
Lecture 15

Hydrogen-like Atom-II

Study Goal of This Lecture

• Orbital angular momentum and atomic spectra

• Electron spins

• Zeeman effect

15.1 Introduction

Before we move on to treat many-electron atoms, we will consider the effect of

an electron in an atomic orbital under the influence of and external magnetic field.

So far we have considered a free hydrogen-like atom, which has the energy levels:

En = −1

2

Z2

n2
Eh, Eh =

e2

4πε0a0
. (15.1)

When an external magnetic field is present, the degenerate energy levels will split→
Zeeman effect. Also, up to now, we have explored mainly the energy levels and shapes

of the hydrogen atomic orbitals. These energy levels explain the hydrogen-atom Again, notice that ”or-

bitals” means ”single

electron wavefunction”!

spectrum, i.e. experimental proofs. How about the shape? Are there experimental

evidence for atomic orbitals with different angular momentum quantum number(ml)?

To answer this question, we ought to discuss the effects of magnetic field too.
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15.1.1 Orbital Angular Momentum

We first consider the consequences of having the orbital angular momentum. In

atomic physics, angular momentum leads, to two key rules:

1. Selection rule of atomic spectrum requires ∆l = ±1 in a single photo transi-

tion. This is because a photon is quantized and exhibit an angular momentum,

spin of m = ±1(photon is boson.) In quantum mechanics, the conservation of

angular momentum must be obeyed. So when a photon is destroyed or created,

the total angular momentum of the photon + atom system must be conserved.

Therefore, the atomic system must change its angular momentum ∆l = ±1.

This rules will be more clearly explaned later when we actually consider the

matter-field interations and spectroscopy. At this point, you can simply take

this as an experimental fact/empirical rule. As a result, the ”allowed transi-

tion” is limited to s←→ p, p←→ d, ...

Figure 15.1: Diagram of selection rule for light absorbing transition.

2. States which l 6= 0 splits into 2l + 1 states under the influence of magnetic

field. The orbital angular momentum means the electron is ”moving” around

the nucleus(remember, electron has −e charge!) A rotating charge will generate

a magnetic field → this will interact with an external magnetic field!

15.2 Zeeman Effect

For a hydrogen atom in a external magnetic field ~B aligned along the z-direction.

The potential energy caused by the B-field is

E = −~µ · ~B = − ~µz · ~B. (15.2)
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Figure 15.2: Under magetic field.

By definition γe is gyromagnetic ra-

tio, the ratio of mag-

netic moment to angular

momentum, γe = −e
2me

.

µ̂ = γeL̂, (15.3)

therefore

µ̂z =
−e
2me

L̂z (15.4)

in eigenstate of L̂z → Y m
l (θ, φ)

µ̂zY
m
l (θ, φ) = − e

2me
~mY m

l (θ, φ). (15.5)

Thus, the Hamiltonian with the field:

Ĥ = Ĥ0 − µ̂z ·B = Ĥ0 +
eB

2me
L̂z. (15.6)

Clearly, the eigenstates remain the same as the original hydrogen atom:

ψn,l,ml
= Rn,l(r)× Y m

l (θ, φ), (15.7)

Ĥψn,l,ml
=
(
− mee

4Z2

2(4πε0)2n2~2
+ µBmB

)
ψn,l,ml

. (15.8)

We find the eigenvalue, i.e. the energy level, changes. The additional term depends

on the quantum number ml. Thus, under the influence of external magnetic field,

the energy will split, and this spliting is called Zeeman effect.
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Figure 15.3: Zeeman spliting.

For the hydrogen atom under a 1T(tesla) magnetic field, the splitting is' 9.274×
10−24J . Compare to the 1s → 2p transition energy ' 1.63 × 10−18J , the ratio is

' 5.69× 10−6, very small value. (Which means that it is hard to detect.)

As we have just reviewed, we have considered many aspects of the Hamiltonian

and eigenfunctions for hydrogen-like atoms, but there is still a big piece missing!⇒
electron spin!

