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I. INTRODUCTION

Dissipative dynamics of a quantum system embedded in a complex environment has been

of great interest in recent years. Because of its important role in physics and chemistry,

numerous works have been devoted to theoretical models for open quantum systems[1, 2].

However, in contrast to classical dissipative processes, that can be satisfactorily described by

classical Langevin or Fokker-Planck equations [3], a general theory for quantum dissipation

is still considered an unsolved issue.

Despite the difficulty of formulating a general theory, adequate results can be obtained in

many limiting cases. As a general theoretical framework, the celebrated reduced dynamics

description derived from projection operator or cumulant expansion techniques has gener-

ated promising results over the past few decades. By partitioning the total system into a

“system” part and a “bath” part, one can reformulate the exact quantum Liouville equation

and perform a mathematically rigorous expansion in the weak-coupling limit. As a result,

time-convolution or time-convolutionless quantum master equations describing the dynamics

of the reduced system can be derived by following either a chronological ordering prescrip-

tion (COP) or partial ordering prescription (POP), respectively [4–6]. These equations are

usually non-Markovian and difficult to treat analytically. Therefore, a separation of time

scales is usually postulated and the memory effects in the dynamics are then neglected for

times greater than the bath relaxation time τb. This approximation allows us to derive the

popular Markovian master equations (Redfield equations [7]) for the reduced dynamics of

the quantum system.

It is instructive to formally derive the Markovian quantum master equation and see how

the irreversible dynamics of the reduced system emerges from the reversible dynamics gener-

ated by the Hamiltonian of a macroscopic total system. Here, we provide such a derivation

and explicitly show the approximations involved in deriving the Markovian quantum master
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equation.

II. DERIVATION OF A GENERALIZED QUANTUM MASTER EQUATION

We start from the quantum Liouville equation (~ = 1) that describes the density matrix

ρ(t) of a total system with Hamiltonian H

ρ̇(t) = −i[H, ρ(t)]

= −iLρ(t), (1)

where we have defined the Liouville superoperator as the commutator of the Hamiltonian

with an arbitrary operator O, LO = [H,O]. In the Laplace space (t → s), the Liouville

equation is

sρ̃(s) = ρ(0)− iLρ̃(s), (2)

where ρ̃(s) is the Laplace transform of ρ(t), and ρ(0) is the initial condition of the total

system. Equation (2) provides the formal solution of the Liouville equation in the Laplace

space, ρ̃(s) = 1
s+iLρ(0). Note that 1

s+iL is a superoperator and should be interpreted as the

inverse of (s+ iL).

In most physical applications, we are only interested in properties that are determined by

states in a subspace of the total Hilbert space. Using a projection operator P , we divide the

density matrix of the total system into a relevant part ρ1(t) = Pρ(t), and an irrelevant part

ρ2(t) = (1−P)ρ(t) ≡ Qρ(t), so that ρ(t) = ρ1(t)+ρ2(t). Note that by definition, projectors

P and Q must satisfy PP . . .P = P , QQ . . .Q = Q, and PQ = QP = 0. Applying P and

Q to both sides of Eq. (2), we obtain two coupled linear equations:

sρ̃1(s)− ρ1(0) = −iPL[ρ̃1(s) + ρ̃2(s)],

sρ̃2(s)− ρ2(0) = −iQL[ρ̃1(s) + ρ̃2(s)].

These equations can be solved to obtain the formal solution for the relevant part of the

density matrix in the Laplace space,
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sρ̃s(s)− ρs(0) = −iPLρ̃s(s)− iPL 1

s+ iQL
ρb(0)−PL 1

s+ iQL
QLρ̃s(s)]. (3)

The inverse Laplace transform of Eq. (3) yields the following differential-integral equation

that describes the time evolution of ρ1(t):

ρ̇1(t) = −iPLe−iQLtρ2(0)− iPLρ1(t)−
∫ t

0

dτK(τ)ρ1(t− τ), (4)

where we have defined the memory kernel

K(τ) = PLe−iQLτQL. (5)

The first term in the right hand side of Eq. (4) explicitly depends on the initial condition

of the irrelevant part of the total system ρ2(0). However, by choosing an initial condition so

that Pρ(0) = ρ(0), we can make ρ2(0) = 0, and the ρ2(0) term will vanish identically. For

example, the projection operator defined in Eq. (??) and the product state initial condition

defined in Eq. (10) satisfy the this condition. Hence, by selecting a proper combination of

projector and initial conditions, Eq. (4) can be simplified to

ρ̇1(t) = −iPLρ1(t)−
∫ t

0

dτK(τ)ρ1(t− τ). (6)

Equation (6) has a non-Markovian memory kernel, and is in the form of a generalized Fokker-

Planck equation. The first term in Eq. (6) represents the unitary evolution governed by the

Hamiltonian of the system, and the second term represents the dissipative dynamics of the

relevant part of the total system. Note that total system still undergoes unitary evolution

[Eq. (1)], it is the reduced system degrees of freedom (after tracing out the environment

degrees of freedom) that have to be described by a non-unitary evolution. Clearly, the non-

unitary evolution is a result of the separation of the total system into the system part and

the bath part.

