Physical Chemistry II: Quantum Chemistry
Lecture 18: Many-electron Atoms & Atomic Term Symbols

Yuan-Chung Cheng

yuanchung@ntu.edu.tw

5/7/2019

Courtesy of Prof. Jerry Chen
He: Two-Electron Atom

2+ - -

Attraction

Repulsion
He: Two-Electron Atom

Z_{eff}: Effective Nuclear Charge

By the variation method, Z_{eff} is calculated as 1.69
Atomic Orbitals for Many-Electron Atoms

\[\hat{H} \Psi = E \Psi \]

No analytical solutions even for He because of electron repulsion

He and Li atoms can be handled by variation methods

Need more practical approach for other atoms!
Hartree-Fock Self-Consistent Field Method

Single-electron wavefunction:

\[\psi_i(x_1) : \text{atomic spin orbital} \]
\[x_1 : \text{electron variable} \]

Example for 1s:

\[\psi_{1s}(r) = \sum_{a=1}^{m} c_a N_a e^{-Z_a r / a_0} \]

linear combination of basis functions with variational parameters

N-electron wavefunction: Slater determinants

\[\Psi(x_1, \ldots, x_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \psi_1(x_1) & \psi_2(x_1) & \cdots & \psi_N(x_1) \\ \psi_1(x_2) & \psi_2(x_2) & \cdots & \psi_2(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_1(x_N) & \psi_2(x_N) & \cdots & \psi_N(x_N) \end{vmatrix} \]
Mean-Field Approximation

Many-electron Hamiltonian:

\[\hat{H} = -\frac{\hbar^2}{2m_e} \sum_{i=1}^{N} \nabla_i^2 - \sum_{i=1}^{N} \frac{Ze^2}{r_i} + \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{e^2}{r_{ij}} \]

Many-electron Integrals:

\[\left\langle \psi_1 \psi_2 \ldots \psi_j \cdots \left| \sum_{j=2}^{N} \frac{e^2}{r_{1j}} \psi_1 \psi_2 \cdots \psi_j \cdots \right. \right\rangle = \sum_{j=2}^{N} \left\langle \psi_1 \psi_j \left| \frac{e^2}{r_{1j}} \right| \psi_1 \psi_j \right \rangle \]

\[= \sum_{j=2}^{N} \int \int |\psi_1|^2 |\psi_j|^2 \frac{e^2}{r_{1j}} d\tau_1 d\tau_2 \]

\[= \int |\psi_1|^2 \left\{ \sum_{j=2}^{N} \int \frac{e^2 |\psi_j|^2}{r_{1j}} d\tau_2 \right\} d\tau_1 \]

A Slater determinant, product of spin orbitals

Mean-field term due to averaged distribution of all other electrons
Mean-Field Approximation

Hartree-Fock Mean-field Hamiltonian:

\[\hat{H} = -\frac{\hbar^2}{2m_e} \sum_{i=1}^{N} \nabla_i^2 - \sum_{i=1}^{N} \frac{Ze^2}{r_i} + \frac{1}{2} \sum_{i=1}^{N} V_i(r_i) \equiv \sum_{i=1}^{N} \hat{h}_i \]

where \(V_i(r_i) = \sum_{j \neq i}^{N} e^2 \int \frac{|\psi_j|^2}{r_{ij}} d\tau_j \)

• Single determinantal wavefunction leads naturally to the mean-field approximation
• The approximation allows a factorization of the Hamiltonian into \(N \) single-electron problems
• Given a basis, the theory provides a variational groundstate & optimal atomic orbitals within the single determinant approximation \(\Rightarrow \) mean-field, no electron correlations
• \(N \) single-electron Schrödinger equations are interdependent \(\Rightarrow \) requires solving self-consistently via an iterative procedure
Many-electron Model

Hartree-Fock
(Self-consistent field, SCF)
Method

\[\hat{H} \psi = E \psi \]

Guess
\[\psi_2, \psi_3, \ldots, \psi_N \]

Solve Schrödinger equation for
\[\psi_1' \]

\[\psi_1', \psi_2', \ldots, \psi_N' \]

Use
\[\psi_2', \psi_3', \ldots, \psi_N' \]

to find
\[\psi''_1 \]

Repeat cycle until new set of functions is virtually the same as the previous set

