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We investigate the Markovian limit of a polaronic quantum master equation for coherent resonance
energy transfer proposed recently by Jang et al. [J. Chem. Phys. 129, 101104 (2008)]. An expression
for the rate of excitation energy transfer (EET) is derived and shown to exhibit both coherent and
incoherent contributions. We then apply this theory to calculated EET rates for model dimer sys-
tems, and demonstrate that the small-polaron approach predicts a variety of dynamical behaviors.
Notably, the results indicate that the EET dynamical behaviors can be understood by the interplay
between noise-assisted EET and dynamical localization, while both are well captured by the polaron
theory. Finally, we investigate bath correlation effects on the rate of EET and show that bath corre-
lations (or anti-correlations) can either enhance or suppress EET rate depending on the strength of
individual system-bath couplings. In summary, we introduce the small-polaron approach as an intu-
itive physical framework to consolidate our understanding of EET dynamics in the condensed phase.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4761929]

I. INTRODUCTION

Excitation energy transfer (EET) processes have at-
tracted intensive research interests in chemistry and physics
because of their fundamental importance in phenomena such
as photosynthesis, photocatalytic chemistry, and operation of
optoelectronic devices.1 For example, natural photosynthesis
utilizes sophisticated molecular apparatus in the form of
compact pigment-protein complexes to perform solar energy
harvesting and trapping in remarkably high efficiency.2–4

Thus, understanding the mechanism of highly efficient exci-
tation energy transduction among and within photosynthetic
complexes could provide valuable insights for improving the
design and performance of artificial solar energy harvesting
devices.

Despite intensive research, recent experiments based
on ultrafast spectroscopic techniques have shown that
conventional theoretical frameworks cannot adequately
describe EET processes in photosynthesis and many organic
materials.5–10 Moreover, theoretical analyses based on non-
perturbative hierarchical equation of motion approaches11–14

have shown that non-Markovian dynamics, coherence dy-
namics, and multi-phonon effects are important in ultrafast
EET processes. Although numerically exact nonperturbative
approaches capture these effects and have been successfully
applied to provide useful insights into the dynamics of
light harvesting,14–16 they are computationally intensive and
often require special numerical implementations and even
high-performance hardware in order to treat realistic models
for photosynthetic systems.17 For example, Kreisbeck and
Kramer14 have recently calculated the two-dimensional
electronic spectra of a medium-size (with 7 chromophores)

a)Electronic mail: yuanchung@ntu.edu.tw.

photosynthetic complex with realistic spectral density using
a hierarchical equation of motion approach implemented on
graphics processing units. Therefore, the development of a
generalized theory that is applicable to coherent EET in large
molecular systems (with >100 chromophores in a normal
antenna supercomplex) in a broad parameter range is still
highly desirable.

Recently, a small-polaron quantum master equation (SP-
QME) has been developed by Jang et al. and independently
by Nazir and co-workers to treat coherent evolutions and
non-Markovian dynamics in EET processes.18–23 This ap-
proach adopts a fundamentally different picture for EET by
using a combined electronic/vibrational basis called “small
polaron states” to describe EET dynamics, assuming that the
electronic excitation moves collectively with its surrounding
bath deformation instead of treating the electronic and vibra-
tional degrees of freedom separately. The small-polaron ap-
proach has been successfully applied to describe EET in the
intermediate coupling regime,18, 23 in which the strengths of
electronic coupling and electron-phonon coupling are com-
parable. While more recently it has been shown that various
variational polaron approaches yield superior results,24–28 the
small-polaron approach still provides a simple perturbative
approach that gives adequate results over a broad parameter
range.23, 27

To further our understanding of EET in condensed-phase
molecular systems and to elucidate the interplay between co-
herent and incoherent EET mechanisms, we investigate EET
rate in the Markovian limit of the SP-QME theory in this
work. We aim to shed light on the mechanisms that contribute
to the non-trivial temperature and coupling-strength depen-
dences of EET dynamics by considering the polaronic rep-
resentation of EET dynamics. This paper is organized as fol-
lows. In Sec. II we outline the Markovian SP-QME theory and
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the model system studied in this paper. Critical to the theory is
the small-polaron transformation that leads to a renormalized
Hamiltonian with a small interaction term at both the strong
electronic coupling and the strong electron-phonon coupling
limits. Additionally, we adopt as the model system a dimer
system with a general bath model that treats bath correlations.
For the dimer model, we demonstrate that the Markovian EET
rate given by the small-polaron theory contains both coherent
and incoherent contributions. In Sec. III we present the main
results of this work and discuss their implications. We first in-
vestigate dynamical localization in the small-polaron picture
and its effects on the EET dynamics and equilibrium struc-
tures of excitonic systems. Then, by calculating EET rates for
the model dimer system at various temperatures and system-
bath coupling strengths, the behaviors of EET dynamics are
explored in a broad parameter range. In addition, we study
the effects of bath correlations on the EET rates. The results
indicate that the small-polaron approach not only predicts a
wealth of different EET dynamical behaviors but also offers
a intuitive physical framework to describe EET dynamics in
the condensed phase. Finally, we summarize and discuss the
main results of this work in Sec. IV.