To derive the dynamics for a reduced system, we separate the total Hamiltonian H into

the system part HS, the bath part HB, and the system-bath interaction part λHSB. We

also require that HS and HB operate in two different Hilbert spaces, so that their com-

mutator vanishes, [HS, HB] = 0. The corresponding Liouville operator can be decomposed

accordingly:
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L = LS + LB + λLSB. (7)

In addition, we also define the projection operators P and Q = 1−P using

Pρ = ρeqb TrBρ. (8)

where

ρeqb =
exp(−βHB)

TrB{exp(−βHB)}
, (9)

and TrB means “trace over the bath degrees of freedom”. The choice of projection operator

corresponds to a factorized initial condition for the total system,

ρ(0) = σ(0)⊗ ρeqb , (10)

where σ(0) is an arbitrary state for the system. The reduced density matrix for the system

is then defined as

σ(t) = TrBρ(t).

Note that the projector in Eq. (8) not only defines the relevant part of the total system

by tracing out the irrelevant part, it also provides a definition for the temperature of the

system. Eq. (8) is a convenient choice of projector, but this form is not required. Other

projection operators can be chosen [8, 9].

With the definition in Eq. (8), the projector P and the Liouville operators satisfy the

equalities LBP = PLB = 0, PLSQ = QLSP = 0, and PLSBP = 0. The last equality is

true if the thermal average of HSB over the equilibrium bath states is zero, ⟨HSB⟩eq = 0

(where ⟨...⟩eq denotes TrB{...ρeqb }). Note that for any Hamiltonian with ⟨HSB⟩eq ̸= 0, we can

always absorb the average into HS and obtain a new interaction term with vanishing average,

H ′
SB = HSB − ⟨HSB⟩eq, therefore, the condition to establish the equality PLSBP = 0 can

always be achieved. For simplicity, we assume ⟨HSB⟩eq = 0 hereafter. Plugging Eq. (7)

into Eq. (6) and applying the equalities, we obtain the equation of motion for the reduced

system after tracing out the irrelevant bath degrees of freedom:
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σ̇(t) = TrBρ̇1(t)

= −iLsσ(t)− λ2

∫ t

0

dτTrB
{
LSBe

−iQLτQLSBρ
eq
b

}
σ(t− τ).

(11)

Equation (11) describes the dynamics of the reduced system under the initial condition

ρ(0) = σ(0)⊗ρeqb , and is often called the “generalized master equation” [3] or the “generalized

quantum Fokker-Planck equation.” Note that Eq. (6) is still exact, provided that the proper

projectors and equilibrium bath initial conditions are used. In fact, up to this point we did

nothing but reformulating the Liouville equation. Equation (11) is of little use because

solving the propagator e−iQLτ in the memory kernel is as difficult as solving the original

Liouville equation, but this equation is a convenient starting point for the derivations of

many useful quantum master equations.

To derive a useful quantum master equation, we need to apply two approximations. The

first one is to replace the full propagator e−iQLτ in the memory kernel with the zeroth order

propagator e−iQ(LS+LB)τ , which effectively neglects terms beyond second order in λ in K(τ).

This approximation is similar to the Born approximation usually used in the scattering the-

ory. The second one is to replace σ(t− τ) in the integral with eiHSτσ(t)e−iHSτ , which makes

the integral time-convolutionless and is effectively the partial ordering prescription (POP)

used in the generalized cumulant expansion methods [5, 6]. If the second approximation is

not made, then the integral retains the time-convolution ρ(t− τ) term, which is sometimes

called the chronological ordering prescription (COP) [4, 6]. Note that the two approxima-

tions both assume weak system-bath interactions, i.e. λ ≪ 1. In the λ ≪ 1 limit, both

approximations are valid and we obtain from Eq. (11)

σ̇(t) = −i[HS, σ(t)]− λ2

∫ t

0

dτTrB {[HSB, [HSB(−τ), σ(t)⊗ ρeqb ]]} . (12)

To explicitly evaluate the trace over the bath degrees of freedoms, we consider a generic

product form for HSB:

