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Abstract

In this work, we perform a theoretical study on the dynamics and two-dimensional electronic spectroscopy of a model trimer system
and compare the results to experimental data on the Fenna–Matthews–Olson protein. We combine a time-nonlocal quantum master
equation formalism and the recently developed method for the efficient calculation of third-order photon echo polarization [M.F. Gelin,
D. Egorova, W.J. Domcke, J. Chem. Phys. 123 (2005) 164112] to simulate the 2D electronic spectra of the model system, and compare
the time-evolution of the amplitude of cross-peaks to the coherent relaxation dynamics of the system following the excitation by a laser
pulse. We show that beats of the upper diagonal peaks in the absolute value 2D spectra provide a direct probe for the coherence dynam-
ics in the system, and the time-evolution of the amplitude of the lower diagonal cross-peaks in the real value 2D spectra can be used to
reveal the population transfer among exciton states. Our results verify the intuitive description provided by response functions and dem-
onstrate that the full coherent dynamics in a multichromophoric system can be elucidated using two-dimensional electronic spectroscopy.
� 2007 Elsevier B.V. All rights reserved.
1. Introduction

Recent advances in two-dimensional (2D) electronic
spectroscopy have generated many new research activities
both experimentally and theoretically [1–3]. Experiments
performed on laser dye [4–6], J-aggregates [7], and photo-
synthetic light-harvesting complexes [8–10] have demon-
strated that the 2D electronic spectroscopy is an effective
probe of electronic couplings and dynamical information
in the condensed phase. In particular, analysis of 2D line-
shape can elucidate the solvation dynamics and solute-
solvent interactions for dye and J-aggregates in solution
[6,7,11,12], while 2D cross-peaks can reveal electronic cou-
plings and energy transfer dynamics in the Fenna–Mat-
thews–Olson bacteriochlorophyll (FMO) complex of
green sulphur bacteria [8,13]. Recently, experimental obser-
vations of quantum beats in 2D electronic spectra in the
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FMO complex [10] provided direct evidence of excitonic
coherence in the system.

Theoretically, simulations based on exciton models are
often used to iteratively fit 2D electronic spectra and pro-
vide a model description for the dynamics and electronic
couplings in the system [7,9,13]. Because of the complexity
of an multichromophoric systems in the condensed phase,
these simulations usually require a large number of model
parameters, which makes a quantitative fit to the experi-
mental data quite difficult. While these simulations are
invaluable for the interpretation of experimental results,
it is desirable to have methods that can directly and unam-
biguously extract quantitative dynamical information from
2D experimental data.

Theoretical studies based on the response function for-
malism have shown that cross-peaks in 2D electronic spec-
tra are a manifestation of electronic couplings and energy
transfer dynamics in a multichromophoric system [14–16].
In addition, quantum beating of cross-peaks arising from
excitonic coherence in the system can be related to the
coherence dynamics in the system [3,10,17]. In principle,
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quantitative analysis of the time-evolution of the cross-
peaks in 2D electronic spectroscopy should provide a com-
plete understanding of the population and coherence
dynamics for the system under study. However, because
of possible pulse-overlap effects and interferences between
contributions from different Liouville pathways to the sig-
nal, it is unclear whether the evolution of cross-peaks can
be used to accurately quantify the population and coher-
ence dynamics. Therefore, it is important that we can verify
the intuitive description provided by the impulsive response
functions and formulate a prescription that can be applied
to quantitatively extract dynamical information from
experimental 2D spectral data.

In this work, we study the dynamics and 2D electronic
spectroscopy of a model trimer system. Based on a time-
nonlocal quantum master equation formalism that includes
field–matter interaction and non-Markovian effects [18], we
study the coherent relaxation dynamics of the system fol-
lowing the excitation by a laser pulse. We also use a
recently developed method for the calculation of third-
order photon echo polarization [19,20] to simulate the 2D
electronic spectra of the model trimer system. Focusing
on the time-evolution of the amplitude of cross-peaks, we
demonstrate that the population and coherence dynamics
of this multichromophoric system can be extracted directly
from the time-evolution of the 2D cross-peaks. We close by
showing how the ideas presented here apply to the coher-
ence dynamics in the Fenna–Matthews–Olson (FMO) pro-
tein of green sulphur bacteria [10,21].

2. Theoretical method

To describe the theoretical method for the calculation of
2D electronic spectra, we first consider a four-wave mixing
experiment described in Fig. 1, in which three laser fields
interact with the sample to create a polarization that radi-
ates into the phase-matching directions ±k1 ± k2 ± k3. For
2D electronic spectroscopy, the signal in the phase-match-
ing direction ks = �k1 + k2 + k3 is heterodyne-detected
and Fourier transformed with respect to the coherence time
s and the rephasing time t to obtain the 2D electronic spec-
trum at a given population time T [1,2,5].
Pulse 1 Pulse 2
τ T

τ1 τ2

Fig. 1. Three-pulse photon echo experiment and definition of time variables.
generate a signal field. We define the coherence time s = s2 � s1, the populatio
here gives positive s and T. The time zero t = 0 is set at the center of the thir
Theoretically, the 2D electronic spectroscopy is
described by the photon echo third-order polarization
PPE(t) in the phase-matching direction ks = �k1 + k2 + k3.
In the standard perturbative approach to nonlinear spec-
troscopy, PPE(t) is described by response functions [14].
In the impulsive limit only a subset of the response func-
tions (controlled by enforced pulse ordering) contribute
to the signal, enabling intuitive descriptions of the behav-
ior. However, when finite-duration pulses are used, pulse
ordering cannot be enforced, complicating the description
(and the calculation) significantly. Here we consider a dif-
ferent approach based on a reduced density matrix descrip-
tion of the system that treats the field–matter interactions
explicitly, thereby including pulse-overlap effects and con-
tributions from all Liouville pathways in the calculation
[19,20].

