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The small polaron quantum master equation (SPQME) proposed by Jang et al. [J. Chem. Phys. 129,
101104 (2008)] is a promising approach to describe coherent excitation energy transfer dynamics in
complex molecular systems. To determine the applicable regime of the SPQME approach, we per-
form a comprehensive investigation of its accuracy by comparing its simulated population dynamics
with numerically exact quasi-adiabatic path integral calculations. We demonstrate that the SPQME
method yields accurate dynamics in a wide parameter range. Furthermore, our results show that the
accuracy of polaron theory depends strongly upon the degree of exciton delocalization and timescale
of polaron formation. Finally, we propose a simple criterion to assess the applicability of the SPQME
theory that ensures the reliability of practical simulations of energy transfer dynamics with SPQME
in light-harvesting systems. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4840795]

I. INTRODUCTION

Excitation energy transfer (EET) is ubiquitous in light
harvesting systems: in photosynthetic complexes of plants
and algae, energy of solar irradiation is collected through elec-
tronic excitation of chlorophylls and transferred to the reac-
tion center to drive subsequent chemical reactions;1 in or-
ganic photovoltaics, photo-excitations of organic molecules
migrate through their supporting substrates and after reaching
junction interfaces, generate charges that can be collected at
the electrodes to supply electricity.2 One major challenge for
theoretical modelling of such processes is the correct assess-
ment of the influence from surrounding environments on elec-
tronic excitations. When the system-environment coupling
is far stronger than the coupling between excited states of
each single chromophores, termed as “electronic coupling,”
Förster-Dexter theory is an appropriate method to describe
EET. For the opposite limit where system-environment cou-
pling is weak, Redfield theory serves as an accurate tool to
simulate EET.3–6

Despite their simplicity in computation and clarity in
the elucidation of photophysical phenomena, recent spec-
troscopic experiments on photosynthetic complexes and or-
ganic materials have indicated that the adequacy of using
Redfield or Förster-Dexter theories to describe EET in such
systems could be questionable.7–12 To remedy their deficien-
cies, various numerically exact non-perturbative approaches
have been proposed and successfully implemented to inves-
tigate EET in photosynthetic complexes.13–20 Though these
non-perturbative methods have a clear advantage in their ac-
curacy, the perturbative approaches still retain particular im-
portance and usefulness in computational efficiency and di-
rect conveyance of physical intuitions. To go beyond the
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limit of Redfield and Förster theory, Jang et al.,21–23 and
independently Nazir and co-workers,24–26 have developed a
second-order, time-local, non-Markovian small polaron quan-
tum master equation (SPQME) for coherent energy transfer
in molecular systems. In addition, for specific forms of cor-
relations between phonon excitations, Nazir and co-workers
have recently developed a variational polaron master equa-
tion approach with significantly improved accuracy and range
of applicability based on the theory developed by Silbey and
Harris.27–30

The small polaron quantum master equation is exact at
the weak electronic coupling and weak system-environment
coupling limits, and it can serve as a bridge between the Red-
field and Förster regimes.31, 32 SPQME has been successfully
utilized to explore the role of environmental fluctuations and
correlations of phonon excitations in EET dynamics.24, 25, 33

It has also been employed in the investigations of vibrational
contributions to EET in photosynthetic complexes of cryp-
tophyte algae.34 However, due to its perturbative nature, the
accuracy of SPQME declines in the intermediate coupling
regime. For example, comparisons with variational polaron
simulations show that when bath relaxation is far slower than
electronic energy transfer, small polaron theory largely under-
estimates coherence in EET dynamics.28, 35

To utilize SPQME theory for accurate elucidation of
physical mechanisms of EET in light harvesting systems, it
is crucial to obtain a systematic assessment of its applicabil-
ity throughout a wide parameter range. Recently, Cao and
co-workers have investigated the equilibrium states in the
small polaron theory to probe its applicable regime. Their
results comply with the variational polaron studies;36 how-
ever, the accuracy of equilibrium structure does not fully
stipulate the corresponding properties in perturbative sim-
ulations of EET dynamics. In this work, we focus on dy-
namics and present a comprehensive investigation of the
accuracy of SPQME in simulating EET dynamics through

0021-9606/2013/139(22)/224112/11/$30.00 © 2013 AIP Publishing LLC139, 224112-1
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comparisons with numerically exact quasi-adiabatic path in-
tegral (QUAPI) calculations.13, 14 With this comprehensive
benchmark, we shall also propose a simple criterion to de-
termine the applicable regime of the small polaron theory.

