
Lecture 7

Quantum Harmonic Oscillator

Study Goal of This Lecture

• Harmonic oscillator model

• Hamiltonian and its properties

• Operator method

7.1 Review of Harmonic Oscillator Model

We will continue our discussions on solving T.I.S.E. for simple quantum systems.

The next is the quantum harmonic oscillator model. Physics of harmonic oscillator

is taught even in high schools. There, the system is defined as a particle under the

influence of a “linear” restoring force:

F = −k(x− x0), (7.1)

where k and x is force constant and equilibrium position respectively. Note potential

is

V (x) = −
∫
Fdx+ C =

1

2
kx2, (7.2)

where C is the absolute potential but it is not important so we let it equals to zero.

We are not going to discuss about classical harmonic oscillator in class because you

should have been quite familiar with the classical problem, for a short review, see

Silbey p.99. Instead, we will use the spare time that we have by avoiding going over

the classical problem to discuss:
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Why we want to study harmonic oscillator?

7.1.1 Why Harmonic Oscillator?

Why harmonic oscillator, before we jump into the calculation and derivation, we

should ask ourself this question first. We mention two points here. (You should ask

yourself and figure out too!)

First Point: A particle’s motions around a stable point in arbitrary potential be-

have like a harmonic oscillator. (use 1-D H.O. for example)

Figure 7.1: Arbitrary potential.

around these potential minima, F = 0, so

d

dx
V (x)

∣∣∣
x=x0

= 0. (7.3)

For motions around x0, we perform Taylor’s expansion around x0

V (x− x0) = V (x0) +
d

dx
V (x)

∣∣∣
x=x0

· (x− x0)

+
1

2

d2

dx2
V (x)

∣∣∣
x=x0

(x− x0)2

+O((x− x0)3).

(7.4)

Since we expand V (x) around the stable point, the first derivative is zero, that is

V (x− x0) ' V (x0) +
1

2

d2

dx2
V (x)

∣∣∣
x=x0

(x− x0)2. (7.5)
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The potential is equivalent to a harmonic form. The V (x0) term is a constant,

absolute potential is irrelevant, we can chop it. Also, if we set x = x−x0, this is the

same to

V (x) =
1

2
kx2, with k =

d2

dx2
V (x)

∣∣∣
x=x0

. (7.6)

Second Point: Diatomic molecules connected by a spring exhibit harmonic motion.

Figure 7.2: Diatomic molecule

The force:

F = −k(x2 − x1 − l0) ≡ −k ·∆x, (7.7)

m1,m2 subjected to opposing force with the same amplitude.

f2 = m2a2 =

m2 · d
2x2
dt2

= −k(x2 − x1 − l0),

m1 · d
2x1
dt2

= k(x2 − x1 − l0).
(7.8)

Substract one of the above two equations by the others.

d2(x2 − x1)
dt2

= − k

m2
(x2 − x1 − l0)−

k

m1
(x2 − x1 − l0), (7.9)

∴
d2(x2 − x1 − l0)

dt2
= −k(

1

m2
+

1

m1
) · (x2 − x1 − l0). (7.10)

Define reduced mass µ = m1m2
m1+m2

and x = x2 − x1 − l0. x here is the deviation to

the equilibrium position.
d2x

dt2
− k · 1

µ
· x, (7.11)

µa = F = −kx. (7.12)
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This is harmonic form!

Note that the change of variable reduces the two-body problem to two one body

problems.

• relative motion: vibration

• center of mass motion: translation

In fact, for a polyatomic, non-linear molecule with N atoms, there will be 3 transla- For a molecule with N

atom, there is 3N de-

gree of freedom.

tional, 3 rotational and 3N − 6 vibrations degree of freedom.

7.2 Quantum harmonic oscillator

7.2.1 Hamiltonian of quantum harmonic oscillator

Given the classical Hamiltonian(total energy) of a particle in a harmonic poten-

tail:

Ĥ =
p̂2

2m
+ V̂ (x). (7.13)

Note that

V̂ (x) =
1

2
kx2 =

1

2
µω2x2 = 2π2ν2µx2, (7.14)

ω =

√
k

µ
: angular frequency,

ν =
ω

2π
: frequency.