II. THEORY

A. Polaron transformation

To describe EET in a multichromophoric system, we con-
sider a model with N chromophores coupled to a harmonic
bath through bilinear exciton-phonon couplings in the follow-
ing system-plus-bath Hamiltonian (¯ = 1):4, 29

H = Hs + Hb + Hsb,

Hs =
N∑

i=1

Eia
†
i ai +

∑
i �=j

Jij a
†
i aj ,

(1)
Hb =

∑
n

ωn

(
b†nbn + 1/2

)
,

Hsb =
∑
i,n

ωngnia
†
i ai

(
bn + b†n

)
,

where Hs denotes the Frenkel-exciton Hamiltonian of the sys-
tem, in which a

†
i is the exciton creation operator for an excita-

tion on the ith chromophore (site), Ei is the optical transition
energy of the ith site, and Jij denotes the electronic coupling
between the ith and j th site. Hb describes the phonon bath,
and b

†
n is the creation operator of the nth phonon mode. Hsb

describes the exciton-phonon (or system-bath) couplings, in
which gni is the unitless exciton-phonon coupling constant be-
tween the ith site and the nth phonon mode. Note that in the
Hamiltonian we do not assume independent bath modes for
each site, therefore, the general situations of correlated baths
can be treated in this model.

Polaron theories have long been used to treat exciton-
and electron-phonon interactions in solids. The “small po-
laron” formalism, pioneered by Holstein to treat charge trans-
fer in organic molecular crystals,30 is later extended by Silbey
and co-workers to treat population dynamics in EET.24, 31 To
reach a renormalized Hamiltonian that contains small inter-

action terms at both the strong electronic coupling (J � 1)
and strong electron-phonon coupling limits (g � 1), we fol-
low Grover and Silbey31 and define a unitary transformation
(the so-called small-polaron transform) using U = eS, where
S = −∑

i,n gnia
†
i ai(bn − b

†
n). Applying the transformation to

the Hamiltonian and rearranging the terms lead to a renormal-
ized Hamiltonian,18, 31

H̃ = U †HU = H̃s + H̃sb + H̃b,

H̃s =
N∑

i=1

(Ei − λi)a
†
i ai +

∑
i �=j

Jij

〈
θ
†
i θj

〉
a
†
i aj ,

(2)
H̃b = Hb,

H̃sb =
∑
i �=j

Jij (θ †
i θj − 〈

θ
†
i θj

〉
),

where λi is the reorganization energy for the ith site, λi

= ∑
n g2

niωn, and θ is a phonon displacement operator defined
by

θi = exp

[∑
n

gni

(
bn − b†n

)]
.

The unitary transformation effectively changes the basis
to a small-polaron basis that contains excitons and their as-
sociated displaced phonon modes. In the small-polaron basis,
reorganization energy terms are added to the diagonal site en-
ergies, and the electronic couplings are renormalized by a fac-
tor 〈θ †

i θj 〉. Here, we define effective electronic couplings by

J̃ij = Jij

〈
θ
†
i θj

〉
, (3)

where the thermal average in the renormalization factor can
be evaluated to give

〈
θ
†
i θj

〉 = exp

[
−1

2

∑
n

(gni − gnj )2 coth
βωn

2

]
,

with inverse temperature β = (kBT)−1. The renormalization
factor 〈θ †

i θj 〉 is a thermal-averaged Franck-Condon factor
that describes the overlap between two displaced phonon
wavefunctions and depends on both temperature and exciton-
phonon coupling strengths: it approaches zero at high tem-
peratures or strong exciton-phonon couplings. The effective
electronic coupling, J̃ij , is directly influenced by the
renormalization factor and the effects of which on the equi-
librium structures and EET dynamics will be investigated in
Sec. III A.

The renormalized system-bath coupling term, H̃sb, de-
scribes the fluctuations of the phonon-modulated effective
electronic couplings. This perturbation term is deliberately
chosen such that the thermal average 〈H̃sb〉 = 0. The re-
partition is a distinct feature of this theory, which is differ-
ent from many other approaches based on the same polaronic
picture. For example, Kenkre and Knox’s generalized master
equation approach32 adopted the full renormalized electronic
couplings as the perturbation term.

Finally, we introduce spectral density J(ω) to treat
system-bath couplings. The spectral density function is
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defined as

Jij (ω) =
∑

n

gnignjω
2
nδ(ω − ωn), (4)

where Jii describes diagonal exciton-phonon couplings to the
ith site, and Jij , when i �= j, describes exciton-phonon cou-
plings shared between the ith and j th sites. Therefore, cross-
correlations between energy fluctuations on different sites can
be treated in this formalism. Details on the evaluations of re-
organization energies and thermal-averaged Franck-Condon
factor in terms of spectral densities are given in Appendix A.

B. Markovian master equation and rate expression

The small-polaron transform has been applied to treat
various electron-phonon coupled problems, but previous
treatments almost universally consider only population
dynamics.24, 30, 31, 33 Motivated by recent experiments show-
ing quantum coherence effects in EET of photosynthetic
complexes,5, 8, 9 Jang et al. have recently derived a full small-
polaron quantum master equation in which coherent evolu-
tions and non-Markovian dynamics are explicitly included.19

The SP-QME allows us to elucidate how quantum coherences
between excitonic states affect the excitation energy trans-
fer and how protein dynamics is coupled to the dynamics of
electronic energy transfer between chromophores in photo-
synthetic complexes. For the completeness of this work, in
the following we present the key results of this formalism and
then focus on the population dynamics predictions by the SP-
QME approach.