15.3 Electron Spin

The electron has two spin states; we say that the electron is a spin-1/2 sys-

tem. The electron spin occurs naturally in the relativistic equation for the quantum

mechanics → called the Dirac equation. The Dirac equation is out of the scope of

this class. Since we only consider the non-relativistic version of quantum mechanic,

i.e. the Schrödinger equation. So at here, the electron spin has to be treated as

an additional postulate. Note that this is ”okay” since many experimental results

support the existense of electron spins. Most notably:

• The periodic table.

• Finite structure of atoms.
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• Stem-Gerlach experiment.

Figure 15.4: Stem-Gerlach experiment.

Since there is no classical analogue of it, we directly postulate: Using the term “angu-

lar momentum” could

be misleading, but there

is a reason for it.

An electron has an intrinsic spin angular momentum, with the spin quan-

tum number S = 1/2.

Note that the electron spin is not angular momentum of electron actually spining.

Recall that for rotational motions, even on a plane defined by L̂z, the cyclic

boundary condition requires ml = 0,±1,±2, · · · ⇒ rotational motions cannot give

ml = 1
2 ! So why say ”angular momentum”? This is because we can define the

spin angular momentum operator Ŝ, which follows all the operator rules for angular Electron spin looks like

l = 1
2(S = 1

2 angular

momentum!

momentum L̂. Therefore, we can define Ŝ2 and Ŝz, and then consider their shared

eigenfunctions.

For a single spin, the spin quantum number is S = 1
2 , and there are two possible

eigenstates for Ŝz, usually denotes as |+〉 , |−〉 or |α〉 , |β〉.

Ŝzα(s) =
1

2
~α(s), (15.9)

Ŝzβ(s) = −1

2
~β(s), (15.10)

α(s) and β(s) are spin eigenfunctions and s is spin variable. In addition,

Ŝ2α(s) = Ŝ2β(s) = S(S + 1)~2 =
3

4
~2. (15.11)

So

| 〈S〉 | =
√

3

2
~. (15.12)

S denotes magnitude of spin angular momentum.
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A complete assignment of the state of an electron in a hydrogen-like atom thus

requires the inclusion of the spin state, i.e.

Ψn,l,ml,ms = Rnl(r)Y
m
l (θ, φ)fms(s) (15.13)

We call the orbital not including the spin part ”spatial orbital” and those including

the spin part ”spin orbital”.

Physically, electron also interacts with magnetic fields; we define spin magnetic In fact, spins are mag-

netic moment of the

electron. It is the mag-

netic properties of elec-

tron and it will show

up naturally when we

consider relativistic ef-

fect. Note that in clas-

sical electromagnetism,

the transformation be-

tween electron field and

magnetic fied is due to

relativistc effect(Lorentz

transformation).

dipole moment for electron:

µ̂s = − gee

2me
Ŝ = −geµB

~
Ŝ, (15.14)

ge is electron g factor(dimensionless magentic momentum). Thus, for spin µ̂z

µ̂z =
−geµB

~
Ŝz. (15.15)

So, the full Hamiltonian for a hydrogen-like atom with electron spin in a magnetic

field:

Ĥ = Ĥ0 +
µBB

~
L̂z +

geµBB

~
Ŝz

= Ĥ0 +
µBB

~
(L̂z + geŜz),

(15.16)

note that ge = 2.002322 ' 2.

By the fact: [
Ĥ0, L̂z

]
=
[
Ĥ0, Ŝz

]
= 0, (15.17)

the hydrogen-like orbitals still are good eigenfunctions, therefore:

Ĥψn,l,ml,ms =
[
En + µBB(ml + gems)

]
ψn,l,ml,ms . (15.18)
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Consider 1s and 2p orbitals:

Figure 15.5: Energy splitting for considering electron spin.

The splitting due to electron spin is also called ”Anomalous Zeeman effect”.

There still other additional terms can be included in the Hamiltonian, including:

• Spin-orbit coupling(also a relativistic effect described in the Dirac equation);

L-S coupling ⇒ fine structure in the atomic spectrum.

• Electron-nucleus spin-spin coupling; L-S-I coupling ⇒ hyperfine structures.

These are more complicated effect. To some extend, the hydrogen Hamiltonian

that we considered is approximated. But, note that these effects are very small!

(For fine structure term, it is 104 times smaller than H0 and the hyperfine structure

is 2000 times smaller than L-S term. This is because the magnetic interaction are

intincially smaller than electrostatic interactions.)
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