The time-evolution of the reduced density matrix q(t) of
a quantum system driven by laser fields can generally be
described by a quantum master equation (�h = 1) [22,23]

_qðtÞ ¼ �i½H S þ H intðtÞ; qðtÞ� �R½qðtÞ�; ð1Þ

where HS is the Hamiltonian of the electronic system,
Hint(t) describes the interaction of the system to the laser
fields, and R½�� represents the dissipative dynamics of the
system induced by the system–bath interactions. In this
work, the dissipative dynamics of the system is treated by
considering a system–bath model in which the electronic
system is coupled to a bath of harmonic oscillators. We
use the time-nonlocal (TNL, also called time-convolution
approach or chronological time ordering prescription)
quantum master equation derived by Meier and Tannor
[18] to propagate the reduced density matrix and calculate
the electronic 2D spectra. Details on the Hamiltonian for
the model system and the dissipative environment coupled
to the system will be presented in the next section.

In the electric point dipole approximation, Hint(t) can be
written as

H intðtÞ ¼ �l̂EðtÞ; ð2Þ
where E(t) is the time-dependent electric field of the laser
pulses, and l̂ is the transition dipole operator defined in
the second-quantized form as
Signal

Pulse 3
t

t=0
τ3

Three laser pulses centered at s1, s2, and s3 are incident on the sample to
n time T = s3 � s2, and the rephasing time t. The pulse sequence depicted
d pulse, s3.
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l̂ ¼
X

n

~lnðan þ aynÞ; ð3Þ

¼ X þ X y: ð4Þ
In Eq. (3), an (ayn) is the annihilation (creation) operator
that destroys (creates) the nth excitation, and~ln is the tran-
sition dipole moment of the nth excitation. The time-
dependent total polarization induced by the laser fields is
the expectation value of the transition dipole operator

P ðtÞ ¼ hl̂qðtÞi; ð5Þ
where the bracket h � � � i means taking the expectation value
of the operator and averaging over static disorder. When
the system–field interaction Hint(t) is explicitly included in
the time propagation of q(t) (Eq. (1)), the reduced density
matrix q(t) contains all the information on the time-
dependent optical response of the material system. However,
to describe a specific experiment in which only signals in a
specific phase-matching direction are measured, we need to
discriminate against signals in other directions and extract
the component that describes the experiment. To this end,
we apply the method proposed by Gelin et al. for efficient cal-
culation of the photon echo third-order polarization PPE(t)
[19]. This method has been applied to simulate three-pulse
photon echo peak shift and 2D electronic spectroscopy of
a two-level electronic system coupled to explicit vibrational
degrees of freedom [19,20], and was later extended to treat
two-exciton states for describing two-color photon echo
peak shift experiments on a bacterial reaction center [24].

Following Gelin et al. [19], we define an operator
P e ¼ x0

P
naynan, where the sum is over all one-excitation

states and x0 is a renormalization frequency that can be cho-
sen arbitrarily, and then apply the rotating-wave approxi-
mation (RWA) by introducing the reduced Hamiltonian
H S ¼ HS � P e, i.e. all transition frequencies of the one-exci-
tation states are reduced by x0. In the RWA, the three laser
pulses are described by the time-dependent electric field

EðtÞ ¼
X3

a¼1

½Eaðt � saÞ expf�ið�xat � ka � rÞg þ c:c:�; ð6Þ

where Ea(t � sa) is the laser pulse profile, �xa is the reduced
carrier frequency of the field �xa ¼ xa � x0, and ka is the
momentum. In this work, we adopt a Gaussian pulse pro-
file EaðtÞ � expð�4 ln 2ðt � saÞ2=s2

pÞ, where sp is the pulse
duration defined by the full width at half maximum
(FWHM) of the pulse profile. Throughout this study, we
assume that all three pulses have a sp = 20 fs duration
and carrier frequency xa = x0.

Gelin et al. showed that within the RWA, the third-order
polarization in the phase-matching direction ks = �k1 +
k2 + k3 can be calculated by following the time-evolution
of three auxiliary density matrices q1(t) � q3(t) defined by
the following equations of motion [20]:

@tq1ðtÞ ¼ �i½HS � V 1ðtÞ � V y2ðtÞ � V y3ðtÞ; q1ðtÞ� �R½q1ðtÞ�;
@tq2ðtÞ ¼ �i½HS � V 1ðtÞ � V y2ðtÞ; q2ðtÞ� �R½q2ðtÞ�;
@tq3ðtÞ ¼ �i½HS � V 1ðtÞ � V y3ðtÞ; q3ðtÞ� �R½q3ðtÞ�

ð7Þ
with

V aðtÞ ¼ Eaðt � saÞ expði�xatÞX : ð8Þ
Eqs. (7) and (8) can be used to propagate the three auxil-
iary density matrices and calculate the photon echo polar-
ization using

P PEðtÞ ¼ hX ðq1ðtÞ � q2ðtÞ � q3ðtÞÞi: ð9Þ
Note that PPE(t) implicitly depends on the coherence time
s = s2 � s1 and the population time T = s3 � s2 while
Va(t) depends on the pulse central time sa. Eq. (7) is a sys-
tem of three independent linear differential equations that
can be efficiently solved by propagating the auxiliary den-
sity matrices. Note that Eqs. (7)–(9) are obtained using a
perturbative approach, therefore although the system–field
interactions are treated exactly in the equation of motion,
the applicability of using Eq. (9) to determine PPE(t)
depends on the optical field being weak. As a result,
like the response function approach, the current method
is limited to experiments in the weak-field limit.