Following Zwanzig’s projection operator technique34 and
using the renormalized H̃sb as the perturbation term, Jang
et al. obtained the equation of motion for the reduced density
matrix of the excitonic system,20

σ̇ (t) = −i[H̃s, σ (t)]

−
∫ t

0
dτTrb

{[
H̃sb(0),

[
H̃sb(−τ ), σ (t) ⊗ ρ

eq

b

]]}
− iTrb

{[
H̃sb(0), e−i(H̃s+H̃b)t

(
ρT (0) − σ (0) ⊗ ρ

eq

b

)
× ei(H̃s+H̃b)t

]}
−

∫ t

0
dτTrb

{[
H̃sb(0),

[
H̃sb(τ − t), e−i(H̃s+H̃b)t

× (
ρT (0) − σ (0) ⊗ ρ

eq

b

)
ei(H̃s+H̃b)t

]]}
, (5)

where Trb{} represents trace over bath degrees of freedom
and ρ

eq

b is the bath equilibrium density matrix of Hb. The time
evolution of an operator A(τ ) is defined in the interaction pic-
ture of the zeroth Hamiltonian, H̃0 = H̃s + H̃b. Equation (5)
is valid for arbitrary initial conditions and multichromophoric
systems,19, 20, 23 in which the first term describes the coherent
dynamics driven by the renormalized system Hamiltonian, the
second term describes dissipative dynamics induced by the
bath fluctuations, and the last two terms are inhomogeneous
terms that capture the non-equilibrium dynamics during the
bath reorganization processes.19 The inhomogeneous terms
decay to zero at times longer than the bath relaxation time and
therefore do not contribute to the relaxation rate at the long-

time limit.35, 36 Therefore, to focus on the EET dynamics we
neglect the inhomogeneous terms and take the long-time limit
of the memory kernel37 to arrive at a Markovian form,

σ̇ (t) = −i[H̃s, σ (t)]

−
∫ ∞

0
dτ Trb

{[
H̃sb,

[
H̃sb(−τ ), σ (t) ⊗ ρ

eq

b

]]}
. (6)

This equation describes EET dynamics of a polaronic system
induced by the fluctuations of effective electronic couplings.
Here, the Markovian approximation is applied, therefore,
Eq. (6) is valid when the EET dynamical time scale is longer
than the bath relaxation time (i.e., fast bath).27, 36 Given that
the bath-relaxation time in a typical photosynthetic system is
usually <100 fs and that the majority of the population trans-
fer time scale ranges from a few hundred femtoseconds to
a few picoseconds in photosynthetic systems, the Markovian
dynamics should capture a major portion of EET dynamics in
photosynthetic light harvesting.4

In addition, the polaronic quantum master equation de-
scribes the EET dynamics in a displaced bath representation,
which significantly reduces shortcomings of Markovian mas-
ter equation and thus has a wider range of applicability com-
pared to the conventional weak-coupling Redfield equation.35

However, this change of basis also complicates the interpreta-
tion of the polaronic reduced density matrix σ (t), because the
total density matrix is dressed with bath displacements before
traced over bath degrees of freedom,

σij = Trb
{
θ
†
i ρij θj

}
, (7)

where ρ denotes the total system-plus-bath density matrix
and ρ ij = 〈i|ρ|j〉. Here, the diagonal elements of the reduced
density matrix are invariant under the polaron transformation,
however, the off-diagonal elements (coherences) are mingled
with bath averages compared with the respective original site-
basis coherences.18, 20 Therefore, in general it is non-trivial to
recover coherences in the original undressed basis from σ (t)
in the polaronic representation. As a result, an observable that
depends on the coherences in the undressed site basis would
be difficult to evaluate from the polaronic reduced density
matrix. For example, calculation of absorption spectrum is
non-trivial in the polaronic representation.18, 20 Nevertheless,
a limiting case can be considered: when the bath relaxation is
rapid and thus an equilibrium bath can be presumed, the trace
over the off-diagonal elements in Eq. (7) reduces to thermal
averages. As a result, a coherence in the polaronic represen-
tation equals to the respective coherence in the undressed site
basis multiplied by a Frank-Condon factor due to bath dis-
placements in this fast-bath limit.

From Eq. (6) and the definition of H̃sb in Eq. (2), we ob-
tain the population rate equation of a diagonal density-matrix
element σαα ,

σ̇αα(t) =
∑
ξ,η

kαα,ξη σξη, (8)

with α referring to a eigenstate |α〉 of the renormalized ex-
citon Hamiltonian, H̃s . The eigenstate can be expressed as a
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linear combination of the site excitations,

|α〉 =
∑

i

φα
i |i〉,

where φα
i is the coefficient of the ith site excitation in the

eigenstate |α〉 (φα
i = 〈i|α〉). We consider EET between po-

laronic eigenstates, which should be a physically reasonable
picture for EET dynamics in the Markovian limit. Note that
because the diagonalization of the renormalized Hamiltonian
leads to mixing of electronic and bath degrees of freedom,
the polaronic eigenstates are different from the exciton states
of the undressed electronic Hamiltonian. Since the originally
pure-electronic exciton should gradually mingle with motions
in bath degrees of freedom during bath relaxation, when the
bath reaches equilibrium, the excitation roaming on the sys-
tem is no longer a bare exciton, but a polaron. Thus, treatment
of EET dynamics in the Markovian limit with the polaron ba-
sis is arguably more appropriate than treatment with the un-
dressed exciton basis. As an additional note, the small polaron
transformation taken in this work generally overdresses the
excitation, leading to an overly-reduced effective electronic
coupling. This problem can be corrected using higher-level
variational treatments that can be applied to construct pola-
ronic zeroth-order states to better approximate the true eigen-
states of the total system-plus-bath Hamiltonian.25–28

The population transfer rate constant from eigenstates
|β〉 to |α〉 in Eq. (8) is given as

kαα,ββ =
∑
i �=j

∑
m�=n

Jij Jmn

∫ ∞

0
dτ

{
φ

β

i φα
j φα

mφβ
n

× ei(Eβ−Eα )τCij,mn(τ )

+φα
i φ

β

j φβ
mφα

n × e−i(Eβ−Eα )τC∗
ij,mn(τ )

}
, (9)

where the time-correlation function of fluctuations from
system-bath coupling is

Cij,mn(τ ) = JijJmn

[〈
θ
†
i (τ )θj (τ )θ †

mθn

〉 − 〈
θ
†
i θj

〉〈
θ †
mθn

〉]
.

