
Lecture 16

Optional: Time Independent

Pertubation Theory

Study Goal of This Lecture

• Pertubation theory (non-degenerate)

• First-order perturbation - Zeeman effect

• Second-order pertubation - Stark effect

16.1 Time Independent Perturbation Theory

We have briefly discussed the variational theory, in this lecture, we will discuss

about another important approximation method in QM, the perturbation theory!

The idea is to treat a small addition to the Hamiltonian as a “perturbation”

(small correction) to the eigenstates and eigenenergies of a set of already known

eigenstates.

Ĥ = Ĥ0 + λV. (16.1)

Ĥ0 is zero-th order Hamiltonian which can be exactly solved, it is an unperturbed

system. It will satisfy:

Ĥ0

∣∣∣φ(0)n 〉 = E(0)
n

∣∣∣φ(0)n 〉 , (16.2)

and λV stands for perturbation, it is a small correction to the Ĥ0. V is required to
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be small, otherwise the perturbation theory is not applicable. λ is a number bewteen

0 and 1, it is used to effectly “turn on” the perturbation.

Note that we actually want to solve

Ĥ |ψn〉 = En |ψn〉 (16.3)

with introduction of λ, |ψn〉 ≡ |ψn(λ)〉, En = En(λ). We expand the ture eigenwave-

function and energy with respect to λ. That is:

|ψn(λ)〉 = |ψn(λ = 0)〉+

∣∣∣ψ(1)
n

〉︷ ︸︸ ︷
∂ |ψn(λ)〉

∂λ

∣∣∣
λ=0

λ+

∣∣∣ψ(2)
n

〉︷ ︸︸ ︷
1

2!

∂2 |ψn(λ)〉
∂λ2

∣∣∣
λ=0

λ2 + · · · , (16.4)

En(λ) = En(λ = 0) +
∂En
∂λ

∣∣∣
λ=0︸ ︷︷ ︸

E
(1)
n

λ+
1

2!

∂2

∂E2
n

∣∣∣
λ=0︸ ︷︷ ︸

E
(2)
n

λ2 + · · · . (16.5)

We rewrite:

|ψn〉 = |ψn(λ = 0)〉+ λ
∣∣∣ψ(1)
n

〉
+ λ2

∣∣∣ψ(2)
n

〉
+ · · · , (16.6)

En = En(λ = 0) + λE(1)
n + λ2E(2)

n + · · · (16.7)

We define some terms above as:∣∣∣ψ(1)
n

〉
: First-order wavefunction correction

E
(1)
n : First-order energy correction

E
(2)
n : Second-order energy correction etc.

Clearly, |ψ(λ = 0)〉 =
∣∣∣ψ(0)
n

〉
and En(λ = 0) = E

(0)
n by letting λ goes to zero.

Now, we require that〈
ψ(0)
n

∣∣∣ψn〉 = 1 : intermediate normalization

. In this case, 〈ψn|ψn〉 6= 1, not normalized. Note that this will not change the

eigenvalues. Also, |ψn〉 can be easily normalized in the end. So it does not affects

the results, but will make the expressions much simpler.

Note that by multiply
〈
ψ
(0)
n

∣∣∣ from the left in Equ (16.6), we obtain

1 = 1 + λ
∣∣∣ψ(1)
n

〉
+ λ2

∣∣ψ2
n

〉
+ · · · , (16.8)
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which must be satisfied by all λ = 0 · · · 1. So
〈
ψ
(0)
n

∣∣∣ψ(k)
n

〉
= 0, this implies that there

is no
∣∣∣ψ(0)
n

〉
components in corrections.

Plug Equ (16.6), (16.7) into the Schrödinger equation for the full system, we obtain.