With the prescription for the calculation of PPE(t), the
2D Fourier transformed spectrum is then given by double
Fourier transform the photon echo polarization field with
respect to s and t:

Sðxs; T ;xtÞ �
Z

ds
Z

dt e�ixss eixt t � iP PEðs; T ; tÞ; ð10Þ

where xs is the coherence frequency, and xt is the rephas-
ing frequency. The 2D signal S(xs,T,xt) is a complex func-
tion; therefore, it is possible to evaluate the real part, the
imaginary part, and the absolute magnitude of S(xs,T,xt)
at every point. In this work, we will study all three realiza-
tions of the 2D spectrum and identify the most useful spec-
tral features to elucidate dynamical information about the
system.

Compared to the standard perturbative approach to
nonlinear spectroscopy, the present method incorporates
all relevant optical fields into the Hamiltonian and propa-
gates the driven dynamics of the system exactly. Therefore,
arbitrary pulse shapes and durations can be used in the
simulation and pulse-overlap effects and contributions
from all applicable Liouville pathways are automatically
accounted for. This enables proper simulation of 2D spec-
tra at short population times. More importantly, all rele-
vant dissipative dynamics of the system appear in the
calculation. For example, effects of coherent energy trans-
fer and non-Markovian dynamics are included. The
dynamical aspect of the method is important, because the
method treats the non-Markovian evolution of the density
matrix and the third-order polarization in a consistent
manner, it allows comparison of the dynamics of the sys-
tem and the spectral features directly. Note that we do
not choose response functions to be included in the simula-
tions, and the dynamics of the system is completely deter-
mined by the laser fields and system–bath interactions.
This is crucial for the comparative study carried out in this
work because it would not be meaningful to study the
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dynamics in 2D spectra generated from a prescribed
dynamics and the contributions from preselected Feynman
diagrams.

3. Model system and dynamics

3.1. Hamiltonian

We study a linear trimer system with nearest-neighbor
electronic couplings (Fig. 2) described by a Frenkel-exciton
model with three two-level chromophores:

HS ¼ egj0ih0j þ
X3

n¼1

enaynan; ð11Þ

þ J 12ðay1a2 þ ay2a1Þ þ J 23ðay2a3 þ ay3a2Þ; ð12Þ

where j0i denotes the electronic ground state, an (ayn) is the
annihilation (creation) operator that destroys (creates) an
excitation at site n, eg is the energy of the ground state, en

is the site energy at the nth chromophore, and Jnm is the
electronic coupling between the n and mth chromophores.
This model is an extension of the extensively studied dimer
model and can be used to model systems with energy
transfer or charge transfer through a bridge state. an and
ayn describe electronic transitions between the molecular
ground and excited states, and they satisfy the Pauli com-
mutation relations

½an; aym� ¼ dnmð1� 2aynanÞ; ½an; am� ¼ 0: ð13Þ
The total system-plus-bath Hamiltonian is

HT ¼ HS þ H intðtÞ þ HB þ H SB; ð14Þ
where Hint(t) is the system–field interactions defined in Eqs.
(2) and (3), HB is the bath Hamiltonian, and HSB describes
the system–bath interaction. Explicit inclusion of the sys-
tem–field interactions allows us to treat the driven dynam-
ics of the system exactly and use the result to compute the
third-order polarization. For the system–bath interactions,
we assume a harmonic bath of independent harmonic oscil-
lators for HB, and the electronic system is coupled linearly
μ1 μ2 μ3
J12 J23

Fig. 2. Model linear trimer system. We studied a linear trimer system with
nearest-neighbor coupling J12 and J23. In this work, J12 = J23 = 100 cm�1

are used, and the site energies of each chromophore relative to the carrier
frequency of the laser x0 are E1 = �50 cm�1, E2 = 0 cm�1, and
E3 = 50 cm�1, respectively. In the exciton representation, the three
excitonic states have relative energies of �150 cm�1, 0 cm�1, and
150 cm�1, respectively. The transition dipole of the three chromophores
are assumed to be parallel to each other and the transition dipole strengths
are l1 = 5 and l2 = l3 = 1. A Ohmic bath with c0 = 0.7 and cut-off
frequency xc = 150 cm�1 is used for all three chromophores. The
temperature is set to 77 K.
and diagonally to the bath through a number of collective
bath coordinates:

HSB ¼ �
X3

n¼1

aynan � qn; ð15Þ

where qn denotes a collective bath coordinate that is cou-
pled to the nth chromophore in the system. Such excita-
tion-bath couplings induce diagonal transition energy
fluctuations in the site-representation. For simplicity, we
assume that the bath coupled to each chromophore is
described by the same Ohmic spectral function with an
exponential cut-off

JðxÞ ¼ c0x expð�x=xcÞ;
where c0 is the coupling strength and xc is the cut-off fre-
quency of the bath. We also assume that baths coupled
to different system operators are independent, i.e., the cor-
relation function Cnm(t) = hqn(t)qm(0)i is zero when n 5 m.

In addition, to properly describe the third-order polari-
zation, it is necessary to include contributions from the
two-excitation states. To this end, we use the exciton com-
mutation rule in Eq. (13) to expand all system operators in
the ground and one-excitation subspace to the two-excita-
tion manifold. This allows treatment of excitonic dynamics
in the one- and two-excitation subspace in a consistent
manner [24]. For example, the exciton Hamiltonian in
Eq. (11) can be represented in the full Hilbert space, and
the diagonalization of the full matrix will result in mani-
folds of a ground state, three one-exciton states (called
e1, e2, and e3 from low energy to high energy in this work),
and three two-exciton states.

