
Lecture 22

Hückel MO Theory

Study Goal of This Lecture

• Hückel model

• Hückel Hamiltonian

• Example, Hückel rule

22.1 Preface

So far we have demonstrated the Hartree-Fock LCAO-MO-SCF method and

computational chemistry through webMO program. You should be able to carry out

a computational experiment and get “numbers”/“molecular orbital” to interpret.

Yet very often we only need a qualitative description → Hückel theory.

22.2 Hückel Molecular Orbital Theory

The HF method is called an “ab-initio” or first principle method, because only el-

ementary physical contents are required to calculate physical properties of molecular

systems. There are, however, other sets of methods which simplified the calculations

by using experimentally determined parameters or by chopping them in the full HF

equation. These are semiempirical methods. One such method specifically designed

to treat π-conjugated systems is the so called Hückel molecular orbital theory.

The Hückel theory considers only π-electrons, which is justified by:
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1. π-MOs have higher energies.

2. Different symmetry of the σ and π orbitals.

3. Greater polarizability of the π-electrons.

By focusing on the π electrons, the Hückel theory can explain many chemical phe-

nomena qualitatively.

The basic assumption of the Hückel theory is

• independent electrons

• only π-orbitals are important

therefore, the Hamiltonian is

Ĥπ =

nπ∑
i=1

ĥi. (22.1)

We want to solve

ĥiψi = Eiψi, (22.2)

with

ψi =

nc∑
r=1

C(i)
r φr, (22.3)

nc is the number of carbon atoms in the π-systems, φr is pz orbital on the r-th carbon

and the ĥi is single electron Hamiltonian for all π-electrons. (It is the same for all

electrons.)

The coefficient C
(i)
r are determined “variationally”, thus, the energies are determined

by the secular equation:∣∣∣∣∣∣∣∣∣∣∣

H11 − ES11 H12 − ES12 · · · H1nπ−ES1nπ

H21 − ES21 H22 − ES22 · · · H2nπ−ES2nπ

...
...

Hnπ1 − ESnπ1 Hnπ2 − ESnπ2 · · · Hnπnπ−ESinπ

∣∣∣∣∣∣∣∣∣∣∣
. (22.4)

We further approximate:

1. Hrr = 〈φr|ĥi|φr〉 = α, the Coulomb integral term.

2. Hrs = 〈φr|ĥi|φs〉 = β < 0 if r & s are connected by a π-bond.

3. Hrs = 0 if not π-bonded.
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4. Srs = δrs (neglect the overlap)

Actually, this can be cast into a eigenvalue problems. 〈φi|φj〉 = 0, form orthornormal

basis. Therefore,

|ψi〉 =
∑
j

Cr |φr〉 =


C1

C2

...

Cnπ

 (22.5)

and

Ĥ =


h11 h12 · · · h1n

h21 h22
. . . · · ·

...
...

...
. . .

 =


α β 0 · · ·
β α β · · ·
...

...
...

. . .

 , (22.6)

α: diagonal, site energy,

β: nearest neighbor coupling.

To find eigenfunctions, we solve

(H − I · E)︸ ︷︷ ︸
determinant
|H − IE| = 0

⇒ seqular eq.

|ψi〉 = 0. (22.7)

The more simple rule will be:

1. All C-atoms in the conjugated system as the basis.

2. α− E in diagonal.

3. β if connected.

For example, the 1,3-butadiene:

Figure 22.1: 1,3-butadiene.
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then the seqular equation:

C1 C2 C3 C4∣∣∣∣∣∣∣∣∣∣∣

α− E β 0 0

β α− E β 0

0 β α− E β

0 0 β α− E

∣∣∣∣∣∣∣∣∣∣∣
= 0, (22.8)

use x = α−E
β , we have ∣∣∣∣∣∣∣∣∣∣∣

x 1 0 0

1 x 1 0

0 1 x 1

0 0 1 x

∣∣∣∣∣∣∣∣∣∣∣
= 0. (22.9)

Thus, we obtain

x4 − 3x2 + 1 = 0, x = ±0.618, ±1.618. (22.10)

Figure 22.2: MO of 1,3-butadiene.

Acutally, it looks like the wavefunction of particle in a box.

In general, the energy for polyene system solved via Hückel’s theory:

Linear: Ek = α+ 2β cos

(
kπ

n+ 1

)
(22.11)
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Cyclic: Ek = α+ 2β cos

(
2kπ

n

)
(22.12)

We can then fill in the electrons according to the Pauli exclusion principle and obtain

useful information of 1,3-butadiene. Such as:

• The total energy Etot = 2E1 + 2E2.