We will use the more convenient “ω” version, so

Ĥ =
p̂2

2m
+

1

2
µω2x̂2. (7.15)

According to the quantum-classical correspondance principle,

x→ x·, p→ −i~ d
dx
,

Ĥ = − ~2

2m

d2

dx2
+

1

2
µω2x2. (7.16)

The T.I.S.E. Ĥψ(x) = Eψ(x):[
− ~2

2m

d2

dx2
+

1

2
µω2x2

]
ψ(x) = Eψ(x). (7.17)
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This is a second-order differential equation and it can be solved by using the power-

series method. The process is detailed in Levine Sec.4.2 . In Silbey’s textbook, the

solution are given. It will be an interesting practice to solve the differential equation

once in your lifetime, but we will not go that here.

We will, instead, solve this using “physics” in section 3 of this lecture. We will

show that by inspecting the properties of the Hamiltonina operator, the eigenvalue

problem can be solved. (logic is new, so be patient.) Below, we firstly show the

solution of this T.I.S.E. directly and focus on its properties.

7.2.2 Solution of Quantum Harmonic Oscillator

With the boundary condition ψ(x) = 0 when x → ±∞, it turns out that the

harmonic oscillator has energy levels given by

En = (n+
1

2
)hν = (n+

1

2
)~ω with n = 0, 1, 2, · · · , (7.18)

where n is the vibrational quantum number and ω =
√

k
ν . Note that the energy level

are equally spaced and the zero-point energy E0 = 1
2~ω.

Figure 7.3: Wavefunctions of a quantum harmonic oscillator. Figure’s author: Al-

lenMcC.
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The eigenfunctions are:

ψn(x) = NnHn(α
1
2x)e−α

x2

2 , (7.19)

where

α =

√
hµ

~2
=
µω

~
,

and the normalization constant

Nn =
1

(2n · n!)
1
2

· (α
π

)
1
4 . (7.20)

Hn are the Hermite polynomials:

Hn(x) = (−1)−nex
2 dn

dxn
(e−x

2
), n ≥ 0. (7.21)

The first few terms are:

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12x.

The ground state is a ”Gaussian” function

ψ0(x) = (
α

π
)
1
4 e−

−αx2
2 , (7.22)

and the first excited state:

ψ1(x) = (
4α3

π
)
1
4xe

−αx2
2 . (7.23)

Note that similar to the particle in a finite depth well, these wavefunction also

extended to the classical forbidden region. For example, the ground state:

E0 =
1

2
~ω ≥ 1

2
µω2x2, (7.24)

∴ −

√
~
µω
≥ x ≥

√
~
µω

.

The probability of finding the particle at the groundstate within this classical limits

is

P =

∫ √
1
α

−
√

1
α

(
α

~
)
1
4 e−

αx2

2 (
α

~
)
1
4 e−

αx2

2 dx = (
α

~
)
1
2

∫ √
1
α

−
√

1
α

e−αx
2
dx. (7.25)
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Using numerical integration we find P ' 0.84 which means that a significant fraction

of the particle probability density is outside the classical region ⇒ tunneling!!

Also note that the eigenfunctions have well defined ”parity”: we define for function

f(x) = f(−x)⇐ even functions,

f(x) = −f(−x)⇐ odd functions.
(7.26)

Note that cos(x) and e−x
2

are even and sin(x) and x are odd. If f(x) is even and

g(x) is odd, then

f(x) · f(x) : even,

g(x) · g(x) : even,

f(x) · g(x) : odd,

f ′(x) : odd,

g′(x) : even.

(7.27)

This is useful for integration because by symmetry, the integration of the odd func-

tion is zero.

Now we go back to the eigenfunction of quantum harmonic oscillator:

ψn(x) is even for n = 0, 2, 4, 6, · · · ,

ψn(x) is odd for n = 1, 3, 5, 7, · · · .
(7.28)

This is useful when evaluating integrals.(Which will be discussed in the next lecture.)

7.2.3 Properties of Hermite polynomials

Let’s go back to discuss more about Hermite polynomials. The Hermite polyno-

mials have some useful relations:

1. Orthonormality relation:

1

(2nn!)
1
2

(
1

π
)
1
4

1

(2n′n′!)
1
2

(
1

π
)
1
4

∫ ∞
∞

e−
x2

2 Hne
−x

2

2 Hn′dx = δn,n′ . (7.29)

2. Recurrence relation:

xHn = nHn−1 +
1

2
Hn+1, Hn = 0 for n < 0. (7.30)
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3. Differential relation:
dHn

dx
= 2nHn−1,

dH0

dx
= 0. (7.31)

Note that these three rules are all we need for the evaluation of expectation value.