In this work, we study a linear trimer system with near-
est-neighbor couplings J12 = J23 = 100 cm�1, and with site
energies of each chromophore relative to the renormaliza-
tion frequency x0 given by E1 = � 50 cm�1, E2 = 0 cm�1,
and E3 = 50 cm�1. In the exciton representation, the three
excitonic states e1, e2, and e3 have relative energies of
�150 cm�1, 0 cm�1, and 150 cm�1, respectively. Effectively,
we choose to set the laser carrier frequency x0 to be on res-
onance with the e2 exciton state and apply the RWA so
that all transition frequencies are reduced by x0. The bath
parameters for the model system are c0 = 0.7 and
xc = 150 cm�1, and all the simulations are carried out at
77 K. This corresponds to weak system–bath coupling so
that the TNL quantum master equation based on weak
coupling approximation is applicable. Static disorder is
ignored in this work. Because our focus in this work is
on the time-evolution of the amplitude of 2D cross-peaks,
rather than the 2D lineshape of the peaks, we expect the
neglect of static disorder to have minor effect to the results
in this work.

3.2. Dynamics

With the system–bath Hamiltonian and the bath spec-
tral density, we calculate the driven dynamics of the
reduced density matrix of the system q(t) using the non-
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Markovian time-nonlocal (TNL) quantum master equa-
tion derived by Meier and Tannor [18]. Unlike the Redfield
theory [22], this formulation of the quantum master equa-
tion includes non-Markovian dynamics and bath memory
effects. In this section, we briefly describe the dynamics of
the system following the optical excitation by the 20 fs laser
pulse calculated using the TNL quantum master equation.
In our simulation, we numerically propagate the TNL
dynamics using an iterated Crank–Nicholson scheme [25].
The results in this section serve as a benchmark for our
study of the 2D electronic spectroscopy in the next section.

In Fig. 3, we show the time-evolution of the one-exciton
density matrix elements in the exciton representation when
the model trimer system is initially in the ground state and
excited by the 20 fs laser pulse at time t = 0. The time-evo-
lution of the diagonal density matrix elements (population)
and off-diagonal density matrix elements (coherence) of the
model trimer system are shown. The short laser pulse
excites all three exciton states and creates optical coherence
represented by nonzero coherence elements in the density
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Fig. 3. Dynamics of the model trimer system in the exciton representation.
We show the time-evolution of the diagonal density matrix elements
(upper) and the real parts of the off-diagonal density matrix elements
(lower) when the model trimer system is excited by a 20 fs laser pulse on
resonance with the e2 exciton state. The population dynamics generated by
a kinetic model including 150 fs e3! e2 transfer and 180 fs e2! e3

transfer is shown in thin-dashed lines. The population dynamics is well
reproduced by the kinetic model.
matrix. The subsequent time-evolution of the density
matrix exhibits population transfer and coherence dynam-
ics (dephasing and coherence transfer). In Fig. 3a, we also
show that the population dynamics can be reasonably
described by a three-state sequential kinetic model includ-
ing 150 fs e3! e2 transfer and 180 fs e2! e1 transfer
(thin-dashed curves in Fig. 3a). The three coherence density
matrix elements (Fig. 3b) clearly decay in a time scale com-
parable or longer than the population transfer time scales.
We expect these population dynamics and coherence
dynamics to manifest themselves in the 2D electronic spec-
tra. In the next section, we will numerically simulate 2D
electronic spectra for the model trimer system and demon-
strate that the full dynamics of the density matrix presented
in this section can be elucidated from the time-evolution of
2D cross-peaks.

It is also instructive to consider the population dynamics
in the site-representation to understand how the excitation
moves in space. In Fig. 4, we show the population dynam-
ics in the site-representation. Because site 1 has the stron-
gest transition dipole strength, the laser excitation
localizes the initial population it generates mostly on this
site. The subsequent dynamics thus represents excitation
redistribution in space. The population transfer in the
site-representation exhibits prominently coherent oscilla-
tory motions; that is, the energy transfer is described by
wave-like coherent motion, rather than incoherent hopping
from one site to the other. This behavior is expected in this
parameter regime because the electronic coupling is stron-
ger than the site energy difference and the system–bath cou-
pling is relatively weak. As a result of the reversible
population transfer, the population on site 3, representing
the population transferred from one end of the linear tri-
mer system to the other end of it, reaches values greater
than the equilibrium population at short times. Imagine
an energy trap is present close to site 3 and is able to effi-
ciently remove population from this site; the system would
exhibit an enhanced efficiency of energy trapping because
 0
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Fig. 4. Population dynamics in the site-representation. The population
redistribution exhibits reversible wave-like motion, showing the coherent
nature of the energy relaxation.
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of the excitonic coherence. Similar coherent transport mod-
els have been studied theoretically as models of efficient
energy trapping in photosynthetic light-harvesting systems
[26]. In addition, recent experimental observations of long-
lasting excitonic coherence in photosynthetic complexes
suggest coherent energy transfer in photosynthetic systems
[10,27]. It is possible that these coherent population
motions in space is responsible for the efficient energy trap-
ping in photosynthesis.