• The lowest transition energy ' HOMO → LUMO ⇒ 2× 0.618|β|.

With each E, the wavefunction can be determined. Note that the secular equation

is determined by the following equation:

Define

ĥ =


α β 0 0

β α β 0

0 β α β

0 0 β α

 , (22.13)

ĥ |ψ〉 = E |ψ〉 . (22.14)

It is a eigenvalue problem for ĥ. It can be seen that the Hückel Hamiltonian is deter-

mined by the “Hückel” rule. Extending this to treat rings allows us to understand

the 4n + 2 rule for aromatic systems ⇐ See Silbey. It can’t be emphasized enough

that the advantage of Hückel’s theory is that one can obtain qualitative proper-

ties of π-conjugated system via using the matrix diagonalization routine in many

mathematical program.

22.3 More Example of Using Huckel’s Theory

22.3.1 Allyl radical

Figure 22.3: Allyl radical
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The Hückel interaction Hamiltonian:

ĥ =


α β 0

β α β

0 β α

 , (22.15)

solving ĥψ = Eψ ⇒ (ĥ− EI)ψ = 0 secular equation:∣∣∣∣∣∣∣∣
α− E β 0

β α− E β

0 β α− E

∣∣∣∣∣∣∣∣ = 0, (22.16)

define x = α−E
β ⇒ ∣∣∣∣∣∣∣∣

x 1 0

1 x 1

0 1 x

∣∣∣∣∣∣∣∣ = 0 (22.17)

⇒
x3 − 2x = 0⇒ x = 0,±

√
2. (22.18)

Thus,

E = α+
√

2β, α, α−
√

2β. (22.19)

To find out eigenfunctions:
α β 0

β α β

0 β α



C1

C2

C3

 = E


C1

C2

C3

 (22.20)

⇒


αC1 + βC2

βC1 + αC2 + βC3

βC2 + αC3

 = E


C1

C2

C3

⇒

αC1 + βC2 = EC1

βC1 + αC2 + βC3 = EC2

βC2 + αC3 = EC3

(22.21)

then for E1 = (α+
√

2β)

⇒


���αC1 + βC2 = ���αC1 +

√
2βC1

βC1 + αC2 + βC3 = αC2 +
√

2βC2

βC2 +���αC3 = ���αC3 +
√

2βC3

⇒
C2 =

√
2C1

C3 =
1√
2
C2 = C1

(22.22)
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also, by normalizaiton condition,

C2
1 + C2

2 + C2
3 = 1 (22.23)

C1 =
1

2
, C2 = − 1√

2
, C3 =

1

2
. (22.24)

We can further solve the eigenfunction for E = α & E = α+
√

2β

E = α+
√

2β, ψ =


1
2

+ 1√
2

1
2

 ,

E = α, ψ =


1√
2

0

1√
2

 ,

E = α−
√

2β, ψ =


1
2

− 1√
2

1
2

 .

(22.25)

Figure 22.4: Allyl radical MO

Note how we obtain the coefficient and how the number of nodes is correlated

to the energy and MO.
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Another important class of conjugated systems includes monocyclic conjugated

polyenes such as C4H4, C5H5, C6H6. For example the benzene, the Hamiltonian is:

ĥ =



α β 0 0 0 β

β α β 0 0 0

0 β α β 0 0

0 0 β α β 0

0 0 0 β α β

β 0 0 0 β α


, (22.26)

and the seqular equation is: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α β 0 0 0 β

β α β 0 0 0

0 β α β 0 0

0 0 β α β 0

0 0 0 β α β

β 0 0 0 β α

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (22.27)

The solution is:

E =α+ 2β, α+ β, α+ β,

α− 2β, α− β, α− 2β.
(22.28)

Figure 22.5: Benzene energy levels.
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Note that the doubly degeneracy for the middle-level MOs is general for all

monocyclic conjugated systems. Thus, to have a stable filled-shell π-electron config-

uration, the number of electron must satisfy: Nπ = 4N + 2, n = 0, 1, 2, · · · . This is

the famous 4N + 2 rule. These systems are said to be aromatic. A good example is

the cyclopentadienyl system:

cyclopentadienyl radical: ·C5H5 Nπ = 5, not stable.

cyclopentadienyl anion: C5H
−
5 Nπ = 6, very stable.

22.4 Summary

The semiempirical treatment of Hückel concludes the MO description, which

consists of using LCAO of delocalized MOs to describe the behavior of a single

electron in a complex molecular system.
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