The present work is organized as follows. In Sec. II, we
will first review the formalism of SPQME and present a dimer
model system for the comparison of EET dynamics simu-
lated by small polaron master equation and QUAPI. The re-
sults of comparison will be presented in Sec. III along with
discussions about the adequacy of the small polaron theory
(SPQME) in various parameter regimes and its underlying
physics. Finally, we shall summarize the previous compari-
son results with a simple criterion for the determination of the
regime of applicability of the small polaron theory in Sec. IV.

II. THEORY

A. Small polaron transformation

To study EET in light harvesting systems, we consider a
Frenkel exciton model Hamiltonian including the singly ex-
cited states of N chromophores coupled to a harmonic bath
through bilinear system-bath couplings (¯ = 1),37, 38

H = Hs + Hb + Hsb,

Hs =
∑

i

Eia
†
i ai +

∑
i �=j

Jij a
†
i aj ,

(1)

Hb =
∑

n

ωn(b†nbn + 1/2),

Hsb =
∑
i,n

ωngnia
†
i ai(bn + b†n),

where Hs is the Hamiltonian for the electronic system with Ei

denoting the optical transition energy of the ith chromophore
(site) and Jij marking the electronic coupling between the ith
and j th site; a

†
i is the creation operator of excitation on the

ith chromophore. Hb is the harmonic bath Hamiltonian with
b
†
n as the creation operator and ωn as the frequency of the nth

phonon mode. Hsb describes the system-bath couplings with
gni denoting the electron-phonon coupling constant between
the nth phonon mode and the ith site.

Excitations and charges in condensed matter will polar-
ize their surrounding vibrations and hence while considering
exciton and charge transport problems in a condensed mat-
ter, it is often appropriate to envisage such phenomena from a
representation that combines the excitation with its surround-
ing polarization as an entity, a “polaron,” rather than consid-
ering the exciton and polarized bath separately. The transfor-
mation from a bare-excitonic to a polaronic perspective can
be accomplished by the small polaron transformation, whose
formalism was pioneered by Holstein and later used by Silbey
and co-workers to study charge transport properties of organic
molecular crystals.31, 39 The small polaron transformation op-
erator, which displaces the origin of the bath coordinates to
the excited-state vibrational equilibrium, can be expressed as
U = eS, with S = ∑

i,n gnia
†
i ai(bn − b

†
n). Applying small po-

laron transformation to the bare exciton Hamiltonian effec-
tively converts the system to a “polaron” basis to yield the

polaron Hamiltonian,

H̃ = U †HU = H̃s + H̃sb + H̃b,

H̃s =
∑

i

(Ei − λi)a
†
i ai +

∑
i �=j

Jij 〈θ †
i θj 〉a†

i aj ,
(2)

H̃b = Hb,

H̃sb =
∑
i �=j

Jij (θ †
i θj − 〈θ †

i θj 〉),

where reorganization energy of each site λi = ∑
n g2

niωn is
added to the site energies. During polaron transformation,
the electronic couplings Jij is dressed by displacement oper-

ators θ
†
i θj = e− ∑

n gni (bn−b
†
n)e

∑
n gnj (bn−b

†
n). To retain coherence

effects in the zeroth order Hamiltonian, the dressed elec-
tronic coupling term Jij θ

†
i θj is deliberately separated into

its environmental thermal average Jij 〈θ †
i θj 〉 and fluctuations

Jij (θ †
i θj − 〈θ †

i θj 〉), with the former added back to the sys-
tem Hamiltonian and the latter taken as the new system-bath
coupling term. As a result, the electronic coupling Jij is en-
dowed with a renormalization factor 〈θ †

i θj 〉, which is a Frank-
Condon factor describing the overlap of the phonon wave-
functions between the polaronic state on site i and j given by

〈θ †
i θj 〉 = exp

[
−1

2

∑
n

(gni − gnj )2 coth
βωn

2

]
,

with inverse temperature β = (kBT)−1.
The inclusion of thermally renormalized electronic cou-

plings Jij 〈θ †
i θj 〉 back into the zeroth order Hamiltonian is a

special feature of the small polaron theory that distinguishes
it from non-interacting-blip approximation and Kenkre and
Knox’s generalized master equation approaches,40–42 in
which the full renormalized electronic couplings are taken
as the perturbation. The thermal-averaged renormalized elec-
tronic coupling in the zeroth order Hamiltonian introduces
temperature and electron-phonon coupling dependence to the
structure of electronic equilibrium density matrix. As a re-
sult, the electronic couplings diminish to zero when tempera-
ture or electron-phonon couplings are large. This leads to the
physical prediction of dynamical localization that the elec-
tronic eigenstates are localized at high temperature and strong
electron-phonon couplings.33, 43

