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He: Two-Electron Atom
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1 < Zeff < 2

Zeff:  Effective Nuclear Charge

By the variation method, Zeff is 
calculated as 1.69



Atomic Orbitals for Many-Electron 
Atoms

Y=Y EĤ

No analytical solutions even for He 
because of electron repulsion

Need more practical approach for other 
atoms!

He and Li atoms can be handled by 
variation methods



Hartree-Fock Self-Consistent Field Method

ψ i (x1) :  atomic spin orbital
x1 :  electron variable

Single-electron wavefunction:

N-electron wavefunction: Slater determinants

Ψ(x1,..., xN ) =
1
N!

ψ 1(x1) ψ 2 (x1)  ψ N (x1)
ψ 1(x2 ) ψ 2 (x2 )  ψ 2 (x2 )
  

ψ 1(xN ) ψ 2 (xN )  ψ N (xN )

ψ 3

ψ 2

ψ 1

Example for 1s: ψ 1s (r) = caNae
−Zar/a0

a=1

m

∑

linear combination of basis functions 
with variational parameters



Mean-Field Approximation
Many-electron Hamiltonian:
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Mean-field term due to averaged distribution of all other electrons

A Slater determinant, 
product of spin orbitals



Mean-Field Approximation
Hartree-Fock Mean-field Hamiltonian:

• Single determinantal wavefunction leads naturally to the mean-field 
approximation

• The approximation allows a factorization of the Hamiltonian into N 
single-electron problems

• Given a basis, the theory provides a variational groundstate & 
optimal atomic orbitals within the single determinant 
approximation è mean-field, no electron correlations

• N single-electron Schrodinger equations are interdependent è
requires solving self-consistently via an iterative procedure
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Hartree-Fock 
(Self-consistent 
field, SCF) 
Method

Many-electron Model

Y=Y EĤ



Atomic Orbitals for Many-Electron 
Atoms

The concept of 
orbital is exact

The use of “orbital” is just a 
good approximation



Na Radial Distribution Function for 
“Valance” Orbitals

dps EEE 333 <<Penetration effect
of the 3s and 3p orbitals

r2 R(r) 2 “Core” electrons: screening/shielding effect

Increase screening



Hund’s Rule

For degenerate orbitals, electrons occupy 
them one at a time.

px py pz

px py pz

Less likely

Likely



Hund’s Rule

px py pz

Likely

Smaller electrostatic repulsion?
The electron-electron repulsion does not 
allow the two electrons getting too close 
to each other.

However, this explanation is now 
obsolete.



Hund’s Rule

“Exchange energy” makes the triplet 
configuration more stable

px py pz

px py pz

Different spins: two 
electrons do not exchange

Same spin: two electrons 
can exchange



Hund’s Rule

px py pz

Likely

Larger electron-nucleus interaction due 
to less screening when two different 
orbitals are occupied!

Proven by exact QM calculations, see Levine.

px py pz

Less likely
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Atomic Energy States

These three 
arrangements (states) 
have different energies 
when electron-electron 
repulsions are included!

“Electron configuration” along 
does not fully specify the “state” 
of a many-electron system.

Depending on total angular momentum!



Atomic Energy States -- Terms
The energy of a many-electron state depends on the 
total orbital angular momentum and total spin angular 
momentum of the state.

L̂ = L̂1 + L̂2 + L̂3 +…
Ŝ = Ŝ1 + Ŝ2 + Ŝ3 +…

Notations:
L: quantum number for total orbital angular momentum
l1, l2,…: orbital angular momentum quantum numbers for each 
individual electrons

S: quantum number for total spin angular momentum
s1, s2,…: spin angular momentum for each electrons

L & S are determined by vector addition/subtraction rules.



Example:  two electrons in p
p2 (l1 = 1, l2 = 1):   L = 2,1, 0 

L = 2

1

0

=

212121 ,,1, llllllL --++= !

02

=

= S

P

D



Example: two electrons in p
p2 (l1 = 1, l2 = 1):   L = 2,1, 0 

p2f1 (l1 = 1, l2 = 1, l3 = 3)

L=5, 4, 3, 2, 1, …

L = 2

1

0

=

=

= S

P

D



Adding the first two:

Then add the third one:

Addition of Three Angular Momenta
two at a time…

212121 ,,1, llllllL --++=¢ !

333 ,,1, lLlLlLL -¢-+¢+¢= !

321 zzzz lllL ++=

If all l are equal, the minimum is zero, if one 
l is larger than the others, the minimum is 
that given by 

(vector sum of all vectors).