HSB =
∑
n,α

Sn ⊗Bα,

where Sn are an system operators, and Bα are bath operators, so that [Sn, Bα] = 0. Substi-

tution of HSB in Eq. (12) yields

σ̇(t) = −i[HS , σ(t)]
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−1

2
λ2

∫ t

0
dτ

∑
n,n′,α,α′

{
[⟨Bα′(−τ)Bα⟩eq + ⟨BαBα′(−τ)⟩eq] [Sn, [e

−iHSτSn′eiHSτ , σ(t)]]

− [⟨Bα′(−τ)Bα⟩eq − ⟨BαBα′(−τ)⟩eq] [Sn, [e
−iHSτSn′eiHSτ , σ(t)]+]

}
. (13)

where [...]+ denotes the anticommutator.

Finally, we define bath correlation functions

Cα′α(τ) = ⟨Bα′(τ)Bα⟩eq = Γα′α
r (τ) + iΓα′α

i (τ), (14)

where Γα′α
r (τ)and Γα′α

i (τ) are real functions representing the real part and the imaginary

part of the correlation functions, respectively. Using the definitions in Eq. (14) and the

symmetry properties of quantum correlation functions,

⟨BαBα′(τ)⟩eq = ⟨Bα′(τ)Bα⟩∗eq = Γα′α
r (τ)− iΓα′α

i (τ),

we obtain

σ̇(t) = −i[HS, σ(t)]− λ2

∫ t

0

dτ
∑

n,n′,α,α′

{
Γα′α
r (−τ)[Sn, [e

−iHSτSn′eiHSτ , σ(t)]]

−iΓα′α
i (−τ)[Sn, [e

−iHSτSn′eiHSτ , σ(t)]+]
}
, (15)

which is a non-Markovian quantum master equation. This is an equation for σ(t) along, and

the influence of the bath on the system is formulated through the bath correlation functions.

The bath correlation functions, which are equilibrium properties of the bath, determine the

non-equilibrium dynamics of the system. Note that no fast bath relaxation time has been

assumed yet; the only assumptions made in deriving Eq. (16) are the equilibrium bath at

the initial time and the weak system-bath interaction.

III. MARKOVIAN QUANTUM MASTER EQUATION AND SPECTRAL

DENSITY

Next, we fit the quantum master equation into a physical content. Consider a system S

governed by the system Hamiltonian HS and coupled to a bath B of harmonic oscillators

through an interaction linear in the oscillator coordinates [3, 10]:
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H = HS +HB + λHSB

= HS +
∑

α ωαa
†
αaα + λS ·

∑
α gα(a

†
α + aα),

where a†α and aα are the creation and annihilation operators of the α-th bath mode, ωα is

the mode frequency, S is an operator referring to the system degrees of freedom only, and

gα is the coupling constant. The differential-integral equation governing the time-evolution

of the reduced density matrix for the system reads

σ̇(t) = −i[HS, σ(t)] + iλ2

∫ t

0

Γi(τ) · [S, [S0(−τ), σ(t)]+]dτ

−λ2

∫ t

0

Γr(τ) · [S, [S0(−τ), σ(t)]]dτ,

(16)

where [...]+ denotes the anticommutator, S0(τ) = eiHSτSe−iHSτ , and memory kernels Γr(τ)

and Γi(τ) are the real part and imaginary part of the bath correlation function, respectively

(see details in Appendix II). In this linear coupling model, these memory kernels can be

explicitly written as

Γr(τ) =
∑

α g
2
α cos(ωατ) · coth(βωα/2),

Γi(τ) =
∑

α g
2
α sin(ωατ).

Equation (16) is the quantum master equation that describes the dynamics of the re-

duced quantum system. Note that in Eq. (16) we have adopted the POP approximation

and derive the time-convolutionless form of the master equation by replacing σ(t− τ) with

eiHSτσ(t)e−iHSτ ; in the weak-coupling limit, the COP and POP approximations are equiva-

lent. A formal derivation of Eq. (16) using the projection operator technique is given in the

previous section.

Equation (16) is not yet a Markovian master equation because the integrals still refer to

the initial time. If the bath correlation functions Γr(τ) and Γi(τ) decay to zero within a

finite bath relaxation time τb, then for long times t ≫ τb, we can extend the integrations

over τ to infinity and obtain the Markovian master equation:

σ̇(t) = −i[HS, σ(t)] + iλ2

∫ ∞

0

Γi(τ) · [S, [S0(−τ), σ(t)]+]dτ

−λ2

∫ ∞

0

Γr(τ) · [S, [S0(−τ), σ(t)]]dτ.
(17)
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This step is the Markovian approximation. The resulting Markovian master equation (Red-

field equation) has been studied in innumerable papers in the literature.

