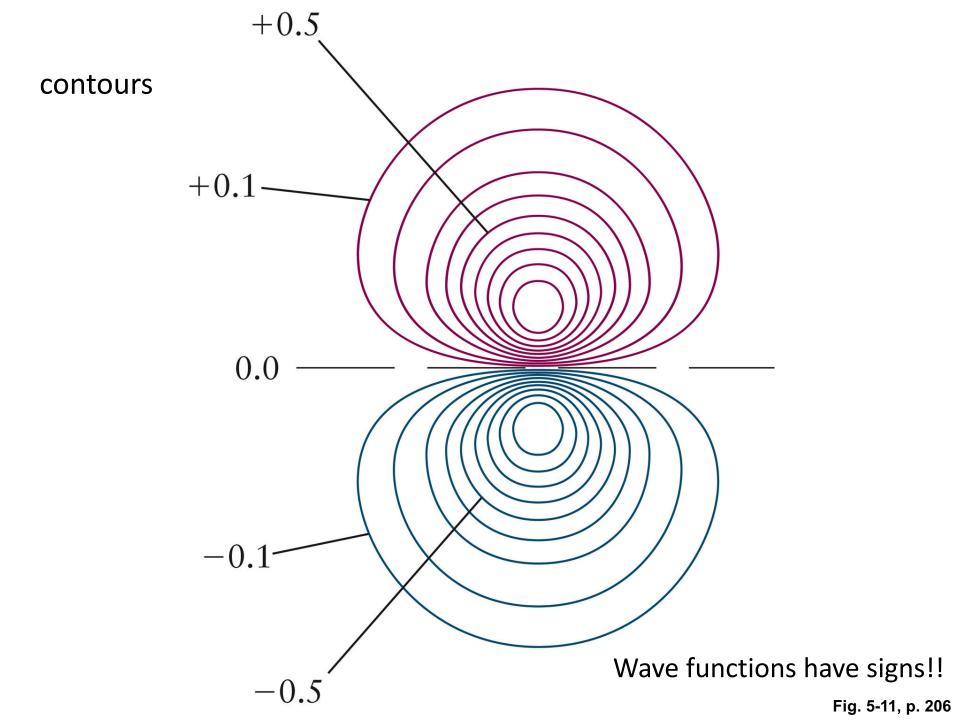




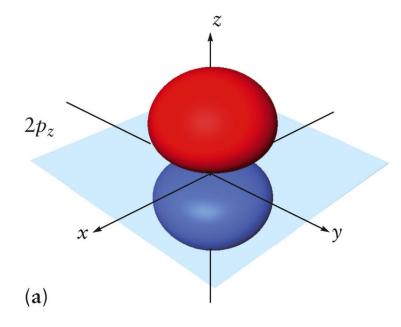
Two Representations of the Hydrogen 1*s*, 2*s*, and 3*s* Orbitals

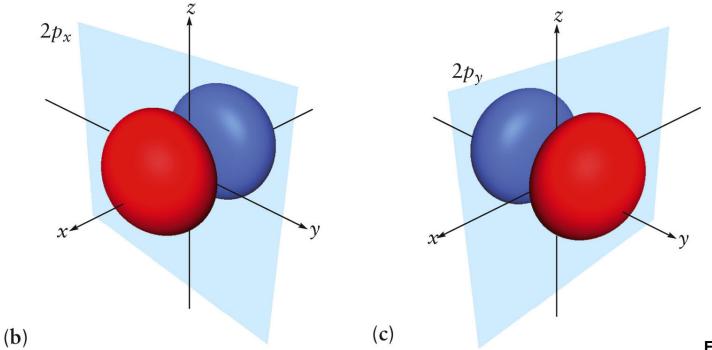


Isosurface or boundary surface

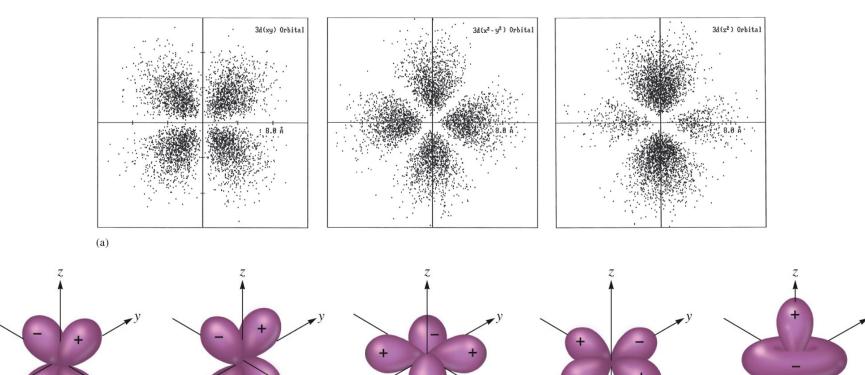


Isosurface at ± 0.2 of the maximum value





The Boundary Surfaces of All of the 3*d* Orbitals



(b)