Equation (9) describes polaron transfer induced by fluctu-
ations in the effective electronic couplings, which depends
on the electronic coefficients that determine polaron overlap
between the two states. Here the secular approximation is
taken implicitly, since only population transfer dynamics
is considered in Eq. (9). We define the one-sided Fourier
integral of correlation functions C̃(ω) = ∫ ∞

0 eiωtC(t)dt , and
rewrite the EET rate as

kαα,ββ =
∑
i �=j

∑
m�=n

{
φ

β

i φα
j φα

mφβ
n × C̃ij,mn(Eβ − Eα)

+φα
i φ

β

j φβ
mφα

n × C̃∗
ij,mn(Eβ − Eα)

}
.

The correlation functions and rates can be evaluated from
the spectral densities, and the results are presented in
Appendix B.

C. Dimer model system

The theory presented in Subsections II A and II B is gen-
eral and valid for multichromophoric systems. Nevertheless,

to elucidate the physics described by the small-polaron ap-
proach, we investigate a simple model system. In this work,
we consider a coupled donor-acceptor system described by
the following excitonic Hamiltonian before the small-polaron
transformation:

HS =
[−� J0

J0 �

]
,

where 2� is the energy gap between the donor and the accep-
tor (� > 0), and J0 is the excitonic coupling between the two
sites. We assume that the two eigenstates |a〉 and |b〉 of the
renormalized Hamiltonian H̃s have eigen energies Ea and Eb,
respectively, and are defined by the wavefunctions

|a〉 = φa
1 |1〉 + φa

2 |2〉,
|b〉 = φb

1 |1〉 + φb
2 |2〉,

where sites 2 and 1 are the donor and acceptor, respectively.
We further assume Eb > Ea and consider only the downhill
|b〉 → |a〉 EET rate in this work.

For treatment of system-bath couplings, we assume the
super-Ohmic form for the spectral density,

Jij (ω) = γij

ω3

ω2
c

e− ω
ωc , (10)

where γ ij is the electron-phonon coupling strength and ωc

is the cut-off frequency of the system-bath couplings. For
this dimer model, we need to consider three spectral density
functions:

J11(ω) = γ11
ω3

ω2
c

e− ω
ωc ,

J22(ω) = γ22
ω3

ω2
c

e− ω
ωc , (11)

J12(ω) = J21(ω) = γ12
ω3

ω2
c

e− ω
ωc .

Note that this model is fully general with respect to the na-
ture of the bath, and the energy fluctuations on different
sites can have cross correlations. In this case, the correlated
fluctuations of bath modes are described by electron-phonon
coupling strength γ 12 that is bounded by Schwarz inequal-
ity |γ12| ≤ √|γ11γ22|, which guarantees that the amplitude of
correlated fluctuation is always smaller than that of the total
fluctuations on each site. Therefore, to describe bath correla-
tion effects, we can define a cross-correlation coefficient,

c = γ12√
γ11γ22

,

such that γ12 = √
γ11γ22 × c. This model then describes from

fully anti-correlated baths (c = −1) to fully correlated baths
(c = 1), including independent baths with c = 0. Thus, corre-
lated bath effects can be accounted for within this model.

For this dimer system, the population dynamics depends
on two correlation functions,

C11(t) = J 2
0

(〈
θ
†
1 (t)θ2(t)θ †

1θ2
〉 − 〈

θ
†
1θ2

〉2)
, (12)

C12(t) = J 2
0

(〈
θ
†
1 (t)θ2(t)θ †

2θ1
〉 − 〈

θ
†
1θ2

〉2)
. (13)
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Following Eq. (9), the downhill EET rate from |b〉 to |a〉 can
be written as

kaa,bb = 2[1 − 2(φa
1 φb

1 )2] × Re[C̃12(Eb − Ea)]

− 4(φa
1 φb

1 )2 × Re[C̃11(Eb − Ea)],

≡ kh + kc. (14)

Note that the factor φa
1 φb

1 depends on the extent of delocal-
ization (coherence) of the eigenstates and goes to zero when
the eigenstates are fully localized (i.e., |a〉 = |1〉 and |b〉
= |2〉). Equation (14) shows that the EET rate is a sum of
two terms. The first term (kh) is a purely incoherent term,
as it slows down when the eigenstate is more delocalized.
This term resembles the Förster rate at small φa

1 φb
1 , i.e.,

weak delocalization.33 In contrast, the second term (kc) de-
pends critically on the coherent delocalization of the eigen-
wavefunction, and is at its maximum when the eigenstate is
fully delocalized. Hence, we assign kc as the coherent term.
The kc contribution is not included in the Förster theory and
therefore Eq. (14) represents an extension to the Förster the-
ory to include contributions due to delocalization between the
donor and acceptor. In Sec. III B we will investigate the dy-
namical behaviors of the two terms and show that they exhibit
distinct temperature dependences. The small-polaron theory
captures both the coherent delocalization (kc) and incoherent
hopping kh contributions to population transfer, and thus, pro-
vides a unified perspective to the coherent effects in EET dy-
namics of multichromophoric systems.