4. Results and discussion

To simulate the 2D electronic spectra for the model tri-
mer system, we apply the TNL quantum master equation
to propagate Eqs. (7) and (8) and calculate the photon echo
polarization PPE(s,T, t) according to Eq. (9). For the 2D
electronic spectrum at a given population time T, we com-
pute PPE(s,T, t) on a two-dimensional grid of coherence
time (s) and rephasing time (t) points and then perform
numerical fast Fourier transform on the 2D grid according
to Eq. (10) to obtain the complex 2D signal S(xs,T,xt) in
the frequency domain. The amplitude of a peak defined as
the volume underneath a rectangular area surrounding the
peak is calculated using the 2D Simpson rule to numeri-
cally integrate over the area on the 2D electronic spectra.

Fig. 5 shows the simulated real value 2D electronic spec-
tra of the model system at population times T = 0, 100,
300, and 600 fs. At T = 0, three diagonal peaks can be
resolved and assigned to the three exciton states, e1, e2,
and e3, respectively, from low to high energy. In addition,
Fig. 5. Simulated 2D electronic spectra for the model system at T = 0,
100, 300, and 600 fs. The x- and y-axis are respectively the coherence
frequency and the rephasing frequency relative to the carrier frequency of
the laser x0. The relative transition energies of the three exciton states are
at �150 cm�1, 0 cm�1, and 150 cm�1, respectively.
cross-peaks are clearly observable in the T = 0 spectrum,
indicating excitonic couplings and correlation among exci-
ton states. The negative feature at the upper diagonal e1,e2

cross-peak can be attributed to the excited state absorption
from an initially excited je1ihe1j population. The beat of
this cross-peak in T is due to excitonic coherence and can
be clearly seen. Moreover, as the population time, T,
increases, the diagonal peaks and lower diagonal cross-
peaks evolve, showing population dynamics in the system.
The negative feature at the e2,e2 diagonal peak that
appears in 600 fs results from the excited state absorption
contributions when the initially created population state
undergoes population transfer to another one-exciton state
during T. More detailed dynamical information can be
obtained by following the amplitude of an individual peak
as a function of T.

We will now focus on the amplitude of the cross-peaks.
An intuitive way to think about the peaks in the 2D elec-
tronic spectrum is to consider the impulsive response func-
tions that contribute to the signal. In Fig. 6, we show the
Liouville pathways that are expected to contribute to a
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Fig. 6. Double-sided Feynman diagrams representing the Liouville
pathways contributing to a cross-peak at (xa,xb). In these diagrams, g

denotes the ground state, the Greek letters denote one-exciton states, and f

represents a two-exciton state. The RðabÞ
2 term represents a pathway in

which the system is in a coherence state jaihbj during the population time
T, therefore, an oscillating phase factor with a frequency of DEab is
associated with this term. All other terms do not exhibit such excitonic
oscillation in the population time because the system is in a population
state during the population period. The eRðaabÞ

2 term represents the energy
transfer contributions when the initial population state jaihaj undergoes
population transfer into jbihbj during T. Because the uphill population
transfer is negligible at low temperatures, we expect the eRðaabÞ

2 term
contributes to the lower diagonal cross-peaks, rather than upper diagonal
cross-peaks. The R�ðaaf Þ

1 term represents the excited state absorption
contributions from the initial population state jaihaj, and the ~R�ðacf Þ

2 term
represents the excited state absorption contributions when the initially
created population state transfers to another one-exciton state during T.
The two excited state absorption pathways have negative contribution to
the total response function, therefore they generate negative features in the
real value 2D electronic spectra.
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cross-peak at the (xa,xb) position. Our simulation is, how-
ever, not based on the response function formalism, and
thus not limited to the contributions from these Liouville
pathways alone. Nevertheless, these diagrams provide a
convenient way to think about the main contributions to
the cross-peak. The impulsive response function that pri-
marily determines the amplitude of the cross-peak at the
position (xa,xb) is [3]

RðT Þ ¼ RðabÞ
3 ðT Þ þ RðabÞ

2 ðT Þ þ GbaðT ÞeRðaabÞ
2 ðT Þ

� GaaðT ÞR�ðaaf Þ
1 ðT Þ � GcaðT ÞeR�ðacf Þ

2 ðT Þ; ð16Þ

where Gba(t) is the conditional probability of finding the
system in the jbihbj population state at time t when the sys-
tem is initially in the jaihaj population state at t = 0. These
conditional probability terms describe the effects of popula-
tion transfer. The RðabÞ

2 term represents the coherence path-
way in which the system is in a coherence state jbihaj
during the population time T. Because the time-evolution
of the coherence state has an oscillating phase factor with
the frequency equal to the energy difference between the
pair of exciton states (xab = Eb � Ea), the RðabÞ

2 contribu-
tion causes excitonic quantum beats in the 2D spectra
[16]. This picture based on the impulsive response functions
is an over-simplified one, and our simulated 2D spectra
actually contain contributions from pulse-overlap effects
and additional Liouville pathways. Nevertheless, we find
the simple response function picture provides us a conve-
nient way to interpret our results.
T (fs)

Fig. 7. Population time-evolution of upper diagonal 2D cross-peaks
involving the e1 exciton state. The real part (square), imaginary part
(diamond), and absolute value (circle) amplitude of the e1,e2 and e1,e3

cross-peaks in the 2D spectrum as a function of population time T are
shown. The pronounced beats in the absolute value peak amplitude are
due to the contributions from the RðabÞ

2 pathway.
4.1. Upper diagonal cross-peaks at coherence frequency

xs = xe1

We will now use the intuitive picture developed above to
study the population time-evolution of the amplitude of
cross-peaks for the 2D spectra of the model system, focus-
ing on spectral evolutions that can be used to extract pop-
ulation and coherence dynamics directly from the
simulated 2D spectra. We first study the time-evolution
of the upper diagonal cross-peaks related to the lowest
exciton state e1 (with coherence frequency xe1). These
cross-peaks are generated when the first pulse interacts
with the e1 state of the system and in the end the system
radiates a field at the xe2 (the e1,e2 cross-peak) or xe3