How do we evaluate the applicability of the Markovian approximation? Clearly, it depends

on the time scales that the bath correlation functions decays. It is convenient to define a

spectral strength function for the bath, J(ω) =
∑

α g
2
αδ(ωα−ω), and rewrite memory kernels

Γr(τ) and Γi(τ) as integrals:

Γr(τ) =
∫∞
0

J(ω) cos(ωτ) · coth(βω/2)dω,

Γi(τ) =
∫∞
0

J(ω) sin(ωτ)dω.
(18)

To avoid infrared and ultraviolet divergences in Γr(τ) and Γi(τ), we assume that J(ω) has

the form ωs with s ≥ 0 at small ω, and decays to zero faster than ω−1 in the limit of ω → ∞.

In addition, we assume that J(ω) does not depend on the temperature. These conditions are

reasonable assumptions for many physical problems.[11] Also note that if the low frequency

behavior of J(ω) is subohmic (of the form ωs with 0 < s < 1 at small ω), the memory

kernel Γr(τ) would never decay to zero within a finite time scale. In this case, the low

frequency modes of the bath dominate the dissipative processes, and Markovian dynamics

is inapplicable.

At long times, the integrand in Γi(τ) is rapidly oscillating due to the sin(ωτ) term.

Therefore, if the spectral function J(ω) can be treated as a continuous and fairly smooth

function, then a time scale τb exists due to the cancellation of the rapidly oscillating integrand

at large t. This means that the number of bath degrees of freedom must be large, the

distribution of bath frequencies has to be dense and spread out, and the coupling strength

must vary uniformly with frequency. For J(ω) with these properties, Γi(τ) decays to zero

within a τb defined by the width of the spectral function J(ω). If the width of the spectral

function is ωd, then at times t ≫ 1/ωd the oscillating integrand cancels out and the integral

tends to zero, i.e. τb ∼ 1/ωd.

The real part seems more difficult because of the temperature dependence, but we found

the temperature has only a minor effect on the bath relaxation time τb, provided our as-

sumptions on the properties of the bath are correct. Notice that coth(βω/2) is a smooth

function that peaks at ω ≈ 0, and behaves like 2/βω in a range from ω = 0 to ω = 2/β.

At low temperatures, this range is small and has little effect on the shape of the integrand

because of the ωs factor in the spectral function. At high temperatures, this range can
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be broad, and the hyperbolic cotangent function can be replaced with 2/βω. Therefore,

the bath relaxation time at high temperature is determined by the width of the function

J(ω)/βω. Since we assume the spectral function decays to zero faster than 1/ω, the extra

1/ω frequency dependence has little effect on the width of the function. We argue that τb

is only weakly dependent on the temperature of the bath, and is largely determined by the

properties of the spectral function.

To summarize, if the spectral function J(ω) is fairly dense and smooth, and decays to

zero reasonably fast in both ω → 0 and ω → ∞ limit, then a time-scale τb ∼ 1/ωd exists.

For times t > τb, the memory kernels tends to zero and the Markovian approximation

is applicable. In addition, for the present model, the bath relaxation time τb is solely

determined by the properties of the spectral function, and is only weakly dependent on the

temperature of the bath.

IV. SPIN-BOSON MODEL AND THE VIOLATION OF POSITIVITY

It is well known that the Markovian master equations derived from the projection operator

or cumulant expansion techniques destroy the general positivity of the reduced dynamics

[12]. This has been a major problem for the application of the Markovian master equations.

Suarez, Silbey, and Oppenheim [13] have argued that the Markovian master equation is in

fact correct, and the source of the inconsistency is due to transient memory effects in a short

time scale.

Consider a nondegenerate two-level system coupled to its environment through the system

σx operator:

H = −∆

2
σz +

∑
α

ωαa
†
αaα + σx ·

∑
α

gα(a
†
α + aα). (19)

The model chosen for the bath is a Debye-like bath of independent harmonic oscillators

described by the following spectral function:

J(ω) = η(ω3/ω2
c )e

−ω/ωc , (20)

where η is a dimensionless friction constant of order λ2, and ωc is an appropriate cutoff

frequency for the bath (for example, the Debye frequency of the crystal). Hereafter we will
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set ωc = 1, effectively using ωc as the the unit for energy and 1/ωc as the unit for time.

It is convenient to adopt the Bloch representation and describe the density matrix for the

two-level system using a Bloch vector:

σ(t) =
1

2
[I + x(t) · σx + y(t) · σy + z(t) · σz].