321 lll --

L’



Addition of Three Angular Momenta

p2f1 (l1 = 1, l2 = 1, l3 = 3)

L = 5, 4, 3, 2, 1

L' = 2, 1, 0

L = 4, 3, 2
L = 3

Degeneracy = 2L + 1



Addition of Three Angular Momenta

p2f1 (l1 = 1, l2 = 1, l3 = 3)

L = 5, 4, 3, 2, 1

2×5+1 = 11
2×4+1 =   9
2×3+1 =   7
2×2+1 =   5
2×1+1 =   3

35

Number of microstates: Degeneracy 2L+1



Addition of Three Angular Momenta

p2f1 (l1 = 1, l2 = 1, l3 = 3)

L = 4, 3, 2

2×4+1 =   9
2×3+1 =   7
2×2+1 =   5

21

Number of microstates: Degeneracy 2L+1



Addition of Three Angular Momenta

p2f1 (l1 = 1, l2 = 1, l3 = 3)

L = 5, 4, 3, 2, 1
L = 4, 3, 2
L = 3

35

21

7
63

3 × 3 × 7

Number of microstates: Degeneracy 2L+1



Total spin angular momentum S for n
electrons:

S = n/2, n/2–1, n/2–2,…, 0, for n even
S = n/2, n/2–1, n/2–2,…., 1/2, for n odd

Spin multiplicity = 2S+1

S=0, 2S+1=1, singlet, ms = 0

S=1/2, 2S+1=2, doublet, ms = ½, -½

S=1, 2S+1=3, triplet, ms = 1, 0, -1



Total spin angular momentum S for n
electrons:

S = n/2, n/2–1, n/2–2,…, 0, for n even
S = n/2, n/2–1, n/2–2,…., 1/2, for n odd

22p

S=0

Spin multiplicity = 2S+1

S=1

S=0

singlet, ms = 0

triplet, ms = 1, 0, -1

singlet, ms = 0



Hund’s Rule of Maximum Multiplicity

Hund's first rule states that the 
lowest energy atomic state is the 
one which maximizes the total 
multiplicity for all of the electrons in 
the open sub-shell.

http://en.wikipedia.org/wiki/List_of_Hund%27s_rules



Total orbital angular momentum L
Total spin angular momentum S
Total angular momentum J (couple L & S)

2S+1LJ

2/1
2S Double s one-half

Russell-Saunders/L-S Term Symbol

Designation: L =0, 1, 2, 3, 4, 5….
S, P, D, F, G, H….

J = L+S, L+S-1,….|L-S|

L-S Terms determine energy levels of atomic electronic states for atoms with small 
spin-orbital coupling (L-S coupling), i.e. not for heavy atoms.



Example 1: a single electron
1s1

2
1

2S

2S+1LJ



Hydrogen atom (single electron)
Ground state vs. Excited States

Energy

2/1
2S

2/1
2S

2/1
2P

2/3
2P

1s

2s 2p

spin-orbit interaction

2S+1LJ



Fine structure of the sodium D line

Energy

2S+1LJ



( ) LmM
i

ilL ±±±==å ,....2,1,0

( ) SmM
i

isS ±±±==å ,....2,1,0

JMMM SLJ ±±±=+= ,....2,1,0

For many-electron system, one may derive the 
electronic states from the ML, MS, and MJ values.

These magnetic quantum numbers are easy to determine 
from electronic configurations à we can then derive (L, S, J) 
from the intervals!

Many-electron Atoms



Example 2
1s2

For any filled shell, we just have the 
state        with L = S = J = 00

1S

No need to 
consider 
“closed 
shells”



Core shells are fully occupied and do not give rise to 
additional states à only open shell electrons need to 
be considered.

To determine all term symbols in a configuration:

1. List all electronic microstates by filling orbitals 
with spin specified

2. Calculate ML and MS, then tabulate the number 
of states belonging to each (ML, MS)

3. Divide states into separate terms based on the 
bounds of ML and MS (starting from largest L)

4. Determine term symbols

Term Symbols & Electronic Configurations



1s12s1

Example 3

0
1S 1

3S

1S0 +
3S1

Totally 2x2 = 4 states
4 microstates!

2S+1LJ



Carbon: 1s22s22p2

Example 4

Ignored

2p2

Number of possible arrangement is

15
!4!2
!6
= microstates

p2 (l1 = 1, l2 = 1):   L = 2,1, 0 

Cn
M Number of spin orbitals

Number of electrons



Carbon: 2p2



Carbon: 2p2

While ML= -2…2, MS=0 à L=2, S=0

Must have a   1D

We have identified 5 microstates, 
let’s remove them from the table 
– substrate 1 from the column 
MS=0.



Carbon: 2p2

Must have a   3P

While ML= -1…1, MS= -1…1 à L=1, S=1

1

2

1



Carbon: 2p2

Must have a   1S   too!!

While ML= 0, MS= 0 à L=0, S=0

GOTCHA!!

1



A term 2S+1L corresponds 
to (2L+1)×(2S+1) 
microstates!

J = 2 J = 0

J = 2, 1, 0

Carbon: 2p2



Electronic transitions may occur within the same electronic configuration!

0Ĥ repĤ+ ..
ˆ
osH+

0Ĥ 0Ĥ repĤ+ ..
ˆ
osH+

0Ĥ repĤ+ ZĤ+

2S+1LJ
Carbon: 2p2



If spin-orbit coupling is larger than the electron-electron repulsion, 
the scheme of j-j coupling is used instead of L-S coupling.

The j-j coupling scheme is more appropriate for heavy transition 
metal atoms: stronger core potential, faster electron, much more 
prominent relativistic effects.