The renormalized system-bath coupling, H̃sb, describes
the fluctuations of phonon-dressed electronic couplings. This
term is intentionally chosen so that it goes to zero at both
the weak electronic coupling and weak electron-phonon cou-
pling limits, i.e., when either J or g goes to zero.44 Thus, the
Hamiltonian can be exactly solved at both the weak electronic
coupling and weak electron-phonon coupling limits.

B. Small polaron quantum master equation

The small polaron theory has long been utilized to study
exciton migration and charge transport properties in solids,
yet previous studies have been focusing on diagonal popula-
tion transfer.27, 31, 32, 39 However, recent spectroscopic exper-
iments suggest that quantum coherence plays an important
role in EET of photosynthetic complexes as well as organic
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semiconductors.8, 9 Motivated by these new empirical discov-
eries, Jang et al. generalized the small polaron formalism to
incorporate off-diagonal dynamics.6, 21

Following Zwanzig’s projection operator formalism, a
small polaron quantum master equation (SPQME) of the re-
duced density matrix in the polaron representation can be
derived,23

σ̇ (t) = −i[H̃s, σ (t)] −
∫ t

0
dτTrb

{[
H̃sb(0),

[
H̃sb(−τ ), σ (t) ⊗ ρ

eq

b

]]}
−iTrb

{[
H̃sb(0), e−i(H̃s+H̃b)t

× (
ρT (0) − σ (0) ⊗ ρ

eq

b

)
ei(H̃s+H̃b)t

]}
−

∫ t

0
dτTrb

{[
H̃sb(0),

[
H̃sb(τ − t), e−i(H̃s+H̃b)t

× (
ρT (0) − σ (0) ⊗ ρ

eq

b

)
ei(H̃s+H̃b)t

]]}
, (3)

where Trb{} denotes trace over bath degrees of freedom and
ρ

eq

b is the bath equilibrium density matrix of Hb. The time
evolution of an operator A(τ ) is defined in the interaction pic-
ture of the zeroth Hamiltonian, H̃0 = H̃s + H̃b.

The first term in the polaron master equation (Eq. (3))
describes coherent dynamics. The second term accounts for
the dissipative dynamics induced by system-bath couplings.
The last two terms are the inhomogeneous terms which incor-
porate contributions from non-equilibrium bath dynamics to
EET and go to zero after bath reaches thermal equilibrium.21

The inhomogeneous terms in SPQME (Eq. (3)) contain three-
time bath correlation functions which entail significant com-
putational resources in EET simulation. By assuming fast
bath relaxation, the inhomogeneous terms can be omitted to
yield

σ̇ (t) = −i[H̃s, σ (t)]

−
∫ t

0
dτTrb

{[
H̃sb(0),

[
H̃sb(−τ ), σ (t) ⊗ ρ

eq

b

]]}
.

(4)

In Sec. III, we investigate the accuracy of EET simula-
tions obtained from both master equations with and without
inhomogeneous terms (Eqs. (3) and (4), respectively) by com-
paring the computational results from SPQME with numeri-
cally exact QUAPI calculations. Since SPQME is expected
to bridge between conventional Redfield and Förster theo-
ries, we focus on EET dynamics in the intermediate regime
where electronic couplings and reorganization energies are
comparable.

C. Dimer model system

The small polaron quantum master equation (Eq. (3)) is
general and valid for multichromophoric systems. Yet to il-
lustrate the physical picture for the regime of applicability of
the master equation, we confine ourselves to a simple model
system with a donor and an acceptor. We define the untrans-

formed system Hamiltonian of the dimer as

Hs =
(

	 J

J −	

)
,

where 2	 is the energy gap, and J is the bare electronic cou-
pling before polaron transformation.