Copyright © Cengage Learning. All rights reserved

 d_{vz}

 d_{xz}

 d_{xv}

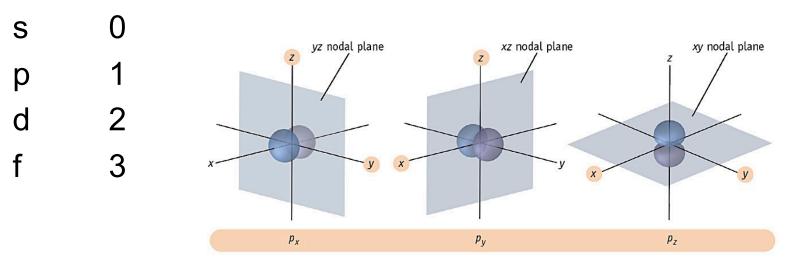
 $d_{x^2 - y^2}$

 d_{-2}

Nodes

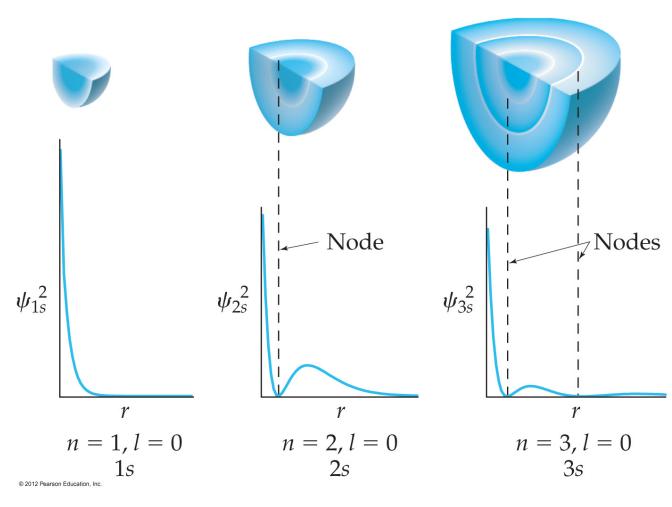
The probability of finding an electron is **ZERO**. $|\psi(r)|^2 = 0$

- Number of nodes = n 1 (angular and spherical)
- # of Angular nodes = angular momentum quantum #

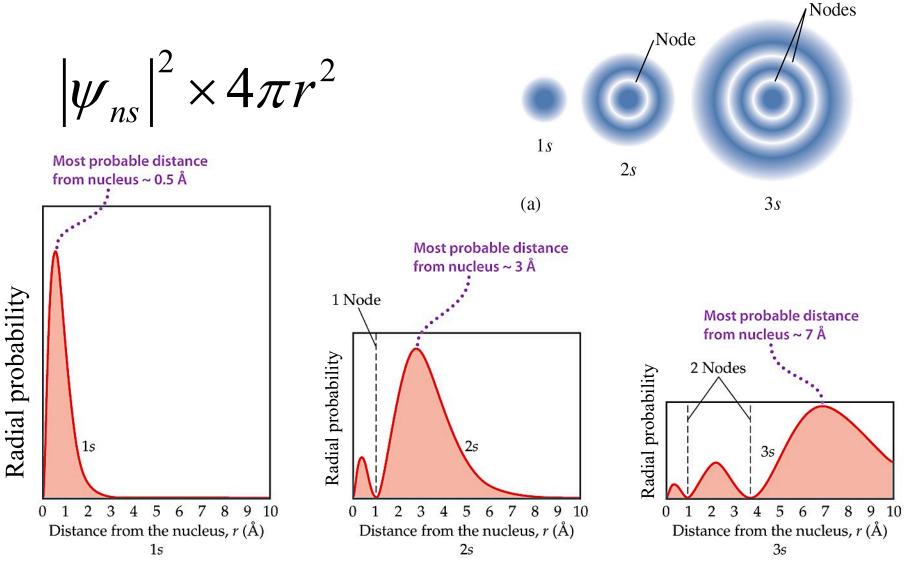


The s orbitals

- *I* = 0.
- spherical shape
- Increases in size as n increases.
- a single orbital found in each s sublevel.
- Spherical nodes.