(the e1,e3 cross-peak) frequency. Because the e1 state is
the lowest energy state and the uphill population transfer
is negligible at 77 K, the energy transfer pathways eRðaabÞ

2

and eR�ðacf Þ
2 do not contribute to these cross-peaks, and sim-

ilarly, the contributions from the excited state absorption
pathway R�ðaaf Þ

1 do not affect the long time behavior of
the cross-peaks. As a result, we expect these peaks to be
free of interferences from population dynamics and to pro-
vide a direct probe of the coherence dynamics.

In Fig. 7, we show the time-evolution of the amplitude
of these upper cross-peaks. The amplitude of the real part,
the imaginary part, and the absolute value of the peaks are
shown as a function of the population time T. In general,
while the real and imaginary amplitudes of the cross-peaks
do show quantum beats, the beating patterns are obscured
because of the interferences from the T dependence of the
response functions. In contrast, the absolute value peak
amplitude exhibits clear oscillatory behavior. The promi-
nent beats in the amplitude of the absolute value cross-
peaks indicate that the T dependence of the response func-
tions contributing to these upper diagonal cross-peaks are
described by a common phase factor which vanishes in the
absolute value spectra, except for the RðabÞ

2 coherence term
which has an excitonic phase factor.

In Fig. 8, we compare the oscillatory part of the absolute
amplitude of these upper diagonal cross-peaks to the
dynamics of the corresponding off-diagonal density matrix
elements calculated directly from the time-nonlocal quan-
tum master equation upon the excitation by a laser pulse
at time t = 0 (Section 3.2). We find excellent correlation
between the oscillatory part of the absolute amplitude
and the real part of the coherence density matrix elements.
This result indicates that the beat of the absolute amplitude
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Fig. 8. A comparison between the coherence dynamics (solid line, scaled)
and the absolute amplitude of 2D cross-peaks as a function of population
time T. The excellent agreement indicates that beats in the absolute
amplitude of these upper diagonal cross-peaks are a direct probe of the
coherence dynamics.
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Fig. 9. Population time-evolution of lower diagonal 2D cross-peaks
involving the e1 exciton state. The real part (square), imaginary part
(diamond), and absolute value (circle) amplitude of the e2,e1 and e3,e1

cross-peaks in the 2D spectrum as a function of population time T are
shown. The thin-dashed lines are least-square fitting to the rise component
of the real amplitude of the cross-peaks, which yields a e2! e1 energy
transfer time of 190 ± 20 fs and e2! e1 energy transfer time of
130 ± 40 fs. These values agree well with the population dynamics
obtained directly from the dynamical simulations in Fig. 3.
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of an upper diagonal cross-peak can be used as a direct
measure of the coherence dynamics. The time-evolution
of the absolute amplitude of the e1,e2 cross-peak is
described by a damped 155 cm�1 oscillation with 215 fs
exponential decay time, which can be assigned to the
dephasing time of the je1ihe2j coherence. The time-evolu-
tion of the absolute amplitude of the e1,e3 cross-peak is
described by a rapid 60 fs exponential decay and a damped
320 cm�1 oscillation with 150 fs decay time that can be
attributed to the dephasing time of the je1ihe3j coherence.
The 60 fs decay can be attributed to bath relaxation.

Our simulations indicate that the beats of the absolute
amplitude of upper diagonal cross-peaks directly and
quantitatively reflect the coherence dynamics in the system.
This result is not trivial because in general bath relaxation
and other dynamical effects could also affect the time-evo-
lution of the cross-peaks, and a complex phase factor can
exist in the coherence dynamics that is not captured by
the oscillatory part of the absolute value amplitude.
Clearly, in this model system, the bath memory effects only
have minor contribution to the absolute magnitude of the
upper diagonal cross-peaks. Simulations were also per-
formed on trimer systems with different site energies, elec-
tronic couplings, and off-diagonal system–bath couplings,
and similar trends were observed. Therefore, this observa-
tion should be applicable to more general systems.

4.2. Lower diagonal cross-peaks at rephasing frequency
xt = xe1

In contrast to the upper diagonal cross-peaks, the lower
diagonal cross-peaks contain contributions from energy
transfer pathways. In Fig. 9, we show population time-evo-
lution of the lower diagonal e2,e1 and e3,e1 cross-peaks.
These cross-peaks are generated when the first pulse inter-
acts with either the e2 or e3 exciton state of the system and
the system subsequently radiates at the xe1 frequency.
Clearly, the amplitude of these lower diagonal cross-peaks
exhibit a damped oscillatory component due to the RðabÞ

2

coherence pathway contributions and a rise component
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Fig. 10. Population time-evolution of 2D cross-peaks involving e2 and e3

exciton states. The real part (square), imaginary part (diamond), and
absolute value (circle) amplitude of the cross-peaks in the 2D spectrum as
a function of population time T are shown. (a) The evolution of the upper
diagonal e2,e3 cross-peak. The thin-dashed curve is the real part of the
coherence density matrix element q23(t) (scaled). (b) The evolution of the
lower diagonal e3,e2 cross-peak. The thin-dashed curve is the population
of e2 exciton state when the system is initially in the e3 state, predicted by
the kinetic model obtained from least-square fitting in Fig. 7.
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due to the eRðaaÞ
2 energy transfer pathway. Comparing the

absolute amplitude to the real amplitude of these cross-
peaks, the absolute amplitude exhibits more pronounced
beating (due to coherence dynamics), while the rise compo-
nent representing the energy transfer dynamics is more
marked in the real amplitude. Therefore, the real amplitude
of the lower diagonal cross-peaks offers a clearer probe to
the population dynamics in the system.