III. RESULTS AND DISCUSSIONS

A. Dynamical localization

In the small-polaron theory, the electronic coupling
of transformed Hamiltonian is renormalized by the factor
〈θ †

i θj 〉. This term incorporates temperature dependence into
the zeroth-order Hamiltonian to capture the impact of ther-
mal fluctuations on coherence and exciton delocalization. We
study the renormalization of the zeroth-order polaron Hamil-
tonian and its effects on the eigenstates and equilibrium struc-
tures in this section.

In Fig. 1 we show the renormalization of J̃ as a function
of temperature at several exciton-phonon coupling strengths
for the dimer model. As the temperature increases, 〈θ †

i θj 〉 de-
cays exponentially to zero. In addition, at a fixed tempera-
ture, the effective electronic coupling decreases as exciton-
phonon coupling increases. Clearly, at high temperatures and
strong exciton-phonon couplings, the effective coupling tends
to zero. As a consequence, the transfer rate will also dimin-
ish at either of these two limits. In the small-polaron model,
the renormalization of effective electronic coupling by the
environmental modulations plays an important role in EET
dynamics.38

The temperature and exciton-phonon coupling strength
dependence of the effective coupling also affects the equilib-
rium structure of the excitonic system.27 Figure 2 illustrates
the effects of temperature as well as exciton-phonon coupling
strength on the equilibrium excitonic structure for a dimer
system with � = 0.1 and J0 = 1. In Fig. 2(a), we plot the off-

FIG. 1. Effective electronic coupling (J̃ ) as a function of temperature with
exciton-phonon coupling strength γ 0 = 0.1, 0.5, and 1.0. The curves show
exponential decay of effective electron couplings at high temperatures and
strong exciton-phonon couplings.

diagonal element of the equilibrium reduced-system density
matrix (coherence) of a model dimer system as a function of
inverse temperature β and exciton-phonon coupling strength
γ . As temperature increases, the coherence decreases. In ad-
dition, the increase of exciton-phonon coupling strength also
lessens the coherence. To clearly show the temperature effect
on the extent of delocalization for the model dimer system,
we show the delocalization length, defined as the inverse par-
ticipation ratio of the eigenstate,39 as a function of β and γ in
Fig. 2(b). There, as temperature increases, the delocalization
length decreases and finally approaches 1. This is a result
of the localization of the electronic state due to dynamical
energy fluctuations induced by the bath. This dynamical
localization effect is already captured in the zeroth-order
description of the small-polaron theory, manifested by the
renormalization of the effective electronic couplings. This is
an important advantage of the polaron theory.

B. Coherent versus incoherent transfer

Let us now investigate the behavior of the rate expres-
sion in the polaron picture (Eq. (14)) under varying temper-
ature and electron-phonon coupling strength. For simplicity,
we study a model dimer system with � = 0.1ωc and J0 = 1ωc,
and assume the two sites coupled to independent baths (c = 0)
described by the same spectral density (γ 11 = γ 22 = γ ). Such
a model is usually presumed in descriptions of EET dynam-
ics in photosynthetic systems or organic materials.29 Dimers
with different electronic parameters show minor quantitative
differences, but do not affect the general results given in this
section.

In Fig. 3(a), we plot the incoherent contribution (kh)
to the downhill transfer rate (Eq. (14)) as a function of
temperature and exciton-phonon coupling strength. The
incoherent term shows generally thermal-activated behavior
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FIG. 2. Coherence and delocalization length of a two-site equilibrium density matrix as a function of inverse temperature β and exciton-phonon coupling
strength γ for a model dimer system with � = 0.1 and J0 = 1. (a) Coherence (off-diagonal density matrix element) of the equilibrium state for the dimer
system. (b) Delocalization length of the excitonic eigenstates of the dimer model.

that is expected from a hopping-like transfer mechanism.
By contrast, the coherent term contribution (kc) shown in
Fig. 3(b) decreases as temperature increases, because as
we discussed in Sec. III A, coherence is suppressed as
temperature increases. As a result the coherent term only
contributes to the transfer rate at low temperatures.

Figure 3(c) shows a map of the total transfer rate as
a function of temperature and exciton-phonon coupling
strength. This map can be viewed as a dynamical phase
diagram that summarizes interesting dynamical regimes
predicted by the small-polaron theory. (1) At weak exciton-
phonon couplings, the EET is limited by energy dissipation to
the bath, therefore, the rate is small and increases as the cou-
pling strength γ increases. This is the general noise-assisted
EET regime discussed by several other groups recently.40–43

(2) At high temperatures and strong exciton-phonon cou-
plings, the renormalized effective electronic coupling decays
exponentially as either temperature or exciton-phonon
coupling increases, which also leads to suppressed EET

rate. This is a dynamical localization regime that exhibits
the self-trapping of excitons.44 (3) At intermediate coupling
strengths, a regime with almost temperature-independent rate
that is maximal with respect to the exciton-phonon coupling
strength emerges. This optimal rate regime exists because of a
subtle balance between energy dissipation and dynamical lo-
calization effects, and is also predicted by other theories.40, 41