To treat system-bath couplings, we introduce spectral-
density

Jij (ω) =
∑

n

gnignjω
2
nδ(ω − ωn) = γijK(ω), (5)

where γ is a unit-less electron-phonon coupling constant: γ ii

measures the electron-phonon coupling strength on the ith
site and γ ij (i �= j) describes the electron-phonon coupling
strength shared between the ith and j th chromophore. In this
article, we consider a super-Ohmic spectral density to treat
the system-bath couplings,

K(ω) = ω3

ω2
c

e− ω
ωc , (6)

where ωc is the cut-off frequency, which we take as the
unit of energy in this work (ωc = 1). Note that for Ohmic
and sub-Ohmic spectral densities, the renormalized elec-
tronic couplings will always be zero regardless of electron-
phonon coupling strength due to divergence of integral in
the Frank-Condon factor 〈θ †

i θj 〉. Thus, for these over-damped
baths, the small polaron theory can only describe incoherent
dynamics.28 For simplicity, we consider the bath of the donor
and acceptor to be identical and independent throughout this
article, i.e., γ ij = γ δij.

D. QUAPI simulations

The accuracy of SPQME is investigated by comparing
its simulated site population dynamics with numerically ex-
act QUAPI simulations, for which we follow the methods
prescribed by Makri and Makarov.13 For simplicity, we as-
sume that the initial density matrix is the Frank-Condon exci-
tation on site 1 and the interaction between system and bath
is switched on at zero time (t = 0),

ρ(0) = ρs(0) ⊗ ρbath(0) =
(

1 0
0 0

)
⊗ ρ

eq

b,g,

where ρ
eq

b,g denotes the equilibrium bath density matrix of
electronic ground state.

With the above initial condition, the time evolution of
the reduced density matrix of the excitonic system is given
by

ρs(s
′′, s ′; t) = Trb 〈s ′′| e−iH t/¯ρ(0)eiHt/¯ |s ′〉

=
∫

ds+
0

∫
ds+

1 · · ·
∫

ds+
N−1

∫
ds−

0

×
∫

ds−
0 · · ·

∫
ds−

N−1

× 〈s ′′| e−iHs	t/¯ |s+
N−1〉 · · · 〈s+

1 | e−iHs	/¯ |s+
0 〉

× 〈s+
0 | ρs(0) |s−

0 〉 〈s−
0 | eiHs	t/¯ |s−

1 〉 · · ·
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× 〈s−
N−1| eiHs	t/¯ |s ′〉

×I (s+
0 , s+

1 ,· · ·, s+
N−1, s

′′, s−
0 ,· · ·, s−

N−1, s
′; 	t),

(7)

where the influence functional I takes the form13, 45

I = exp

{
− 1

¯

N∑
k=0

k∑
k′=0

(s+
k − s−

k )(ηkk′s+
k′ − η∗

kk′s
−
k′ )

}
,

and the definitions of parameters ηkk′ , η∗
kk′ can be found in

Ref. 13.
For the numerical scheme of QUAPI, we follow the

method detailed in Refs. 14 and 46. Here we should briefly re-
count their approach in reaching numerical convergence. The
propagation of density matrix is exact in Eq. (7) at the limit 	t
→ 0. With finite time slice 	t in practical calculation, numer-
ical convergence should be found by reducing 	t to a small
enough value. On the other hand, to handle the bath correla-
tions in the influence functional, a memory-time window τm

= N	t has to be created in which the bath correlations are
exactly computed. To reach converged results, the memory-
time window should be enlarged by increasing N such that
all bath correlations are included. In our calculations, we vary
the value N and 	t for each parameter set individually us-
ing this procedure to ensure convergence in all numerical
calculations.

III. RESULTS AND DISCUSSIONS

A. Convergence of perturbation expansion

Before we present the comparison between SPQME and
QUAPI, we discuss the previously proposed criteria for the
accuracy of small polaron methods to guide our evaluation of
the applicable regime of SPQME. The accuracy of a perturba-
tive approach should depend upon the magnitude of the per-
turbative term. For the polaron master equation, Jang has es-
timated the magnitude of perturbation through the variance of
the perturbative term H̃sb.22 In a similar fashion, while inves-
tigating the Rabi oscillations of a single quantum dot system,
McCutcheon and Nazir have proposed an estimation for the
applicable regime of their Markovian polaron master equation
by considering the magnitude of the fourth-order perturbation
term.47 When the thermal average of perturbative terms are
small, the perturbative approach should yield accurate results.
Here we will review their considerations and in Secs. III B–III
E extend their results to obtain the criteria for the applicability
of the small polaron theory.