Using equations (16)-(18), we can easily obtain the non-Markovian master equations for

the spin-boson model in the Bloch representation:

ẋ(t) = ∆y(t),

ẏ(t) = −[∆ + 4f(t)]x(t)− 4g(t)y(t),

ż(t) = −4g(t)z(t) + 4h(t),

(21)

where we have defined the following time-dependent functions

f(t) =
∫ t

0
Γr(τ) sin(∆τ)dτ,

g(t) =
∫ t

0
Γr(τ) cos(∆τ)dτ,

h(t) =
∫ t

0
Γi(τ) sin(∆τ)dτ.

(22)

The non-Markovian master equations Eq. (21) - Eq. (22) can not be solved analytically,

therefore we propagate the solutions numerically using a 4-th order Runge-Kutta method.

On the other hand, the Markovian master equations can be solved analytically, yielding

x(t) =
{
x(0) cosh(νt)− sinh(νt)

ν
[∆y(0) + γx(0)]

}
e−γt,

y(t) =
{
y(0) cosh(νt)− sinh(νt)

ν
[γy(0) + ∆x(0) + 4f(∞)x(0)]

}
e−γt,

z(t) = zeq + [z(0)− zeq] e
−2γt,

(23)

where we have used γ = 2g(∞), zeq = h(∞)/g(∞), and ν =
√
γ2 −∆2 − 4∆f(∞).

Figure 1 shows the non-Markovian [Eq. (21)] and Markovian [Eq. (23)] evolution of the

determinant of the reduced density matrix, with initial condition x(0) = 0, y(0) =
√
3/2,

and z(0) = 0.5 chosen to show the violation of positive in the Markovian dynamics. The

parameters used are ∆ = 0.1 and η = 0.01, and β = 0.5. We observe that although the

Markovian evolution reaches correct thermal equilibrium at long times, it is negative during

a short time period at the beginning, indicating at least one of the two eigenvalues are

outside the [0,1] range. Note that at this high temperature regime, the amount by which the

positivity is broken can be greater than η, because of the thermal population of the phonon
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FIG. 1: Non-Markovian (solid line) and Markovian (dashed-dotted line) dynamics of det[σ(t)]. The

Debye-like spectral function in Eq. (20) is used. The parameters used are ∆ = 0.1 and η = 0.01,

and β = 0.5; the initial condition is x(0) = 0, y(0) =
√
3/2, and z(0) = 0.5.

modes. In contrast to the Markovian evolution, the non-Markovian evolution preserves the

positivity of the reduced dynamics at all times. This result confirms that the source of

the non-positivity problem is the short time memory effects. Numerical studies on non-

Markovian quantum master equations have indicated that they provide reasonable results

in a wide parameter range.[14–17] In this weak-coupling case, the non-Markovian master

equation correctly describes the dynamics of the open system at all times.

V. REMARKS

The applicability of the Markovian approximation has long been criticized in the literature

[18, 19]. In addition to the assumption of the short bath relaxation time, it is well known

that the Markovian master equations do not always preserve the positivity of the reduced

density matrix of the system, thus resulting in physically inconsistent outcomes. Suarez et

al. have shown that the problem of non-positivity is due to the transient memory effects in

a short time scale, and can be repaired by a modification of the initial conditions (slippage)
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[12, 13]. Despite these stringent conditions and obvious inconsistencies, Markovian master

equations have been applied successfully to a broad range of physical and chemical problems.

Although non-Markovian approaches have grown in interest recently, Markovian approaches

are favored due to their simplicity and computational efficiency [20, 21].

All the results shown here are based on the assumption that the system-bath interac-

tions are weak and neglecting higher order terms in the memory kernels is valid. This

weak-coupling condition seems to be a stringent limitation for quantum master equations.

Recently there have been great interests in developing a formally exact theoretical frame-

work that avoids such weak-coupling approximation [22–24], however, these hierarchical

approaches are often limited to specific forms of bath spectral density. Note that in many

physical scenarios, the system is strongly coupled to only a few bath modes. Therefore, the

system-bath boundary can be redefined to include strongly coupled modes into the system,

and the weak coupling approximation can still be adequate. In addition, sometimes a simi-

larity transformation that transforms the total Hamiltonian and recovers the weak-coupling

regime can be found [25, 26]. In these systems, the similarity transformation creates a new

set of “dressed” states that are only weakly coupled to the bath, thus the weak-coupling

approximation is still applicable. The unified theory for exciton transportation presented in

Ref. [27], where the Merrifield transformation is applied to the Holstein model to generate

partially-dressed polaron states, is a demonstration of such an approach.
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