
Lecture 3

Operators and Observables

Study Goal of This Lecture

• Linear operators.

• Eigenvalues and eigenfunctions of Hermitian operators.

• Commutator.

So we will spend some

time to cover the basics

of linear algebra.

The mathematical structure of quantum mechanics is highly related to linear

algebra, especially topics concerning function space, linear operators and eigenvalue

problem. (Three key things in this lecture.) This is apperant given the form of the

T.I.S.E. :

Ĥψ = Eψ. (3.1)

Although the T.I.S.E. is a differential equation.

3.1 Function Space (Hibert Space)

3.1.1 Basis of functions

• Key point: How do we write down a “function” mathematically?

The wave function mathematically represents the state of a system and must be

”calculated”. Generally speaking, we write down a function in term of ”superposition

of other pre-defined functions”.

f(x) = sin(x), f(x) = sin(x) + cos(x). (3.2)
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f(x) =
∞∑
i=0

aix
i ← polynomail! (3.3)

f(x) =

∞∑
i=1

Aie
2πikix ← Fourier series. (3.4)

These predefined functions are called ”basis functions”. The same f(x) can be

written in different basis → ψ(x) vs. ψ̃(k).

3.1.2 Inner product

We define “inner product” of the functions as:∫ ∞
−∞

ψ∗(x)φ(x)dx. (3.5)

This is also called the “overlap” of two functions. If the two functions have zero

overlap: ∫ ∞
−∞

ψ∗1(x)ψ2(x)dx = 0, (3.6)

then we say ψ1(x) and ψ2(x) are “orthogonal” to each other.

For 3-D: ∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ ∞
−∞

dz ψ∗1(x, y, z)ψ2(x, y, z) (3.7)

≡
∫
ψ∗1(~r)ψ2(~r)dτ. (3.8)

3.2 Linear Operator

3.2.1 Linearity

Basics of linear algebra.Not just Hamiltonian are linear Hermitian operators, all quantum mechanical

“observables” are linear and Hermitian operators. The math of quantum mechanical

operators is linear algebra.

We say an operator is linear if it satisfies the following properties:

1. Â(f1 + f2) = Âf1 + Âf2 (3.9)

2. Â(cf) = cÂf, while c is a number (3.10)

for example, differential operator, d
dx , is linear:

d

dx
[f1(x) + f2(x)] =

d

dx
f1(x) +

d

dx
f2(x) = f ′1(x) + f ′2(x). (3.11)
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3.2.2 Hermitianity

An operator is Hermitian if it satisfies:∫
ψ∗(Âφ)dτ =

∫
φ(Âψ)∗dτ (3.12)

for any well-behaved functions φ and ψ. (Aψ)∗ is the complex conjugate of Aψ.

It is posulated that given the a wavefuntion ψ, the averaged value of an observ-

able, 〈a〉, corresponding with an operator Â is:

〈a〉 =

∫
ψ∗Âψdτ ⇐ expectation value. (3.13)

We will come back to this point later.

3.2.3 Other Properties

In linear algebra, quantum mechanical operators has the following important

properties: Very importants! exper-

imental observables are

real numbers!! e.g.

Ĥψ = Eψ, E must be

real.

Theorem 3.2.1. The eigenvalue of a Hermitian operator must be real.

Proof. Suppose φ is an eigenfunction of Â, then

Âφ = aφ, (Âφ)∗ = a∗φ∗. (3.14)

Next,we write ∫
φ∗Aφdτ =

∫
φ∗aφdτ = a

∫
φ∗φdτ, (3.15)

and ∫
φ(Âφ)∗dτ =

∫
φa∗φ∗dτ = a∗

∫
φ∗φdτ. (3.16)

By definition of Hermitian operator,
∫
φ∗(Âφ)dτ =

∫
φ(Âφ)∗dτ ,

∴ a = a∗, a is real.

Theorem 3.2.2. The eigenfunctions of a Hermitian operator corresponding to dif-

ferent eigenvalues are orthogonal:
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Proof. For two eigenfunctions with different eigenvalues, we have:

Âφ1 = a1φ1, Âφ2 = a2φ2 for a1 6= a2. (3.17)

Apply the hermitianity:
∫
φ∗1Âφ2dτ =

∫
φ2(Âφ1)

∗dτ , we have:

LHS:

∫
φ∗1Âφ2dτ =

∫
φ∗1a2φ2dτ = a2

∫
φ∗1φ2dτ, (3.18)

RHS:

∫
φ2(Âφ1)

∗dτ =

∫
φ2a1φ

∗
1dτ = a1

∫
φ∗1φ2dτ, (3.19)

then

Equ (3.18)− Equ (3.19) = 0⇒ (a2 − a1)
∫
φ∗1φ2dτ = 0. (3.20)

∵ a1 6= a2, a1 − a2 6= 0,

∴
∫
φ∗1φ2dτ = 0, φ1 and φ2 are orthogonal.

Therefore, eigenfunctions of a Hermitian operator are orthogonal to each other,we

can further require that they are normalized, therefore, eigenfunctions of an Hermi-

tian operator form an orthonormal set of functions:

Âψn = anψn, where

∫
ψ∗nψmdτ = δnm. (3.21)

3.2.4 Commutability

The multiplication of operators is associative. That is:

ÂB̂f = Â(B̂f), (3.22)

ÂB̂Ĉ = (ÂB̂)Ĉ = Â(B̂Ĉ), (3.23)

but they in general do not commute to each other. i.e. orders are important.

⇒ ÂB̂ 6= B̂Â.

For example, Â = x̂ = x· and B̂ = ∂
∂x , then:

ÂB̂f(x) = x · ∂
∂x
f(x) = x · f ′(x), (3.24)

B̂Âf(X) =
∂

∂x
[x · f(x)] = x · f ′(x) + ˙f(x). (3.25)
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The outcome of the above two equation are different → operator Â and B̂ do not

commute. We can define commutator of two operators:

[Â, B̂] = ÂB̂ − B̂Â. (3.26)

For example, Â = x̂, B̂ = ∂
∂x ,

[Â, B̂]f(x) = ÂB̂f(x)− B̂Âf(x), (3.27)

x · f ′(x)− x · f ′(x)− f(x) = −f(x), (3.28)

Note that commutator

itself is an operator and

must be valid for all

f(x).

∴ [Â, B̂] = −1 · [Multiply by -1].

Here is an important theorem:

Theorem 3.2.3. If and only if [Â, B̂] commute, then they can share the same set

of eigenfunctions.

Proof. consider Âψ = aψ, because Â and B̂ commute, we have ÂB̂ = B̂Â. then

B̂Âψ = B̂aψ = aB̂ψ ⇒ ÂB̂ψ = aB̂ψ. (3.29)

∴ B̂ψ is also an eigenfunction of Â. Because each independent eigenfunction of Â

has an unique eigenvalue(consider non-degenerate case).

Therefore, B̂ψ must be proportional to ψ. ⇒ B̂ψ = bψ → ψ is also an eigen-

function of B̂!!

Later we will come back to this point and show that the theorem is deeply

connected to the Heisenberg uncertainty principle. Final piece in this lecture we

give a postulate that given a wave function and an observable(operator Â), then

experimentally measured ”averaged value” of Â is:

Expectation value: after

averaging.
〈a〉 =

∫
ψ∗(x)Âψ(x)dx =

∫
|ψ(x)|2A(x)dx. (3.30)

This is an ”expectation value” for Â.
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