Following Jang’s work, we first examine the variance of
the perturbative term

Trb{H̃ 2
sbρ

eq

b } = J 2(1 − 〈θ †
1θ2〉2)Is , (8)

where Is is the identity operator of the electronic part and
〈θ †

1θ2〉 is the Frank-Condon factor for the polaronic excited
states of site 1 and 2. Equation (8) indicates that we can de-
fine a unit-less parameter κ to quantify the magnitude of the
perturbation,

κ = (J/ωc)
√

1 − 〈θ †
1θ2〉2. (9)

 0  0.5  1  1.5  2

γ

 0

 0.5

 1

 1.5

 2

βω
c

 0

 0.2

 0.4

 0.6

 0.8

 1

FIG. 1. Electron-phonon contribution to the magnitude of perturbation pa-
rameter, 1 − 〈θ †1θ2〉2, as a function of γ and βωc. Here we show that
the electron-phonon contribution approaches zero only in extremely weak
electron-phonon couplings.

It should be noted that although the choice of energy unit that
makes κ unit-less may seem to be arbitrary, the introduction of
cut-off frequency ωc into κ furnishes this parameter with the
physical consideration of the time scale of polaron formation,
which shall be further discussed in Sec. III B. In this dimer
model, the electronic and electron-phonon coupling depen-
dences in κ are separated. For the electronic part, κ is propor-
tional to J, whereas electron-phonon couplings contribute to

the term
√

1 − 〈θ †
1θ2〉2 that is always less than 1. The Frank-

Condon factor 〈θ †
1θ2〉 depends exponentially upon electron-

phonon coupling strength γ ,

〈θ †
1θ2〉 = exp

[
−1

2

∑
n

(gn1 − gn2)2 coth
βωn

2

]

= exp

[
−γ

∫ ∞

0

K(ω)

ω2
coth

βω

2
dω

]
.

The small polaron approach should be valid when κ 
 1.
The electron-phonon contribution to the magnitude of

perturbation, 1 − 〈θ †
1θ2〉2, for the dimer model is plotted in

Fig. 1 as a function of the electron-phonon coupling strength
γ and inverse temperature β. In intermediate and strong
electron-phonon coupling regimes, the electron-phonon con-
tribution approaches 1 and it only decreases to zero at ex-
tremely weak electron-phonon couplings. Figure 1 shows that
the value of 1 − 〈θ †

1θ2〉2 is close to unity across a broad pa-
rameter regime, and thus the magnitude of parameter κ is
dominated by J. Hence, according to this criterion, SPQME
should yield accurate results when J/ωc < 1 or when electron-
phonon coupling is extremely weak. Furthermore, noticing
that 1 − 〈θ †

1θ2〉2 is not sensitive to γ and temperature in the
parameter regime studied in this work (Fig. 1), we conclude
that κ alone does not provide a sensitive criterion for the ap-
plicability of the SPQME method.

To probe the convergence of the perturbation series,
one can also compare the magnitude of the second order
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)b()a(
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FIG. 2. Comparison of population dynamics simulated by SPQME and QUAPI in weak electron-phonon coupling regime (γ = 0.2/π and kBT = 0.5ωc). The
EET dynamics simulated by full SPQME (Eq. (3)) is denoted by “SPQME” in legend and the master equation without inhomogeneous terms (Eq. (4)) is denoted
by “SPQME-noI”. In (a)–(c), 	 is set to 0.5ωc and each with J/ωc = 0.5, 1, and 2. In (d), we calculate with 	 = 2ωc and J/ωc = 1 to probe the influence of
energy gap on the accuracy of SPQME simulation.

perturbation term with that of the next order term.47 Since the
third order term is zero because 〈H̃sb〉b = 0, we calculate the
fourth order perturbation 〈H̃ 4

sb〉b,

〈H̃ 4
sb〉b = J 4(1 − 〈θ †

1θ2〉4)Is .

The electron-phonon contribution 1 − 〈θ †
1θ2〉4 approaches

unity more rapidly than its second-order counterpart due to
faster decay contributed by the exponent on Frank-Condon
factor, and therefore the value of J determines the magni-
tude of the fourth order perturbation term. From the preced-
ing analyses, the convergence behaviour deduced from second
and fourth order perturbation terms is the same, because the
magnitudes of both terms are dominated by electronic cou-
pling J. Regarding the electron-phonon coupling contribution,
the magnitude of perturbative term only reaches a small value
at the weak electron-phonon coupling limit. In addition, the
magnitude of perturbation at a fixed J value is raised to max-
imum at strong electron-phonon coupling limit. This contra-
dicts the conventional wisdom that the polaron basis should
become the optimal representation for the excited states and
the small polaron approach should become exact at the strong
electron-phonon coupling limit.27, 28, 35, 36 We shall further in-
vestigate this point in Sec. III C.