The real amplitude of the e2,e1 cross-peak shows a rise
component due to e2! e1 population transfer (Fig. 9a).
A least-square fit to the simulated real amplitude of the
cross-peak reveals a 190 ± 20 fs e2! e1 exponential popu-
lation transfer time that describes the rise component
(Fig. 9a). This is in good agreement with the 180 fs energy
transfer time determined directly from the dynamical sim-
ulation in Section 3.2 (Fig. 3). For the e3,e1 cross-peak,
assuming that the back reaction is negligible, the rise com-
ponent can be fitted to the conditional probability that
describes the sequential e3! e2! e1 population transfer

Ge1;e3ðtÞ ¼
1

k23 � k12

½k23ð1� e�k12tÞ � k12ð1� e�k23tÞ�;

where k23 is the e3! e2 relaxation rate and k12 = 1/
190 fs�1 is the e2! e1 relaxation rate. A least-square fit
to the rise component of the real amplitude of the e3,e1

cross-peak yields a e3! e2 population transfer time scale
of 130 ± 40 fs (Fig. 9b). This, again, is in agreement with
the value of 150 fs obtained from the direct dynamical sim-
ulation. Note that we are able to discriminate the e2! e1

rate from the e3! e1 rate and thus obtain the complete
population dynamics from the simulated 2D spectra. This
discrimination is advantageous when considering dynamics
in a multichromophoric system and demonstrates the
power of 2D electronic spectroscopy.

The lower diagonal cross-peaks also exhibit excitonic
quantum beats, and the absolute amplitude of these
cross-peaks can also be used as a probe for the coherence
dynamics in the system. If the upper diagonal peaks can
not be resolved in the 2D electronic spectrum, it is possible
that one can use the real amplitude of lower diagonal 2D
cross-peaks to determine time scales for energy transfers
and then subtract the energy transfer contributions from
the time dependence of the absolute amplitude to quantify
the coherence dynamics.

4.3. The cross-peaks between e2 and e3 exciton states

We now consider the population time-evolution of the
cross-peaks involving exciton e2 and e3. These cross-peaks
exhibit more complicated dynamics because both the
je2ihe2j and je3ihe3j population states are nonstationary
and undergo relaxation. In Fig. 10a, we show the time-evo-
lution of the amplitude of the upper diagonal e2,e3 cross-
peak. The absolute amplitude of this cross-peak exhibits
beating and a rapid decay at short T, but no observable
dynamics associated with the 190 fs e2! e1 relaxation,
indicating that both the R�ðaaf Þ

1 and eR�ðacf Þ
2 excited state
absorption contributions to this cross-peak are negligible.
This is also consistent with the 2D real spectrum at T = 0
(Fig. 5), in which no negative excited state absorption fea-
ture is observable at the e2,e3 cross-peak. Therefore, the
fast decay at short T must be due to the bath relaxation
and is related to the decay of the transition frequency cor-
relation functions of the excitations. Nevertheless, the beat
can be clearly seen and clearly correlated to the time-evolu-
tion of the coherence density matrix element shown as the
thin-dashed curve in Fig. 10a.

In Fig. 10b, we show the time-evolution of the amplitude
of the lower diagonal e3,e2 cross-peak. The time-evolution
shows more complicated dynamics; however, the general
observations obtained in the previous section still apply.
The real amplitude of the cross-peak probes the energy
transfer dynamics, now exhibiting a rise component corre-
sponding to the e3! e2 population transfer and a decay



Fig. 11. Beating in C. tepidum cross-peak magnitude. The absolute
magnitude (circles) and the real part (squares) of the third-order response
measured at the lower diagonal cross-peak between excitons 1 and 3 is
shown. Energy transfer is evidenced by the rise component, while
coherence beating gives rise to the oscillations. The fit (solid line) to the
real part reveal a 231 fs (±13 fs) beat period, while the fit (dashed line) to
the absolute magnitude shows a period of 220 fs (±8 fs). The predicted
beat period is 248 fs. Inset on the graph are two-dimensional spectra of the
real and absolute magnitude at T = 600 fs with the integrated area for the
cross-peak shown by the black circle. Resolution of the absolute
magnitude spectra is degraded by the broad imaginary features.
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component corresponding to the subsequent e2! e1 popu-
lation transfer. The thin-dashed curve in Fig. 10b shows the
conditional probability of finding the system in the je2ihe2j
population state when the system is initially in the je3ihe3j
population state predicted by the kinetic model obtained
from the least-square fit in Fig. 7. The good agreement of
this curve with the real amplitude of the cross-peak con-
firms that the real amplitude of the lower diagonal cross-
peaks probes the population dynamics in the system.