However, the current small-polaron theory gives further
insights into the mechanisms of EET through the separation
of the incoherent and coherent transfer contributions. The
almost temperature-independent rate is a result of a subtle
balance between the coherent and incoherent contributions.
At low temperatures, the EET rate is dominated by the
coherent term, which decreases as temperature increases.
In contrast, at high temperatures, the thermal-activated
incoherent term becomes dominant. As a result, although
the EET rate seems almost temperature independent in
the intermediate coupling regime, the mechanism of EET
exhibits a coherent to incoherent transition as temperature

FIG. 3. Calculated downhill EET rates as a function of exciton-phonon coupling strength γ and reduced temperature kBT/ωc for a dimer model with �/ωc

= 0.1 and J/ωc = 1. In addition, here we consider uncorrelated baths and set γ 11 = γ 22 = γ and γ 12 = 0. (a) The incoherent term kh. This term corresponds to
the same hopping term in the Förster theory. (b) The coherent term kc. This term depends on the coherence between the donor and acceptor states, and goes to
zero when the eigenstate is localized. Because of the renormalization of the electronic coupling (J̃ ), the kc term decreases as temperature increases. (c) The total
rate kh + kc. Because of the interplay between the incoherent and coherent terms, the total rate exhibits a weak temperature dependence at a board temperature
range in the intermediate coupling regime.
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FIG. 4. Calculated downhill EET rates as a function of reduced temperature (kBT/ωc) and bath cross-correlation constant c for a dimer model with weak
system-bath couplings (γ 11 = γ 22 = 0.1). The same electronic parameters as in Fig. 3 have been used. (a) The incoherent term kh. (b) The coherent term kh.
(c) The total EET rate. The figure shows that fully anti-correlated bath gives the maximal EET rate. In this case, anti-correlated baths increase the amplitude of
fluctuations of the energy gap between the two exciton states, leading to an increased effective system-bath coupling strength. In this weak system-bath coupling
regime, an increased effective system-bath coupling strength leads to a faster rate due to noise-assisted transfer.

increases. Our results corroborated with many important
theoretical findings recently, yet this theory provides intuitive
physical framework to unify these discoveries.40–42

C. Effects of bath correlations

So far we have focused on a dimer model with uncorre-
lated bath, however, our theory is applicable also to correlated
bath models. The nature of the protein bath modulating EET
dynamics has attracted great interest recently. A coherence
two-color photon-echo measurement has indicated that
electronic coherence alone can not explain the long-lasting
excitonic coherence observed in a bacterial photosynthetic
reaction center, and a model with highly correlated bath
fluctuations is required to describe the experimental data.6

Motivated by recent experimental results, many theoretical
studies have applied phenomenological models22, 43, 45–47 or
atomistic molecular dynamics simulations48, 49 to investigate
the effect of bath correlations on the dynamics of EET.
However, the influence of bath correlations on the rate
of EET is still not fully elucidated, and a comprehensive
understanding covering positive to negative correlations
under different parameter conditions is still lacking. In this
section, we investigate the EET rate for models with bath
correlations and show that the polaron rate shows non-trivial
bath correlation effects that yield further insights into the
factors controlling the effects of bath correlations.

To elucidate the effects of bath correlations, we first cal-
culate EET rates for a dimer model with weak exciton-phonon
couplings (γ 11 = γ 22 = 0.1) at different cross correlation
coefficients (Sec. II C). For simplicity, electronic parameters
as in Fig. 3 have been used (� = 0.1ωc and J0 = 1ωc). In
Fig. 4, we show the calculated EET rate as a function of
temperature and levels of bath correlations, from fully cor-
related bath (c = 1) to fully anti-correlated bath (c = −1).
The EET rate exhibits strong dependence to the bath corre-
lations. In this case, the EET rate reaches maximum when
the two baths are fully anti-correlated, and gradually de-
creases as the cross-correlation increases. This behavior ap-
plies to both the incoherent term and the coherent term, and

the temperature does not affect the position of the maximum.
Here, what we have learned in Sec. III B and Eq. (A4) pro-
vides the ground rules to interpret the results. According to
Eqs. (A4) and (B3), in comparison with an uncorrelated bath
model, anti-correlated baths (c < 0) induce enhanced fluc-
tuations in the effective couplings, while correlated baths
(c > 0) lead to suppressed fluctuations. Because γ = 0.1
is still in the phonon-assisted transfer regime (Fig. 3(c)),
increasing exciton-phonon coupling strength should lead to
higher EET rate. Therefore, since anti-correlation effectively
increases exciton-phonon coupling strength, as indicated in
Eq. (A4), it should promote the EET rate.

In addition, we can quantify the optimal level of correla-
tions for maximal EET rate in the dimer model by considering
the exciton-phonon coupling coefficients in Eq. (A4). Accord-
ing to Eq. (A4), the relevant factor that contributes to the EET
rate is �eff = γ ii + γ jj − 2γ ij, including the effects of bath cor-
relations (for a independent-bath model, γ ij = 0). Therefore,
at the same temperature, electronic parameters, and bath cut-
off frequencies, a correlated-bath model that yields maximal
EET rate should have the same �eff as an independent-bath
model that also yields the maximal EET rate. As a result, we
can estimate the value of optimal cross-correlation coefficient
(copt) that gives rise to the maximal EET rate for a dimer sys-
tem if the dynamical phase diagram (e.g., Fig. 3(c)) for the
independent-bath version of the same model is known. Sup-
pose the optimal exciton-phonon coupling strength of the in-
dependent bath model at a given temperature is γ opt (i.e., the
γ that gives maximal rate in Fig. 3(c)), then the copt can be
approximately obtained:

copt = γ11 + γ22 − 2γopt

2
√

γ11γ22
. (15)

For the case shown in Fig. 4 at kBT/ωc ∼ 1 and γ opt ∼ 0.5,
the estimated copt ∼ −4 > −1. Therefore, the copt appears at
the maximum anti-correlation in the dimer system described
in Fig. 4.