The orthonormality relation can be used to easily proof that eigenfunctions of har-

monic oscillator are orthonormal to each other.

Proof.

ψn(x) =
1

(2nn!)
1
2

(
α

π
)
1
4Hn(α

1
2x)e

−αx2
2 .

the inner product of arbitrary two wavefunctions:∫ ∞
−∞

ψ∗n(x)ψm(x)dx,

define y = α
1
2x, dy = α

1
2dx and then plug in the integral, yield the same equation

as Equ(7.29) ⇒ orthonormal!

The recurrence relation can be used to evaluate anything related to x.

e.g. 〈x2〉 of ground state:

〈x2〉 = (
α

π
)
1
2

∫ ∞
−∞

H0(α
1
2x)e

−αx2
2 x2H0(α

1
2x)e

−αx2
2 dx. (7.32)

Let y = α
1
2x, dy = α

1
2dx, we rewrite the above formula as:

〈x2〉 = (
α

π
)
1
2 (

1

α
1
2

)

∫ ∞
−∞

e−y
2
H0(y)

y2

α
H0(y)dy

=
1

α
(
1

π
)
1
2

∫ ∞
−∞

e−y
2
H0(y)[y2H0(y)]dy

=
1

α
(
1

π
)
1
2

∫ ∞
−∞

e−y
2
H0(y)[

1

2
H0(y) +

1

4
H2(y)]dy

=
1

2

1

α
(
1

π
)
1
2

∫ ∞
−∞

e−y
2
H0(y)H0(y)dy

=
1

2

1

α
=

~
2µω

.

(7.33)

Generally, we obtain:

〈x2〉n =
1

α
(n+

1

2
). (7.34)

Similarily, one can use differential relation to evaluate

〈p2〉 =
~2α

2
=

~2

2

µω

~
=

~µω
2
. (7.35)
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By symmetry, 〈x〉 = 0, 〈p〉 = 0,

∴ ∆x =

√
~

2µω
, ∆p =

√
~µω

2
, ∆x∆p =

~
2
.

We found that the ground state of harmonic oscillator has minimal uncertainty

allowed by Heisenberg uncertainty principle!!

7.3 Operator Approach for Solving Quantum Harmonic

Oscillator

7.3.1 Operator Adjoints

Before we start, we review the mathematics of operator adjoint:

Given an operator Â, we define the Hermitian adjoint, denotes as Â†, as the op-

erator satisfy the following equation:∫ ∞
−∞

(Â†φ(x))∗ψ(x)dx =

∫ ∞
−∞

φ(x)∗Âψ(x)dx (7.36)

Actually, we have seen this before, Hermitian operator are operator that are their

own adjoints: If Â† = Â, the Â is Hermitian. Quantum observables are Hermitian

operators ⇒ eigenvalues are real.

⇒ x̂† = x̂, p̂† = p̂, Ĥ† = Ĥ

For non-Hermitian operators, Â† 6= Â. There are a few useful properties of operator

ajoints:

1. (A+B)† = A† +B†

2. (λA)† = λ∗A†, where λ is a complex number

Proof.

∵ λ

∫
(Â†φ)∗ψdx = λ

∫
φ∗Âψdx⇒

∫
(λ∗Â†φ)∗ψdx =

∫
φ∗λÂψdx (7.37)

3. (Â†)† = Â
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4. (ÂB̂)† = B̂†Â†

5. [
∫
φ∗Âψdx]∗ =

∫
ψ∗Â†φdx

Now we are ready to solve the quantum harmonic oscillator model. The following

is the operator method in Quantum Mechanics, Cohen-Tanoudji, Chapter 5. Let’s

consider the quantum harmonic oscillator:

Ĥ =
p̂2

2m
+

1

2
mω2x̂2. (7.38)

The Hamiltonian has a quadratic form, and the expecatation value of p̂2 and x̂2 must

be greater than zero. We notice that the total energy must be positive or zero:

Ĥψ = Eψ, E ≥ 0. (7.39)

Let’s rewrite the Hamiltonian for convenience:

Ĥ = ~ω[
p̂2

2m~ω
+
mω

2~
x̂2 ]

=
1

2
~ω[P̂ 2 + X̂2],

where X̂ =

√
mω

~
· x̂ and P̂ =

√
1

m~ω
· p̂.