5. Energy transfer and coherence dynamics in the FMO

complex

To demonstrate the theoretical modeling on the trimer
system presented in the previous section indeed describes
experimental signals, we show the cross-peak evolution of
2D electronic spectra measured on the Fenna–Matthews–
Olson bacteriochlorophyll (FMO) complex of green sul-
phur bacteria in this section. Two-dimensional electronic
spectra of the Fenna Matthews Olson (FMO) trimer com-
plex isolated from Chlorobium tepidum [21] were acquired
at a series of 33 population times, T, as described previ-
ously [10]. Briefly, we used a home-built Ti:Saph oscillator
and regenerative amplifier [28] to produce pulses centered
at 800 nm with a FWHM of 35 nm at a repetition rate of
3.4 kHz. The temporal duration of the pulses was deter-
mined to be 41 fs FWHM using frequency-resolved optical
gating (FROG). Using a beamsplitter and variable delay
stage, two beams of equal intensity were focused onto a dif-
fractive optic optimized for the first-order and negative
first-order diffraction spots yielding a pattern of four beams
in a square geometry [29–31]. The delay time between the
first two pulses was controlled precisely by moving pairs
of 1 degree fused silica wedges to step the coherence time,
s, in 4 fs increments from �600 to 600 fs [31]. The fourth
beam was attenuated and used as a local oscillator for
phase-sensitive heterodyne detection and spectral interfer-
ometry. The phase of the polarization in the complex plane
was determined using pump probe spectroscopy as
described by Brixner et al. [5]. The 33 population times
sampled were T = 0, 10, 20, 30, 40, 50, 65, 80, 95, 110,
125, 140, 155, 170, 185, 200, 220, 240, 260, 280, 300, 330,
360, 390, 420, 450, 480, 510, 540, 570, 600, 630 and 660 fs.

Previous analysis of this data focused primarily on the
exciton beating signals apparent in the lowest energy diago-
nal exciton peak visible in the real part of the third-order
material polarization [10]. In this work, we focus instead
on the absolute value of the third-order polarization. By
analyzing the absolute value, we eliminate any errors that
may arise from improper phasing, and as shown above, we
improve resolution of quantum beating by leveraging corre-
lation between oscillations in the real and imaginary por-
tions of the response. This improved sensitivity allows
observation of quantum beats not only within the main diag-
onal spectral features, but also within the cross-peak regions.

The signal present in the upper diagonal portion of the
spectrum is small and not sufficiently well resolved by
our experiment for detailed consideration; therefore, we
concentrate only on the lower diagonal cross-peaks in this
analysis. We approximate the integral over a circular area
centered at the cross-peak using a simple sum of the data
points within the region; the accuracy of this simple numer-
ical integration is improved by Fourier interpolation dur-
ing the analysis by zero padding the data.

The beating pattern observed in the most well resolved
cross-peak region, which is due to coupling between excitons
3 and 1, is shown in Fig. 11. To compensate for intensity fluc-
tuations, the data has been normalized to the integrated
amplitude of the third diagonal exciton peak because this
exciton has a long lifetime of almost 3 ps [32] and does not
show the dramatic beating signal previously described in
the lowest energy diagonal peak [10]. The rise component
of the cross-peak signal results from energy transfer from
exciton 3 to exciton 1. We are unable to accurately fit the rise
observed in the data because of the oscillations and the over-
lap with neighboring spectral features; the spectral resolu-
tion is especially poor in the absolute magnitude spectra
because of the broad extent of the dispersive (imaginary)
portion of the response. For both the real part and the abso-
lute magnitude, the apparent rise is too fast (k > 1/300 fs�1).
While many spectral features exhibit population dynamics
and can pollute this measurement, the prominent oscilla-
tions on top of this growth component show the coherence
beating between the pair of excitons and is far less prone
to contamination. In this experiment, the beating signal per-
sists strongly throughout the population time sampled. For
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both the real part and absolute value, we fit the oscillatory
portion of the data finding periods of 220 fs (±8 fs) and
231 fs (±13 fs), respectively. Calculating the exciton energies
from the site Hamiltonian published by Cho et al. [13], we
find the expected coherent beating period to be 248 fs. Our
experimental data agrees well with the behavior expected
from the theory developed previously in both the qualitative
character of the energy transfer and the quantitative charac-
ter of the coherence beating.

6. Conclusions

We have studied theoretically the dynamics and 2D
electronic spectroscopy of a linear trimer system using a
time-nonlocal non-Markovian quantum master equation
formalism [18] and a perturbative scheme [19,20] for the
calculation of the 2D spectra. The results confirm the intu-
ition provided by the impulsive limit response functions
and further demonstrate that for the linear trimer system
investigated in this work, the beats of the upper diagonal
peaks in the absolute value spectra provide a direct and
quantitative probe for the coherence dynamics in the
system, and the time-evolution of the lower diagonal
cross-peaks in the real value spectra reveal the population
transfer dynamics between exciton states. Combination of
the information evaluated from both the upper and lower
diagonal cross-peaks thus provides a full understanding
of the population and coherence dynamics of the quantum
system. We expect the same analysis can be applied to
interpret experiments on multichromophoric systems and
used to extract population and coherence dynamics when
the cross-peaks can be resolved.

In a recent 2D experiment, a lower diagonal cross-peak
was resolved in the 2D spectra of the Fenna–Matthews–
Olson (FMO) bacteriochlorophyll complex of green sul-
phur bacteria [10]. The experimental data shows that the
time-evolution of this cross-peak exhibits a rise component
and long-lasting quantum beat due to excitonic coherence.
We expect the analysis presented in this work can be
applied to the experimental data to quantify the population
and coherence dynamics in the FMO complex.

In this study, we assume that the cross-peaks are well
resolved and their amplitude can be determined unambigu-
ously. However, in real experiments the 2D spectrum is
usually congested and off-diagonal peaks are not well
resolved. In this regard, cross-peak specific techniques uti-
lizing linear polarization of laser pulses or pulse shaping
[33–36] to eliminate diagonal peaks in 2D electronic spectra
can be valuable tools that will be useful for the direct quan-
tification of the population and coherence dynamics of
multichromophoric systems.
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