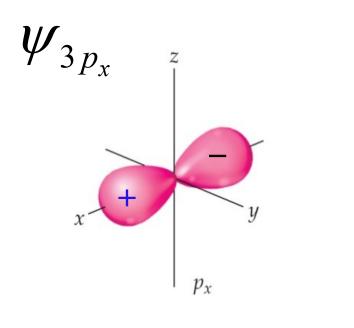
The s orbitals

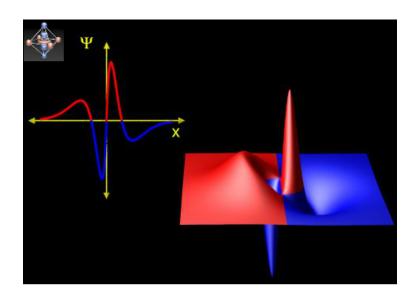


The *p* orbitals

- / = 1
- two-lobed shape.
- Increases in size as the value of n increases.
- Has three degenerate orbitals: p_x, p_y, and p_z.

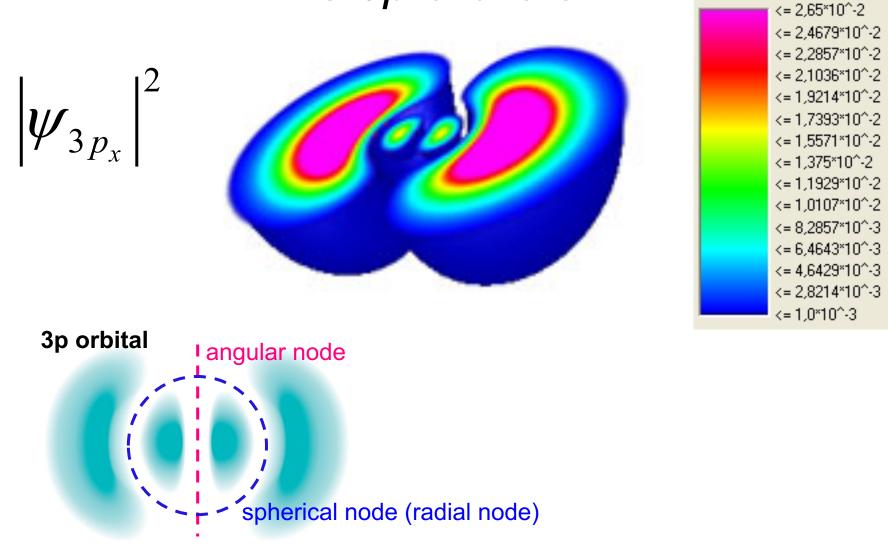
 $m_l = -1, 0, 1$

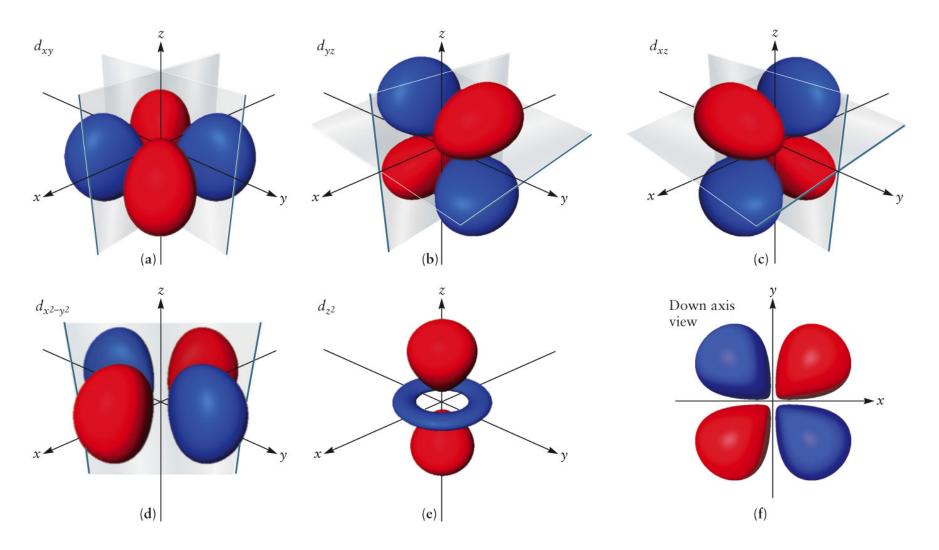




http://winter.group.shef.ac.uk/orbitron

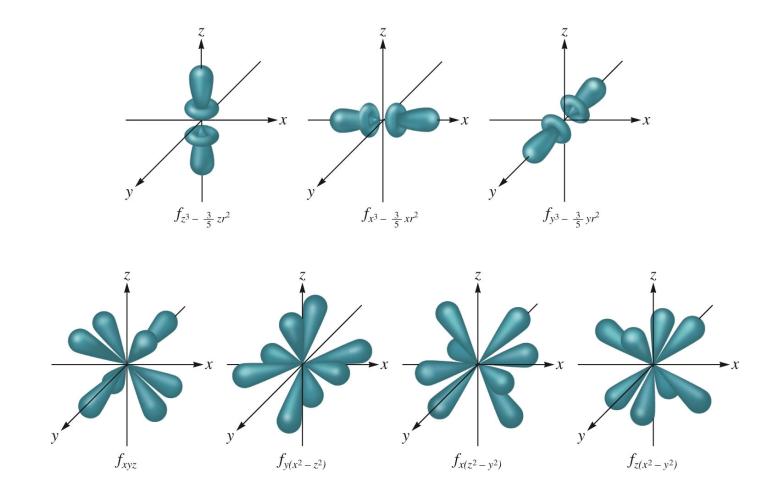
The 3*p* orbitals





 $d_{xy} \rightarrow f(x,y) = x \times y \rightarrow function$ equals to zero when wither x=0 or y=0 \rightarrow x=0: yz plane, y=0: xz plane \rightarrow determines nodal planes

Representation of the 4f Orbitals in Terms of Their Boundary Surfaces

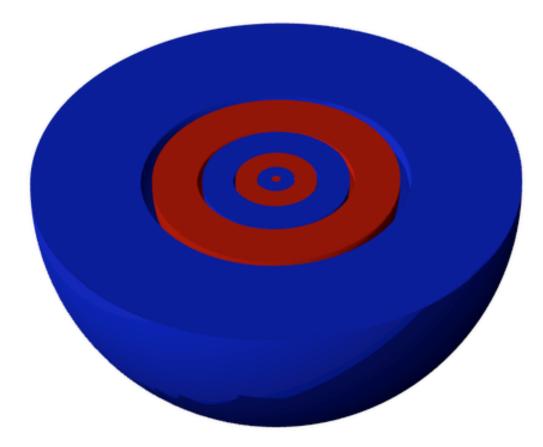


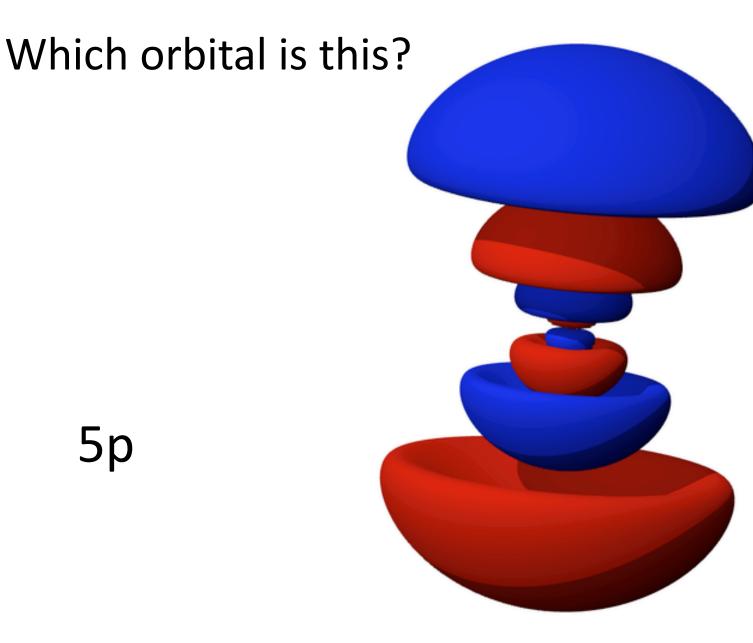
Copyright © Cengage Learning. All rights reserved

	<i>s</i> (l=0)		<i>p(l</i> =1)		d (<i>l</i> =2)					
	m=0	m=0 m=±1		m=0	m=±1		m=±2			
	S	P _z	P _x	P _y	d2	d _{xz}	d _{yz}	d _{xy}	d _{x²-y²}	
n=1	•				Numb	per of sphe per of noda	al planes:			
n=2	•				Total	number of	f nodal su	rfaces: n-		
n=3	•	2			-		8			
n=4	۲	3			+	*	2			
n=5	9	2			-	38	2			

http://en.wikipedia.org/wiki/Atomic_orbital

Which orbital is this?





Significance of Atomic Orbitals (AOs)

- Describe stationary states of an electron moving around a point charge → orbital = singleelectron wavefunction
- Yield the distribution of electron in space by their squares → but wave functions have signs that determine the interferences
- Provide good basis to understand many-electron atoms → periodic table!
- Give good approximations to describe motions of electrons in molecules → molecular orbitals are linear combinations of AOs