(7.40)

Now in algebra one clearly will try to rewrite a2+b2 = (a−ib)(a+ib). For operators,

this is not quite the same, but we will do similar thing. So, let’s define: X̂ and P̂ are unitless

position and momentum

operators respectively.â =
1√
2

(X̂ + iP̂ ) =
1√
2

(

√
mω

~
x̂+ i

√
1

m~ω
p̂), (7.41)

so

â† =
1√
2

(X̂ − iP̂ ) =
1√
2

(

√
mω

~
x̂− i

√
1

m~ω
p̂). (7.42)

Since x̂† = x̂ and p̂† = p̂, â and â† are adjoints. So

â†â =
1

2
(X̂ − iP̂ )(X̂ + iP̂ )

=
1

2
(X̂2 + P̂ 2 − iP̂ X̂ + iX̂P̂ )

=
1

2
(X̂2 + P̂ 2) +

i

2
[X̂, P̂ ].

(7.43)
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What is [x̂, p̂]? We can calculate this from the canonical commutator relation in

quantum mechanics.

[x̂, p̂] = i~ ⇒ [X̂, P̂ ] = i,

â†â =
1

2
(X̂2 + P̂ 2)− 1

2
,

∴ Ĥ = ~ω(â†â+
1

2
).

The Hamiltonian can be conveniently rewritten by using â†â. We define

N̂ = â†â, (7.44)

N̂ is the “number operator”, for reasons that will be clear soon. We notice a few

important properties of N̂ :

1. N is Hermitian, N̂ † = (â†â)† = â†â = N̂ .

2. [Ĥ, N̂ ] = 0, so Ĥ and N̂ share the same eigenfunctions. We then convert

solving T.I.S.E. into solving eigenvalues and eigenfunctions of N̂ . We want to

solve

N̂ψn = nψn with

∫
ψ∗nψmdx = δnm (7.45)

and n is real!!

3. Eigenvalues of N̂ is zero or positive, i.e. n ≥ 0. This is because N̂ = â†â, given

any eigenfunction ψn, we obtain∫
ψ∗nN̂ψndτ =

∫
ψ∗nnψndτ = n ·

∫
ψ∗nψndτ = n (7.46)

However, ∫
ψ∗nN̂ψndτ =

∫
ψ∗nâ

†âψndτ

=

∫
(âψn)∗(âψn)dτ

=

∫
|âψn|2dτ ≥ 0

(7.47)

∴ n ≥ 0. n can’t be negative.

4. If n = 0 (i.e. eigenvalue = 0), then âψn=0 = 0 This follow directly from point

3 ∫
|âψn|2dτ = 0 if and only if âψn=0. (7.48)
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5. If n > 0, and N̂ψn = nψn. Then aψn is an eigenfunction of N̂ with eigenvalue

n− 1. To prove this we will need a few more commutator relations:

Given [X̂, P̂ ] = i.

i. [â, â†] = ââ† − â†â = −i[X̂, P̂ ] = 1 (7.49)

ii. [â, â†] = 1⇒ ââ† − â†â = 1, ââ† = â†â+ 1 (7.50)

iii. [N̂ , â] = [â†â, â] = â†ââ− ââ†â

= â†ââ− (â†â+ 1)â

= â†ââ− â†ââ− â = −â

(7.51)

iv. [N̂ , â†] = [â†â] = â†ââ† − â†â†â

= â†(â†â+ 1)− â†â†â

= â†

(7.52)

To show that âψn is an eigenfunction of N̂ , we operate N̂ onto âψn.

N̂ âψn = â†ââψn = (ââ† − 1)âψn

= ââ†âψn − âψn

= (n− 1)âψn.

(7.53)

So âψn is an eigenfunction of N̂ with the eigenvalue (n − 1) ⇒ N̂ψn−1 =

(n− 1) · ψn−1 That is, âψn = c · ψn−1. We can calculate c using normalization

condition. If ψn is normalized, then∫
ψ∗nâ

†âψndτ =

∫
|âψn|2dτ = |c|2

∫
|ψn|2dτ = |c|2, (7.54)

also ∫
ψ∗nâ

†âψndτ = n ·
∫
ψ∗nψndτ = n, (7.55)

therefore |c|2 = n, and we choose the positive solution c =
√
n.