B. Bath relaxation and coherence

Aside from the magnitude of perturbation, the timescales
of bath relaxation and resonant energy transfer also
have significant impact on the accuracy of the polaron
approach.28, 36, 47 In the polaron representation, the exciton is
always accompanied by its induced bath polarization, which
suggests that the polaron approach is applicable when the rate
of the induction of bath polarization is faster than, or similar
to, the changes of population on a single chromophore. When
bath relaxation is slower than changes in site population, the
polaronic states do not form an appropriate basis for simula-
tions of EET dynamics.28, 35, 36

In general, the transfer of site population can be charac-
terized by an oscillating coherent part and an exponential pop-
ulation decay in the Markovian limit. When coherent dynam-
ics dominates, the site population oscillates with a frequency
determined by the exciton energy gap (Figs. 2(a)–2(c)), which
is given by 2

√
	2 + J 2 in the dimer model. Furthermore, the

bath relaxation time is inversely proportional to the cut-off
frequency ωc.47, 48

To examine the applicability of the SPQME method, we
have performed a comprehensive benchmark of the SPQME
theory against the QUAPI approach. A few representative ex-
amples are shown in Fig. 2. In Figs. 2(a)–2(c), we compare
SPQME with numerically exact QUAPI calculations for a
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dimer with three different electronic couplings in the coher-
ent regime (γ = 0.2/π ), with site energy gap 2	 = ωc. In this
comparison, SPQME performs extremely well in a broad pa-
rameter regime: at the fast bath limit (Fig. 2(a), J/ωc = 0.5),
EET dynamics obtained from the small polaron theory and
QUAPI agree excellently; as the exciton energy gap becomes
larger and comparable to the bath cut-off frequency (Fig. 2(b),
J/ωc = 1), SPQME still reproduces the exact results. How-
ever, SPQME underestimates the amplitude of coherent oscil-
lations and the timescale of decoherence when exciton energy
gap far exceeds the bath cut-off frequency (Fig. 2(c), J/ωc

= 2). In this regime, the bath relaxes much slower than the co-
herent EET dynamics. Whereas the small polaron theory en-
forces a full displacement of bath coordinates to excited state
vibrational equilibrium, the slow bath relaxation renders the
“undisplaced,” or “partially displaced” representations more
appropriate for the description of dynamics. Choosing the
small polaron representation, or full displacement of bath co-
ordinates in the slow bath regime over-dresses the electronic
couplings, which results in the underestimation of exciton de-
localization and coherence that has already been shown in
variational polaron studies.28, 30, 35, 36

The performance of small polaron theory under various
electronic couplings shows that the magnitude between exci-
ton energy gap and bath cut-off frequency provides an indica-
tor of the accuracy for SPQME in the coherent regime. With
such physical picture in mind, we arrive at a criterion for the
applicable regime of the small polaron theory

ψ =
√

	2 + J 2/ωc < 1. (10)

When the electronic parameters satisfy such inequality,
SPQME should yield excellent results. In addition, because
energy gap should be small compared to electronic coupling
in the coherent regime, we can omit 	 in the above expression
and obtain a simpler form,

ψ ′ = J/ωc < 1. (11)

This simplified expression coincides with the estimation de-
duced from the magnitude of perturbation (κ ∼ J/ωc 
 1) as
discussed in Sec. III A.

Through the previous comparisons we demonstrate that
the performance of SPQME depends strongly upon the ra-
tio between bath cut-off frequency and exciton energy gap
when coherent EET dynamics dominates. However, as exci-
ton transfer becomes incoherent due to the increase of site en-
ergy gap or electron-phonon couplings, the timescale of EET
dynamics cannot be characterized solely by the exciton en-
ergy gap that determines coherent oscillation frequency. As
a result, the relationship between bath cut-off frequency and
exciton energy gap no longer serves as a suitable indicator for
the performance of SPQME. In our benchmarks, we found
that for an incoherent system that exhibits exciton energy gap
much larger than bath cut-off frequency, SPQME may pro-
duce accurate results. In Fig. 2(d), we show the simulated dy-
namics with large site energy gap (	 = 2ωc and J/ωc = 1).
The coherent oscillation in Fig. 2(d) is suppressed by the large
site energy gap and the exponential population decay becomes
prominent. Figure 2(d) shows that when EET becomes inco-
herent, small polaron theory still provides accurate dynamics

even though the exciton energy gap exceeds the bath cut-off
frequency.