By contrast, a dimer model with strong exciton-phonon
couplings shows markedly different bath correlation effects.
In Fig. 5, we show the calculated EET rate for a dimer model
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FIG. 5. Calculated downhill EET rates as a function of reduced temperature (kBT/ωc) and bath cross-correlation constant c for a dimer model with strong
system-bath couplings (γ 11 = γ 22 = 1). The same electronic parameters as in Fig. 3 have been used. (a) The incoherent term kh. (b) The coherent term kh.
(c) The total EET rate. The figure shows that partially correlated baths give the maximal EET rate. In this case, bath correlations reduce the amplitude of
fluctuations of the energy gap between the two exciton states, leading to a reduced effective system-bath coupling strength. In this strong system-bath coupling
regime, reducing effective system-bath coupling strength lessens dynamical localization, leading to a faster rate.

with strong exciton-phonon couplings (γ 11 = γ 22 = 1). The
EET rate also exhibits strong dependence on the bath corre-
lations, however, in this case the EET rate maximizes when
the two baths are partially correlated (cmax ∼ 0.5). This is in
fact expected. According to Fig. 3(c), the dimer with γ = 1
is located in the dynamical localization regime for a uncorre-
lated bath model. Therefore, correlated baths, with suppressed
fluctuations, could reduce dynamical localization and enhance
the EET rate. An estimation based on Eq. (15) yields that at
kBT/ωc ∼ 1, the copt should be about 0.5, in good agreement
with the calculations presented in Fig. 5.

Although our discussions so far have focused on EET,
charge transfer processes can be described within essentially
the same framework. Specifically, because charge-transfer
states are normally more strongly coupled to a collective bath,
the current model with an anti-correlated bath (c = −1) is
often adopted to describe charge transfer processes. There-
fore, we expect the main results discussed in this work ap-
ply also to charge transfer processes. Furthermore, because in
general the system-bath couplings in a charge-transfer system
are stronger than those of a EET system, it is expected that the
small-polaron approach should yield more accurate results for
charge-transfer dynamics.

IV. CONCLUDING REMARKS

In this work, we have investigated the Markovian limit
of a polaronic quantum master equation and derived a rate ex-
pression in the polaron picture to describe EET dynamics. The
small-polaron EET rate contains coherent and incoherent con-
tributions that can be easily identified. We then apply this for-
mula to investigate EET rate for a model dimer system and re-
veal that the small-polaron approach predicts non-trivial tem-
perature and exciton-phonon coupling strength dependences
for the EET dynamics. When the downhill EET rate is plot-
ted as a function of temperature and exciton-phonon coupling
strength, we obtain a map of dynamical regimes that summa-
rizes the EET rate behaviors. In addition, our results show that
the interplay between the coherent contribution and the inco-
herent hopping contribution to the EET rate can give rise to

almost temperature-independent behavior due to a coherent to
incoherent transition as temperature increases.

We have also studied the bath correlation effects, and
concluded that depending on the strength of system-bath cou-
plings, the bath correlation (or anti-correlation) can either en-
hance or suppress EET rates. The physics is well interpreted
by the interplay between noise-assisted EET and dynamical
localization that we discussed in Sec. III B. An important
insight is that the bath correlation effects have to be con-
sidered differently based on the strength of electron-phonon
couplings. At weak system-bath couplings, anti-correlated
baths promote EET because at this regime increasing effective
system-bath coupling leads to higher rate. On the contrary,
at strong system-bath couplings, bath correlations reduce ef-
fective fluctuations and suppress dynamical localization. As a
result, correlated baths give rise to higher EET rate at strong
system-bath couplings. The division of these two different be-
haviors is well characterized by the dynamical phase diagram
as shown in Fig. 3(c) and Eq. (15).

In summary, the polaronic picture provides two useful
guiding principles to describe EET rates. The first one is
the principle of resonance energy transfer, which requires the
donor and acceptor states to reach the same energy because
of the bath-induced energy fluctuations for EET to occur. The
noise-assisted energy transfer effect40–43 is a manifestation of
this principle. Effectively the noise-assisted energy transfer is
described by a spectral broadening process and is captured
by the spectral overlap term in the Förster theory. The second
one is the dynamical localization effect that is captured by the
polaronic theory. Dynamical fluctuations modify the effective
electronic coupling, through a dynamical Franck-Condon fac-
tor in the polaron theory, leading to diminished transfer rate
(i.e., localization) as either temperature or exciton-phonon
coupling increases. Combining the two principles allows us to
interpret the various dynamical regimes shown in the dynami-
cal phase diagram (Fig. 3(c)). The same ideas apply to predict
marked differences in bath correlation effects for the weak
and strong exciton-phonon coupling cases. We believe the re-
sults of this work provide a useful and general perspective
in the understanding of EET dynamics in molecular systems,
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and will be useful to the design of efficient light-harvesting
materials.