(Ĥ0 + λV )(
∣∣∣ψ(0)
n

〉
+ λ

∣∣∣ψ(1)
n

〉
+ λ2

∣∣ψ2
n

〉
+ · · · )

= (E(0)
n + λE(1)

n + λ2E(2)
n + · · · )(

∣∣∣ψ(0)
n

〉
+ λ

∣∣∣ψ(1)
n

〉
+ λ2

∣∣ψ2
n

〉
+ · · · )

(16.9)

expand the expression and collec in powers of λ, we obtain:

Ĥ0

∣∣∣ψ(0)
n

〉
+ λ(V̂

∣∣∣ψ(0)
n

〉
+ Ĥ0

∣∣∣ψ(1)
n

〉
) + λ2(V̂

∣∣ψ1
n

〉
+ Ĥ0

∣∣ψ2
n

〉
)

= E(0)
n

∣∣∣ψ(0)
n

〉
+ λ(E1

n

∣∣ψ0
n

〉
+ E0

n

∣∣∣ψ(1)
n

〉
)

+ λ2(E(2)
n

∣∣∣ψ(0)
n

〉
+ E1

n)
∣∣∣ψ(1)
n

〉
+ E(0)

n

∣∣∣ψ(2)
n

〉
) + · · ·

(16.10)

for the equation to hold with arbitrary valid λ, we require the coefficents of same

term to be the same on both side. Therefore,

λ0 : Ĥ0

∣∣∣ψ(0)
n

〉
= E(0)

n

∣∣∣ψ(0)
n

〉
(16.11)

λ1 : V̂
∣∣∣ψ(0)
n

〉
+ Ĥ0

∣∣∣ψ(1)
n

〉
= E1

n

∣∣ψ0
n

〉
+ E0

n

∣∣∣ψ(1)
n

〉
(16.12)

λ2 : V̂
∣∣ψ1
n

〉
+ Ĥ0

∣∣ψ2
n

〉
= E(2)

n

∣∣∣ψ(0)
n

〉
+ E1

n)
∣∣∣ψ(1)
n

〉
+ E(0)

n

∣∣∣ψ(2)
n

〉
(16.13)

Actually, we now can obtain the form of all corretion term now by comparing the

both side of the equal sign. We take a close look at several terms:

16.1.1 The first-order energy correction

We mutiply λ1 term with
〈
ψ
(0)
n

∣∣∣,〈
ψ(0)
n

∣∣∣Ĥ0

∣∣∣ψ(1)
n

〉
+
〈
ψ(0)
n

∣∣∣V̂ ∣∣∣ψ(0)
n

〉
= E(0)

n

〈
ψ(0)
n

∣∣∣ψ(1)
n

〉
+ E(1)

n

〈
ψ(0)
n

∣∣∣ψ(0)
n

〉
(16.14)

note that
〈
ψ
(0)
n

∣∣∣ψ(1)
n

〉
= 0 and〈

ψ(0)
n

∣∣∣Ĥ0

∣∣∣ψ(1)
n

〉
=
〈
ψ(0)
n

∣∣∣Ĥ0

∣∣∣ψ(0)
n

〉∗
=
〈
ψ(1)
n

∣∣∣E(0)
n

∣∣∣ψ(0)
n

〉∗
= E(0)

n

〈
ψ(0)
n

∣∣∣ψ(1)
n

〉
= 0

(16.15)

so

E(1)
n =

〈
ψ(0)
n

∣∣∣V̂ ∣∣∣ψ(0)
n

〉
(16.16)

The first-order energy correction is the diagonal matrix element of V̂ .
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16.1.2 The first order wavefunction correction

We expand
∣∣∣ψ(1)
n

〉
in terms of the complete orthonormal set of unperturbed

eigenfunctions
∣∣∣ψ(0)
m

〉
for m 6= n (required:

〈
ψ
(0)
n

∣∣∣ψ(1)
n

〉
= 0):∣∣∣ψ(1)

n

〉
=
∑
m

am

∣∣∣ψ(0)
m

〉
(16.17)

where am =
〈
ψ
(0)
m

∣∣∣ψ(1)
n

〉
. Mutiply

〈
ψ
(0)
m

∣∣∣ to the λ1 equation, we obtain

E(0)
m

〈
ψ(0)
m

∣∣∣ψ(1)
n

〉
+
〈
ψ(0)
m

∣∣∣V̂ ∣∣∣ψ(0)
n

〉
= E(0)

n

〈
ψ(0)
m

∣∣∣ψ(1)
n

〉
+ E(1)

n ���
���

�:= 0〈
ψ(0)
m

∣∣∣ψ(0)
n

〉
(16.18)

therefore,

am =
〈
ψ(0)
m

∣∣∣ψ(1)
n

〉
=

〈
ψ
(0)
m

∣∣∣V̂ ∣∣∣ψ(0)
n

〉
E

(0)
n − E(0)

m

, (16.19)