In a more extensive comparison (data not shown), we
found that such improvement of accuracy for large site en-
ergy gap (	/J > 1) is universal when the dynamics is overly-
damped. As energy transfer becomes incoherent, the appli-
cable regime of small polaron theory spans well out of the
bound estimated by criteria ψ and ψ ′ (Eqs. (10) and (11)),
since the strongly oscillatory dynamics in coherent regime is
reduced to slow population decay. The change of behaviour in
population transfer from fast oscillation to slow exponential
decay allows longer timescale for polaron formation, which
extends the applicable regime of the small polaron theory.
The transition to incoherent regime can be achieved by the
increase of energy gap, temperature, or electron-phonon cou-
pling strength. In Secs. III C–III D, we shall explore the other
factors that controls the coherence of the system: the electron-
phonon coupling strength and temperature.

C. Electron-phonon couplings

The performance of the small polaron theory strongly de-
pends on the strength of electron-phonon couplings, which
has been the subject of many studies.28, 35, 36 In Sec. III B, we
have investigated the validity of SPQME in the weak electron-
phonon coupling regime (Fig. 2). In the strong electron-
phonon coupling regime, excitations are accompanied by
strong distortion of surrounding vibrations, rendering the
small polaron picture an appropriate representation to de-
scribe EET dynamics.27, 28, 35, 36 However, the performance of
SPQME in the intermediate coupling regime has not been
fully explored. In this section, we investigate the applicability
of SPQME across the whole range of electron-phonon cou-
plings and present a few representative examples.

In our benchmark against QUAPI, we found that at
the fast bath limit (ψ ′ < 1), SPQME provides reasonable
results regardless of electron-phonon parameters. Figure 3
demonstrates that small polaron theory can bridge between
the weak and strong electron-phonon coupling limits: from
weak (Fig. 3(a), γ = 0.2/π ) to strong (Fig. 3(c), γ = 2/π )
electron-phonon couplings, population dynamics simulated
by SPQME corresponds nicely with QUAPI results. Though
SPQME does not reproduce the exact short-time dynamics in
the intermediate electron-phonon coupling regime (Fig. 3(b)),
it still yields accurate decoherence time and population relax-
ation time. Note that the inhomogeneous term contribution
affects the early-time dynamics in this case, implicating that
the bath memory effects neglected by the time-local SPQME
approach could explain the discrepancy in the short-time dy-
namics.

In contrast, when electronic coupling is strong, i.e., slow
bath (ψ ′ > 1), the accuracy of the SPQME approach de-
clines. Figure 4 displays the dynamics in the slow bath regime
(ψ ′ = J/ωc = 2) with various electron-phonon coupling
strengths. At weak electron-phonon coupling (Fig. 4(a)), co-
herent dynamics is dominant and SPQME significantly under-
estimates the decoherence time and the amplitude of coher-
ent oscillations. However, when electron-phonon couplings
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FIG. 3. Comparison of population dynamics simulated by SPQME and QUAPI at weak electronic coupling (J = 0.5ωc) with different electron-phonon coupling
strengths: (a)γ = 0.2/π ; (b)γ = 0.5/π ; and (c)γ = 2/π . Other parameters are set as 	 = 0.5ωc and kBT = 2ωc.

are strong, the applicable range of the small polaron theory
expands into the slow bath region (Fig. 4(c)). The increase
of electron-phonon couplings suppresses coherence, making
the site-localized basis a suitable representation for describing
energy transfer dynamics. Therefore, the small polaron theory
is suitable for describing the incoherent population decay at
the strong electron-phonon coupling limit.