Solve Schrödinger equation for
\[\psi_2' \]

\[\psi_1', \psi_2', \psi_3', \ldots, \psi_N' \]

Solve Schrödinger equation in turn for
\[\psi_3', \psi_4', \ldots, \psi_N' \]
Atomic Orbitals for Many-Electron Atoms

The concept of orbital is exact

The use of “orbital” is just a good approximation
Na Radial Distribution Function for “Valance” Orbitals

\[r^2 |R(r)|^2 \]

“Core” electrons: screening/shielding effect

Penetration effect of the 3s and 3p orbitals

\[E_{3s} < E_{3p} < E_{3d} \]

Increase screening
Hund’s Rule

For degenerate orbitals, electrons occupy them one at a time.

\[\underline{p_x} \quad \underline{p_y} \quad \underline{p_z} \]

Less likely

\[\underline{p_x} \quad \underline{p_y} \quad \underline{p_z} \]

Likely
Hund’s Rule

Smaller electrostatic repulsion?

The electron-electron repulsion does not allow the two electrons getting too close to each other.

However, this explanation is now obsolete.
Hund’s Rule

“Exchange energy” makes the triplet configuration more stable

Different spins: two electrons do not exchange

Same spin: two electrons can exchange
Hund’s Rule

Larger electron-nucleus interaction due to less screening when two different orbitals are occupied!

Proven by exact QM calculations, see Levine.
Atomic Energy States

C : $1s^2 \ 2s^2 \ 2p^2$

“Electron configuration” along does not fully specify the “state” of a many-electron system.

These three arrangements (states) have different energies when electron-electron repulsions are included!

Depending on total angular momentum!
Atomic Energy States -- Terms

The energy of a many-electron state depends on the total orbital angular momentum and total spin angular momentum of the state.

\[\hat{L} = \hat{L}_1 + \hat{L}_2 + \hat{L}_3 + \ldots \]

\[\hat{S} = \hat{S}_1 + \hat{S}_2 + \hat{S}_3 + \ldots \]

Notations:

- \(L \): quantum number for total orbital angular momentum
- \(l_1, l_2, \ldots \): orbital angular momentum quantum numbers for each individual electrons

- \(S \): quantum number for total spin angular momentum
- \(s_1, s_2, \ldots \): spin angular momentum for each electrons

\(L \) & \(S \) are determined by vector addition/subtraction rules.
Example: two electrons in p
$p^2 (l_1 = 1, l_2 = 1): \quad L = 2, 1, 0$

$L = 2 \implies \text{D}$
$L = 1 \implies \text{P}$
$L = 0 \implies \text{S}$

$L = l_1 + l_2, l_1 + l_2 - 1, \ldots, |l_1 - l_2|$
Example: two electrons in p

$p^2 (l_1 = 1, l_2 = 1)$: $L = 2, 1, 0$

\[L = 2 \quad \rightarrow \quad 1 \quad \rightarrow \quad 0 \quad = \quad \text{S} \quad \text{P} \quad \text{D} \]

$p^2 f^1 (l_1 = 1, l_2 = 1, l_3 = 3)$

\[L = 5, 4, 3, 2, 1, \ldots \]
Addition of Three Angular Momenta

two at a time...

If all \(l \) are equal, the minimum is zero, if one \(l \) is larger than the others, the minimum is that given by

\[
\|l_1 - l_2\| - l_3
\]

(vector sum of all vectors).
Addition of Three Angular Momenta

\[p^2 f^l \ (l_1 = 1, \ l_2 = 1, \ l_3 = 3) \]

\[L' = 2, 1, 0 \]

\[L = 5, 4, 3, 2, 1 \]

\[L = 4, 3, 2 \]

\[L = 3 \]

Degeneracy = \(2L + 1\)
Addition of Three Angular Momenta

Degeneracy $2L+1$

Number of microstates:

\[p^2 f^1 \ (l_1 = 1, \ l_2 = 1, \ l_3 = 3) \]

\[L = 5, 4, 3, 2, 1 \]

\[2 \times 5 + 1 = 11 \]
\[2 \times 4 + 1 = 9 \]
\[2 \times 3 + 1 = 7 \]
\[2 \times 2 + 1 = 5 \]
\[2 \times 1 + 1 = 3 \]

\[35 \]
Addition of Three Angular Momenta

Number of microstates:

\[p^2 f^1 \ (l_1 = 1, \ l_2 = 1, \ l_3 = 3) \]

\[
\begin{align*}
L &= 4, 3, 2 \\
2\times4+1 &= 9 \\
2\times3+1 &= 7 \\
2\times2+1 &= 5 \\
\hline
21
\end{align*}
\]
Addition of Three Angular Momenta