To now, we already obtain:

âψn =
√
nψn−1. (7.56)

Simlarly, one can show that

â†ψn =
√
n+ 1ψn+1. (7.57)
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Check:

â†âψn = â(
√
ψn−1) =

√
nâ†ψn−1 = nψn, (7.58)

we get a consistent result! So, eigenstate of N̂ are quantized/discrete, and

â†(or â) can raise(lower) the eigenstates. They are “ladder operators”.

â : lowering/annihilation operator,

â† : raising/creation operator.

6. n are zero or positive integers. At this point we have not determine the values

of n. We just know â and â† can allow us to create a different eigenstate from

a “known” eigenstate. How do we determine the quantization condition for n?

It’s logical that we need a closure condition. If n is not an integer, then for

âψn =
√
nψn−1, (7.59)

let’s say n is between two consecutive integers

j < n < j + 1,

then (â)j+1ψn =
√
n
√
n− 1 · · ·

√
n− jψn−j−1. But n − j − 1 < 0, we will

obtain negative eigenvalue for N̂ , this must be avoided!

If n is a positive integer

(â)nψn =
√
n
√
n− 1

√
n− 2 · · ·

√
1ψ0, (7.60)

then âψ0 = 0, ψ0 = 0, it can’t get lower! So the eigenvalues of N̂ is determined:

N̂ψn = nψn, n = 0, 1, 2, 3, · · · ,∞. (7.61)

Then Ĥ = ~ω(N̂ + 1
2),

Ĥψn = Enψn, En = (n+
1

2
)~ω, n = 0, 1, 2, · · · ,∞. (7.62)

7. How about eigenfunctions ? start from âψ0 = 0. Since,

â =
1√
2

(X̂ + iP̂ ) =
1√
2

[

√
mω

~
x̂+ i ·

√
1

m~ω
p̂ ]

=
1√
2

(

√
mω

~
x ·+

√
~
mω

d

dx
·),

(7.63)
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and

âψ0(x) = 0, (7.64)

⇒ (
mω

~
x+

d

dx
)ψ0(x) = 0. (7.65)

This first order differential equation can be solve to find ψ0(x), the ground

state wavefunction!

Let’s see
d

dx
ψ0(x) = −mω

~
xψ0(x). (7.66)

Take the derivative of ψ0(x) yields x · ψ0(x). What is ψ0(x)? A Gaussian

function!

ψ0(x) = C0 · e−
αx2

2

= C0 · e−
1
2
mω
~ x2 .

(7.67)

How to determine C0? By normalization condition again:∫ ∞
−∞
|ψ0(x)|2dx = 1 ⇒ C0 = (

mω

π~
)
1
4 . (7.68)

Here we come the ground state wavefunction of quantum harmonic oscillator

and it is indeed a Gaussian function!

ψ0(x) = (
mω

π~
)
1
4 e

mω
2~ x

2
. (7.69)

8. How to determine the excited state? → by ladder operators

â†ψ0(x) =
√

1ψ1(x),

â†ψ1(x) =
√

2ψ2(x),

· · ·

(7.70)

For instance

â† =
1√
2

(

√
mω

~
x−

√
~
mω

d

dx
),

then to obtain first excited state wavefunction

ψ1(x) =
1√
2

(

√
mω

~
x−

√
~
mω

d

dx
)(
mω

π~
)
1
4 e

mω
2~ x

2

=
1√
2

(
mω

π~
)
1
4 (

√
mω

~
x+

√
mω

~
x)e

mω
2~ x

2

= (
mω

π~
)
1
4 (
mω

~
)
1
2

√
2xe

mω
2~ x

2
.

(7.71)

14



All eigenfunctions can be found in this way. Actually, we do not need to know

these functions. All expectation values can be calculated from the algebra of

â and â†!

9. Since the ground state is non-degenerate and the creation operator â† is single

valued. All eigenstate of the 1-D quatnum harmonic oscillator model is non-

degenerate.

10. The wavefunctions and the corresponding probability density are ploted below.

We can easily find that the energy is equal spaced and the zero point energy

of quantum harmonic oscillator is 1
2~ω.

Figure 7.4: Wavefunctions of a quantum harmonic oscillator. Figure’s author: Al-

lenMcC.
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Figure 7.5: Probability density of quantum harmonic oscillator.
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