∣∣∣ψ(1)
n

〉
=
∣∣∣ψ(0)
n

〉
+
∑
m 6=n

〈
ψ
(0)
m

∣∣∣V̂ ∣∣∣ψ(0)
n

〉
E

(0)
n − E(0)

m

. (16.20)

Off-diagonal terms (m 6= n) in V̂ will “mix” zero-th order states, this is actually the 〈
ψ
(0)
m

∣∣∣V̂ ∣∣∣ψ(0)
n

〉
is

the coupling.
core of all dynamics.

16.1.3 The second-order energy correction

One can then evaluate from λ2 equation that

E(2)
n =

∑
n6=m

〈
ψ
(0)
m

∣∣∣V̂ ∣∣∣ψ(0)
n

〉 〈
ψ
(0)
n

∣∣∣V̂ ∣∣∣ψ(0)
m

〉
E

(0)
n − E(0)

m

=
∑
n6=m

∣∣∣ 〈ψ(0)
m

∣∣∣V̂ ∣∣∣ψ(0)
n

〉 ∣∣∣2
E

(0)
n − E(0)

m

(16.21)

note that for ground state, E
(0)
n −E(0)

m < 0. So, the second-order energy correction is

always “negative”. Second-order perturbation always lowers the groundstate energy.

Also note that the energy correction is quadratic in the coupling matrix element.

This is frequently encounter in chemical physics.

When implementing the perturbation theory, needs for higher order is not wor-

thy. If one are going to use third or even fourth-order correction, he/she should

consider change his/her method.
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16.1.4 Example: Zeeman Effect and Stark Effect

Zeeman effect is stemed from the first-order perturbation and the Stark effect

come from second-order perturbation.

Consider the hydrogen atom in its 1s groundstate in an electric field. The

interaction energy is described by the Stark Hamiltonian for a E-field interacting

with the electric dipole moment qṘ of the atom:

V̂s = −q ~E · ~R = −qεẑ (16.22)

consider first order perturbation:

E(1) = 〈1s|V̂s|1s〉 = 0 (∵ V̂s is odd) (16.23)

The lowest non-zero correction is the second-order term.

E(2) = q2ε2
∑

n6=1,l,m

| 〈1, 0, 0|z|n, l,m〉 |2

E1 − En
(16.24)

note that the energy correction is “negative” and quadratic in the E field. The trick

to evaluate the correction energy is put below, but we show the plot of energy and

intensity of field first:

Figure 16.1: Stark effect

By directly observe, we find that the energy of 1s orbital change under the in-

fluence of electric field, this is Stark effect.
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Trick to evaluate 〈1, 0, 0|z|n, l,m〉:

ψn,l,m = Rn,l(r)Y
m
l (θ, φ), ψ1,0,0 = R10(r)Y

0
0 (θ, φ) = R10(r)

√
1

4π
, (16.25)

and

z = r cos θ = r
(4π

3

1
2
)
Y 0
1 . (16.26)

Therefore,

〈1, 0, 0|z|n, l,m〉 =

∫
R10(r)

√
1

4π
× r ×

(4π

3

1
2
)
Y 0
1 ×Rnl(r)Y m

l (θ, φ)dτ

=
1√
3

∫ ∞
−∞

∫ π

0

∫ 2π

R10(r)rRnl(r) · Y 0
1 Y

m
l r2 sin θdrdθdφ

=
1√
3

∫ ∞
−∞

r3R10(r)Rnl(r)

∫∫
Y 0
1 Y

m
l sin θdθdφ︸ ︷︷ ︸

δl,1δm,0

(16.27)
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