Degeneracy $2L + 1$

Number of microstates:

$p^2 f^1$ ($l_1 = 1, l_2 = 1, l_3 = 3$)

$L = 5, 4, 3, 2, 1$ \hspace{1cm} 35
$L = 4, 3, 2$ \hspace{1cm} 21
$L = 3$ \hspace{1cm} 7

$3 \times 3 \times 7$

$\frac{63}$
Total spin angular momentum S for n electrons:

- $S = n/2, n/2-1, n/2-2, \ldots, 0$, for n even
- $S = n/2, n/2-1, n/2-2, \ldots, 1/2$, for n odd

Spin multiplicity $= 2S+1$

- $S=0, 2S+1=1$, singlet, $m_s = 0$
- $S=1/2, 2S+1=2$, doublet, $m_s = \frac{1}{2}, -\frac{1}{2}$
- $S=1, 2S+1=3$, triplet, $m_s = 1, 0, -1$
Total spin angular momentum S for n electrons:

- $S = n/2, \frac{n}{2}-1, \frac{n}{2}-2, \ldots, 0$, for n even
- $S = n/2, \frac{n}{2}-1, \frac{n}{2}-2, \ldots, 1/2$, for n odd

$2p^2$

Spin multiplicity $= 2S+1$

- $S=0$ singlet, $m_s = 0$
- $S=1$ triplet, $m_s = 1, 0, -1$
- $S=0$ singlet, $m_s = 0$
Hund’s Rule of Maximum Multiplicity

Hund's first rule states that the lowest energy atomic state is the one which maximizes the total multiplicity for all of the electrons in the open sub-shell.

Russell-Saunders/L-S Term Symbol

Total orbital angular momentum \(L \)
Total spin angular momentum \(S \)
Total angular momentum \(J \) (couple \(L \) & \(S \))

\[
2S+1 \begin{array}{c} L \\ J \end{array} \]

\[
J = L+S, L+S-1,\ldots,|L-S|
\]

\[
^2S_{1/2} \quad \text{Double s one-half}
\]

Designation: \(L = 0, 1, 2, 3, 4, 5\ldots \)
\[
S, P, D, F, G, H\ldots
\]

L-S Terms determine energy levels of atomic electronic states for atoms with small spin-orbital coupling (L-S coupling), i.e. not for heavy atoms.
Example 1: a single electron

$1s^1$

$\vec{L} = \ell_1 = 0,$

$\vec{S} = \vec{s}_1 = \frac{1}{2},$ or $2S + 1 = 2.$

<table>
<thead>
<tr>
<th>Configuration</th>
<th>State(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>s^1</td>
<td>$^2S_{1/2}$</td>
</tr>
<tr>
<td>p^1</td>
<td>$^2P_{1/2}, ^2P_{3/2}$</td>
</tr>
<tr>
<td>d^1</td>
<td>$^2D_{1/2}, ^2D_{3/2}$</td>
</tr>
<tr>
<td>f^1</td>
<td>$^2F_{3/2}, ^2F_{5/2}$</td>
</tr>
</tbody>
</table>

$2S + 1 L_J$
Hydrogen atom (single electron)
Ground state vs. Excited States

\[2S + 1 \ell_J \]

Energy

\[2S_{1/2} \]

\[2p \]

\[2P_{3/2} \]

\[2P_{1/2} \]

\[1s \]

\[2S_{1/2} \]

spin-orbit interaction
Fine structure of the sodium D line

\[
\begin{align*}
1s^2 \ 2s^2 \ 2p^6 \ 3p & \quad 2P_{3/2} \\
& \quad 2P_{1/2}
\end{align*}
\]

Energy

\[
\begin{align*}
1s^2 \ 2s^2 \ 2p^6 \ 3s & \quad 2S_{1/2} \\
\end{align*}
\]

5890 Å 5896 Å
Many-electron Atoms

For many-electron system, one may derive the electronic states from the M_L, M_S, and M_J values.