Finally we note that the polaronic quantum master equa-
tion (Eq. (5)) encapsulates additional interesting physics in
EET dynamics. For example, it can be shown that the non-
equilibrium phonon response to the excitation process de-
scribed by the inhomogeneous terms in Eq. (5) may result
in non-trivial electronic dynamics, and strong bath memory
effects at strong exciton-phonon couplings. The implications
of this new theoretical method in the mechanisms of ultrafast
charge- and energy-transport in nanoscale molecular systems
are currently under investigation and will be published in a
separate work.
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APPENDIX A: REORGANIZATION ENERGY AND
THERMAL-AVERAGED FRANCK-CONDON FACTOR

The renormalized Hamiltonian in Eq. (2) depends on
thermal averaged quantities including the reorganization en-
ergy and the Franck-Condon factor. Here we describe the
evaluation of these quantities in terms of spectral densities
that describe the system-bath couplings. Given the definition
of spectral density in Eq. (4), the reorganization energy of the
ith site can be written as

λi =
∑

n

g2
niωn =

∫ ∞

0

Jii(ω)

ω
dω, (A1)

and the thermal-averaged Franck-Condon factor 〈θ †
i θj 〉 is

〈θ †
i θj 〉 = e− 1

2

∑
n(gni−gnj )2 coth βωn

2

= exp

{
−1

2

∫ ∞

0

1

ω2

[
Jii(ω) − 2Jij (ω)

+ Jjj (ω)
]

coth
βω

2
dω

}
. (A2)

Note that the integral in the exponent of 〈θ †
i θj 〉 diverges

for Ohmic spectral densities. As a result, the current small-
polaron approach does not describe electronic coherence and
the transfer can only occur via the hopping mechanism for
Ohmic-bath systems. This difficulty can be overcome by us-
ing a variational polaron approach.26 For simplicity, in this
work we consider exclusively a super-Ohmic form as defined
in Eq. (10) to avoid this difficulty. Inserting the super-Ohmic
spectral densities (Eq. (11)) into Eqs. (A1) and (A2), and per-
forming the integrations, we obtain

λi = 2γiiωc (A3)

and

〈θ †
i θj 〉 = exp

[
−γii + γjj − 2γij

2

∫ ∞

0
dω

ω

ω2
c

× exp

[
− ω

ωc

]
coth

(
βω

2

)]

= exp

[
−γii + γjj − 2γij

2

(
−1 +

2ψ ′( 1
βωc

)

(βωc)2

)]
,

(A4)

where ψ ′ is the trigamma function.50 Equation (A4) clearly
shows that the γ ij term gives rise to additional modulation
of the effective electronic couplings due to bath correla-
tion effects. Compared to an uncorrelated-bath model, anti-
correlated baths (c < 0 and negative γ ij) lead to enhanced
fluctuations, while correlated baths (c > 0 and positive γ ij)
result in suppressed fluctuations.

APPENDIX B: EVALUATION OF TIME-CORRELATION
FUNCTIONS

The dissipative dynamics in the small-polaron quantum
master equation depends on the following time-correlation
function:

Cij,kl(t) = JijJkl[〈θ †
i (t)θj (t)θ †

k θl〉 − 〈θ †
i θj 〉〈θ †

k θl〉].
The thermal average of the time-dependent part can be
evaluated31 to yield

〈θ †
i (t)θj (t)θ †

k θl〉

= 〈θ †
i θj 〉〈θ †

k θl〉 exp

[
−

∑
n

(gnj − gni)(gnl − gnk)

× cos(ωnt) coth

(
βωn

2

) ]

× exp

[
i
∑

n

(gnj − gni)(gnl − gnk) sin(ωnt)

]
.

(B1)

Using the definition of the spectral density, the time-
correlation function can be written as

Cij,kl(t) = J̃ij J̃kl{exp[−A(t) + iB(t)] − 1}, (B2)

where

A(t) =
∫ ∞

0
dω

1

ω2
[Jik(ω) − Jil(ω) − Jjk(ω) + Jj l(ω)]

× cos(ωt) coth

(
βω

2

)
,

(B3)

B(t) =
∫ ∞

0
dω

1

ω2
[Jik(ω)−Jil(ω)−Jjk(ω)+Jj l(ω)] sin(ωt).

Note that we have also used the definition of the renormalized
effective electronic coupling, J̃ij = Jij 〈θ †

i θj 〉. Equation (B2)
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clearly shows that the time-correlation function captures the
dynamics of the fluctuations of the effective electronic cou-
plings around their mean values.

Finally, assuming the super-Ohmic form for the spectral
densities, the cosine integrals in Eq. (B3) can be evaluated to
give∫ ∞

0
dω

Jij (ω)

ω2
cos(ωt) coth

(
βω

2

)

= γij

∫ ∞

0
dω

ω

ω2
c

exp

[
− ω

ωc

]
cos(ωt) coth

(
βω

2

)

= γij

(
−1 + ω2

c t
2

(1 + ω2
c t

2)2
+

2Re
[
ψ ′( 1

βωc
+ i t

β

)]
(βωc)2

)
, (B4)

where ψ ′ is the trigamma function.50 The sine integrals in
Eq. (B3) are∫ ∞

0
dω

Jij (ω)

ω2
sin(ωt) = γij

∫ ∞

0
dω

ω

ω2
c

exp

[
− ω

ωc

]
sin(ωt)

= γij

2ωct

(1 + ω2
c t

2)2
. (B5)

1G. D. Scholes and G. Rumbles, Nature Mater. 5, 683 (2006).
2R. E. Blankenship, Molecular Mechanisms of Photosynthesis (Wiley-
Blackwell, 2002).

3R. J. Cogdell, A. T. Gardiner, H. Hashimoto, and T. H. P. Brotosudarmo,
Photochem. Photobiol. Sci. 7, 1150 (2008).

4Y.-C. Cheng and G. R. Fleming, Annu. Rev. Phys. Chem. 60, 241 (2009).
5G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng,
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