
Lecture 2

The Wave Function

Study Goal of This Lecture

• Time-independent Schrödinger Equation.

• Requirements of wavefunctions.

2.1 Time-Independent Schrödinger Equation

Last lecture we discussed the consequences of the wave-particle duality and fi-

nally reach the point to introduce the time-independent Schrödinger equation(T.I.S.E.):

− ~2

2m
∇2ψ(~r) + V (~r)ψ(~r) = Eψ(~r). (2.1)

All stationary states of a particle under the influence of potential V (~r) must satisfy

this equation. Q: Why the station-

ary state of a parti-

cle must satisfy the

T.I.S.E. ?

2.1.1 Hamiltonian operator

Note that we can further identify on the left hand side of the Schrödinger equa-

tion:

{− ~2

2m
∇2 + V (~r)}︸ ︷︷ ︸

something acting

on the wavefunction

ψ(~r) =

energy,

a real number︷︸︸︷
E ψ(~r), (2.2)
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we can define an “operator” called “Hamiltonian”

Ĥ = − ~2

2m
∇2 + V (~r). (2.3)

e.g. for d
dx ,

d
dx(x2) = 2x

operator: acting on a function to generate a different function.

operand: the subject of an operator.

Here Ĥ is an operator that is related to the total energy of the system. With Ĥ, we

can rewrite the Schrödinger equation as:

Ĥψ(~r) = Eψ(~r). (2.4)

This is a different yet equivalent way to write the time-independent Schrödinger

equation. ψ(~r) that satisfies Ĥψ(~r) = Eψ(~r) is a stationary wave function. Normally,

one can find infinite-number of wave functions(states) that satisfy the T.I.S.E.

Notice that solving Schrödinger equation is to find wave functions that when

“operated” by Ĥ, yield the same functions with a real proportional constant. This

kind of equation posts an “eigenvalue problem”.

When Ĥψ(~r) = Eψ(~r), we say ψ(~r) is an eigenfunction of Ĥ and E is the eigen-

value. Solving time-independent Schrödinger equation is to find the eigenfunctions

of the Hamiltonian operator Ĥ.

Ĥψn(~r) = Enψn(~r). (2.5)

In Equ (2.5), ψn(~r) is the eigenfunction of Ĥ and En is the eigenvalue associate

with ψn(~r). We normally can find infinite number of solutions. Such eigenvalue

problems are not at all difficult to understand.

• eigenfunction of d
dx?

• eigenfunction of d2

dx2 ?

• ......
observable ↔ operator

energy ↔ ĤQuantum mechanics concern many operators. Actually each classical physical

observable corresponds to a quantum operator.

2



Operators are central in quantum mechanics, actually, each physically measur-

able quantity has an operator associated with it, for example: we have identified the

operator for energy ⇒ Hamiltonian.

Ĥ ←→ − ~2

2m
∇2 + V (~r).

Note

Ĥ = T̂ + V̂ =
p̂2

2m
+ V̂ ,

therefore we can identify

Ĥ ←→ V (~r)· [multiply by V (~r)],

p̂x ←→ −i~
∂

∂x
,

r̂ ←→ ~r· [multiply by V (~r)].

From here we can construct operators for any observables in quantum mechanics.

We will elaborate this point in the next class when we discuss about operators.

2.1.2 Correspondence Principle

The “correspondence principle” provides a standard procedure to write down a

quantum operator from the definition of its classical counterpart.

1. Find expresion for the observable in terms of p and x. e.g. ~l = ~r × ~p

2. Replace ~r ↔ r̂ , ~p↔ p̂. e.g. L̂ = r̂ × p̂

2.2 Requirements of Wavefunctions

2.2.1 Max Born’s interpretation

The key subject in Schrödinger equation is ψ: the wave function. Max Born

pointed out that ψ does not have any physical meanung, and it is just a mathemat-

ical object that allows us to calculate experimentally measurable quantities. On the

other hand, the absolute square of ψ has a physical interpretation:
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The probability of finding the particle in an infinitesimal volume (dτ = dxdydz)

at ~r is given by ψ∗(~r)ψ(~r)dτ ≡ |ψ(~r)|2dτ .

Thus, |ψ(~r)|2 is the probability density of finding the particle at ~r.

(Note the dimension of ψ(x) is L−
1
2 in 1-D and L−

3
2 in 3-D.)

Thinking:

probability of finding

someone in this class

who is “exactly” 20

years old←What do we

normally mean by age =

20? A range!

Note that

|ψ(x)|2 : probability density

|ψ(x)|2dx : probability of finding the particle between x and x+ dx

It is important to seperate probability density from probability.

Figure 2.1: Probability density

In order to fulfill this probability interpretation, a physical admissible wavefunc-

tion should satisfy the following conditions:

These conditions

will be used to solve

T.I.S.E..

1. continuous everywhere in space. (i.e. finite p̂)

2. finite at any position.

3. single-valued for all ~r

4.
∫∞
−∞ |ψ(x)|2dx = 1 (1-D)

∫∞
−∞

∫∞
−∞

∫∞
−∞ |ψ(~r)|2dτ = 1 (3-D)

normalization condition.

5. lim
x→±∞

ψ(x) = 0
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Also, for two wavefunctions, ψi and ψj ,

if

∫
ψ∗i ψjdτ = 0⇒ orthogonal. (2.6)

if

∫
ψ∗i ψjdτ = δij ⇒ orthornormal. (2.7) ∫∞

−∞ ψ1ψ2 dx

≡ inner product,

more contents would

show up in Lecture 3.

δij =

0 for i 6= j

1 for i = j
, Kronecker delta. (2.8)
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