$$M_L = \sum_i (m_l)_i = 0, \pm 1, \pm 2, \ldots, \pm L$$

$$M_S = \sum_i (m_s)_i = 0, \pm 1, \pm 2, \ldots, \pm S$$

$$M_J = M_L + M_S = 0, \pm 1, \pm 2, \ldots, \pm J$$

These magnetic quantum numbers are easy to determine from electronic configurations \rightarrow we can then derive (L, S, J) from the intervals!
Example 2

$1s^2$

\[\begin{array}{c}
\uparrow \downarrow \\
l = 0 \\
m_\ell = 0
\end{array}\]

\[M_L = \sum_i (m_\ell)_i \quad 0 + 0 = 0 \quad \frac{1}{2} + (-\frac{1}{2}) = 0\]

For any filled shell, we just have the state 1S_0 with $L = S = J = 0$

<table>
<thead>
<tr>
<th>Configuration</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>s^2</td>
<td>1S_0</td>
</tr>
<tr>
<td>p^6</td>
<td>1S_0</td>
</tr>
<tr>
<td>d^{10}</td>
<td>1S_0</td>
</tr>
<tr>
<td>f^{14}</td>
<td>1S_0</td>
</tr>
</tbody>
</table>

No need to consider “closed shells”
Core shells are fully occupied and do not give rise to additional states \(\rightarrow \) only open shell electrons need to be considered.

Term Symbols & Electronic Configurations

To determine all term symbols in a configuration:

1. List all electronic microstates by filling orbitals with spin specified
2. Calculate \(M_L \) and \(M_S \), then tabulate the number of states belonging to each \((M_L, M_S) \)
3. Divide states into separate terms based on the bounds of \(M_L \) and \(M_S \) (starting from largest \(L \))
4. Determine term symbols
Example 3

$1s^12s^1$

Totally $2 \times 2 = 4$ states
4 microstates!

\[
\begin{array}{ccc|c|c}
\hline
n=1, \ell=0 & n=2, \ell=0 & M_L & M_S \\
 m_z=0 & m_z=0 & & \\
\uparrow & \uparrow & 0 & 1 \\
\uparrow & \downarrow & 0 & 0 \\
\downarrow & \uparrow & 0 & 0 \\
\downarrow & \downarrow & 0 & -1 \\
\hline
\end{array}
\]

\[1S_0 \rightarrow 3S_1 \]

\[2S+1L \]

\[1S_0 + 3S_1 \]
Example 4

Carbon: $1s^22s^22p^2$

Number of possible arrangement is

\[
\frac{6!}{2!4!} = 15 \text{ microstates}
\]

$p^2 (l_1 = 1, l_2 = 1): \quad L = 2, 1, 0$
\[
\begin{array}{c|ccc}
\ell = 1 & 1 & 0 & -1 \\
\uparrow \downarrow & 2 & 0 \\
\uparrow & 0 & 0 \\
\downarrow & -2 & 0 \\
\downarrow & 1 & 1 \\
\downarrow & 1 & 0 \\
\downarrow & 1 & -1 \\
\downarrow & -1 & 1 \\
\downarrow & -1 & 0 \\
\downarrow & -1 & -1 \\
\uparrow & 0 & 1 \\
\uparrow & 0 & 0 \\
\downarrow & 0 & 0 \\
\downarrow & 0 & -1 \\
\end{array}
\]

Carbon: \(2p^2\)
While $M_L = -2 \ldots 2$, $M_S = 0 \rightarrow L = 2, S = 0$

Must have a 1D

We have identified 5 microstates, let’s remove them from the table – substrate 1 from the column $M_S = 0$.

Carbon: $2p^2$
Carbon: 2p²

While \(M_L = -1 \ldots 1, M_S = -1 \ldots 1 \rightarrow L=1, S=1 \)

Must have a \(^3P \)
While $M_L = 0$, $M_S = 0$ \rightarrow $L=0$, $S=0$

Must have a 1S too!!

GOTCHA!!

Carbon: $2p^2$
A term ^2S+1L corresponds to $(2L+1) \times (2S+1)$ microstates!

Carbon: $2p^2$
Electronic transitions may occur within the same electronic configuration!
If spin-orbit coupling is larger than the electron-electron repulsion, the scheme of j-j coupling is used instead of L-S coupling.

The j-j coupling scheme is more appropriate for heavy transition metal atoms: stronger core potential, faster electron, much more prominent relativistic effects.