
Lecture 27

More on Vibrational

Spectroscopy

Study Goal of This Lecture

• Vibrational spectrum

– anharmonicity

– Morse oscillator

– vibrational term values

• vibration-rotation spectrum

27.1 Preface

So far we have discussed rotational and vibrational spectroscopy with focus on

their respective simple (approximated) model Hamiltonians (energy levels) and se-

lection rules. Here we emphasize that the respective rigid rotor/harmonic oscillator

model used are clearly “approximations” and require modifications to describe real

experiments. We have discussed such modifications for rotational spectroscopy in

centrifugal distortions. Now we will discuss about modifications for vibrational spec-

troscopy.
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27.2 Morse Oscillator

Consider the experimental vibrational absorption of HCl:

Figure 27.1: Vibrational spectrum of HCl.

We observed that

1. Overtone transitions do occur, with much lower amplitude.

2. E0→2 < E0→1, energy levels are not equally spaced.

These are the results of the “anharmonicity” of the potential energy surface.

A more realistic model for nuclear motions of diatomic molecules is the “Morse

potentail model”.
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Morse potential:

V (R) = De{1− e−a(R−Re)}2. (27.1)

Figure 27.2: Morse potential.

R is the internuclear distance. Notice that as R → ∞, V (R) → De and the

minimum ∂V (R)
∂r = 0 is located at R = Re. This potential describes dissociation and

anharmonic effect, also, this model can be solved exactly to yield the energy levels.

The energy levels of Morse oscillator is:

En = ~ω0(n+
1

2
)−

[~ω0(n+ 1
2)]2

4De
, n = 0, 1, 2, 3, · · · , nmax, (27.2)

where ω0 = a2De
µ . We find that quantum number n can’t reach infinity now. The Meaning of a: k =

2Dea
2, verified in Sil-

bey’s problem 13.24.

energy levels indicates that

Note that De >> ~ω0.
Z.P.E.⇒ n = 0⇒ E0 =

~ω0

2
− ~2ω2

0

16De
. (27.3)

The En = 0 line indicates the dissociation limit. Also, as n increase, the correction

increases, which is the anharmonic effects. In vibrational spectroscopy, the popular

choice of unit is also the wavenumbers, so we often define vibrational term values

(Morse Oscillator)

G̃(ν) =
Eν
hc

= ν̃e(ν +
1

2
)− ν̃exe(ν +

1

2
)2, (27.4)
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ν̃e =
~ω0

hc
=

a

2πc

√
2a

µ
, ν̃exe =

~a2

4πcµ
, xe =

ν̃e
4De

hc, (27.5)

ν̃e and xe are experimental measurables.

Therefore, the expression

De =
ν̃e

4xe
× hc (27.6)

provides a means to estimate De, which can not be directly measured. In the anhar-

monic cases, vibrational spectrum can show more than one lines

˜νabs = G̃(ν + 1)− G̃(ν) = ν̃e − 2ν̃exe(ν + 1). (27.7)

Figure 27.3: Morse spectrum.

The intensity depends on population on each vibrational levels, i.e.

Pν ' (1− exp(− ~ω0

kBT
))exp(

−ν~ω0

kBT
). (27.8)

In real experiments, the higher order term were recorded

G̃(ν) = ν̃e(ν +
1

2
)− ν̃exe(ν +

1

2
)2 + ν̃eye(ν +

1

2
)3. (27.9)

This shows us that Morse potential is still an approximation (but good one!) and in

real applications, ν̃e, xe and ye are recorded and tabulated.

27.3 Vibration-Rotation Spectrum

Now combine the rotational and vibrational terms: E,F,G, now you know

where the symbols come

from.
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Ẽ(ν, J) = G̃(ν)︸ ︷︷ ︸
vib.

+ F̃ν(J)︸ ︷︷ ︸
rot.

= ν̃e(ν +
1

2
)− ν̃exe(ν +

1

2
)2 + B̃νJ(J + 1).

(27.10)

It is necessary to put ν on B̃ν because the rotational constant depends clearly on

the vibrational level, generally, increasing of ν means bond-length also increase(i.e.〈
∆x2

〉
increases), that is, larger moment of inertia. The dependence can be described

by introducing a vibrational-rotational coupling constant

B̃ν = B̃e − α̃e(ν +
1

2
). (27.11)

This means that rotational constant. i.e. spacing between rotational peaks, decreases

when vibrational excitation level ν increases. (Physically, it is due to increasing of

I.)

Now we consider the selection rule, the rule of vibrational and rotational spectrum

is combined now, that is ∆J = ±1,∆ν = ±1.

Forbidden transition:

(ν, J)→ (ν, J ± 1) pure rotational

(ν, J)→ (ν + 1, J) Q band

Allowed transition:

(ν, J)→ (ν + 1, J + 1) R band

(ν, J)→ (ν + 1, J − 1) P band

Because often hν̃e >> kBT , we only have to consider the vibrational transition from

ν = 0→ ν = 1. The vibrational transition is now described by the following energy

diagram:

Note that the spacing:

|∆ν̃e(J)| = |ν̃R(J + 1)− ν̃R(J)|

= | 3B̃1 − B̃0︸ ︷︷ ︸
>0

+ (B̃1 − B̃0)︸ ︷︷ ︸
<0

(2J + 1)|, (27.12)

|∆ν̃p(J)| = |ν̃p(J + 1)− ν̃p(J)|

= | −(B̃1 + B̃0)︸ ︷︷ ︸
<0

+ (B̃1 − B̃0)︸ ︷︷ ︸
<0

(2J + 1)|. (27.13)
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Figure 27.4: Rotational and vibrational energy diagram.

Note that B̃1 < B̃0, therefore, B̃1 − B̃0 < 0 is negative. Therefore, the spacing

decreases with J increasing for R band and the spacing increases with J increasing

for P band.

The difference B̃1 − B̃0, α̃e, can be evaluated from the change of the spacing.

This tell us the vibration-rotation spectra can be used to probe molecular potentail

energy surface! When there comes to more than one vibrational mode, we still can

handle it via normal mode analysis, for details, see Silbey.
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