The performance of SPQME at the weak electron-
phonon coupling limit can be characterized by the parameter
κ , which includes the estimation of applicability of SPQME
through electronic parameter ψ ′ (Eq. (11)). κ approaches zero
as electron-phonon coupling strength reduces to zero, where
the small polaron theory is exact. However, κ cannot describe
the extension of applicability of the small polaron theory to
the strong electron-phonon coupling limit, where SPQME
still yields accurate results (Fig. 4(c)) even if κ > 1. The
failure of identifying the applicability of SPQME with κ at
strong electron-phonon coupling limit can be understood by
the localization of exciton states and introduction of reorga-
nization energy. At such limit, dynamical localization domi-
nates EET dynamics which is manifested by the renormaliza-

tion of electronic couplings in the small polaron theory.33 As
the exciton states are localized by strong phonon scattering,
the site-localized basis becomes an appropriate framework to
describe EET. Furthermore, as reorganization energies domi-
nate the Hamiltonian, taking electronic coupling J as pertur-
bation becomes adequate, which leads to Kenkre and Knox’s
generalized master equation approach and Förster theory.42

As shown by Kenkre, that the small polaron theory and the
generalized master equation approach are exactly equivalent
at strong electron-phonon coupling limit,49 the applicability
of SPQME in such regime is justified. From these discus-
sions, we demonstrate that the localization of exciton states
is also an important factor affecting the performance of the
small polaron theory. To incorporate such effect, we should
seek a more general criterion for the applicability of SPQME,
which will be introduced in Sec. III E.

D. Temperature effects

The dependence of the accuracy of SPQME upon tem-
perature is similar to its counterpart on electron-phonon
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FIG. 4. Comparison of population dynamics simulated by SPQME and QUAPI at strong electronic coupling (J = 2ωc) with different electron-phonon coupling
strengths: (a)γ = 0.2/π ; (b)γ = 0.5/π ; and (c)γ = 2/π . Other parameters are set as 	 = 0.5ωc and kBT = 2ωc.
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FIG. 5. Comparison of population dynamics simulated by SPQME and QUAPI at intermediate coupling regime (	 = 0.1ωc, J = 0.5ωc, and γ = 0.5/π ) with
different temperature: (a) kBT = 0.5ωc, (b) kBT = 2ωc, and (c) kBT = 10ωc.

coupling strength. At the high temperature limit, the Frank-
Condon factor 〈θ †

1θ2〉 becomes zero and such behaviour is
identical to the reduction of renormalized electronic cou-
pling at strong electron-phonon coupling limit. At high
temperatures, electronic excitations are strongly scattered by
the thermally excited phonons and therefore the polaron rep-
resentation is expected to be an excellent framework to de-
scribe EET dynamics.35, 43 The improvement of accuracy of
SPQME with increasing temperature is shown in Figs. 5(b)
and 5(c). Clearly, the small polaron theory underestimates co-
herence in Fig. 5(b) (kBT = 2ωc), but is able to reproduce the
exact result at a higher temperature (Fig. 5(c), kBT = 10ωc).

At low temperatures, we observe a general improvement
in the accuracy of SPQME in the fast bath regime. Comparing
Fig. 5(a) with Fig. 5(b) or Fig. 2(a) with Fig. 3(a), we see that
SPQME performs better as the temperature decreases. This
phenomenon can be understood by considering the magnitude
of perturbation. Because κ is minimized as temperature goes
to zero, the outcome of SPQME calculations should approach
the numerically exact results with respect to the lowering
temperature.

The enhancement of the accuracy of SPQME at low
temperature is nevertheless limited by the electronic param-
eters and electron-phonon coupling strength. At low tem-
peratures, thermal excitations of environmental phonons are
inhibited and the performance of polaron master equation is
controlled by electronic parameters and electron-phonon cou-
plings. Consequently, the dynamics simulated in slow bath
and coherent regime (Fig. 2(c)) gains no improvement at low
temperatures.

E. Criterion for the regime of applicability

From the comprehensive comparisons of population dy-
namics simulated by the SPQME approach and the numer-
ically exact QUAPI method in both the coherent and inco-
herent regimes, we observe two different trends: first, in the
coherent regime the SPQME approach yields excellent results
when the ratio between the exciton energy gap and bath cut-

off frequency, ψ or ψ ′, is small. This is the fast bath condition
described by Eqs. (10) and (11), and is also captured by con-
sidering the magnitude of perturbation κ < 1 (Eq. (9)). Sec-
ond, in the incoherent regime SPQME generally yields accu-
rate results. However, since κωc/J goes to unity in the strong
electron-phonon coupling regime and ψ does not contain an
electron-phonon coupling contribution, we should seek an-
other indicator to describe the accuracy of the SPQME ap-
proach in the incoherent regime.

The transition from coherent to incoherent dynamics is
strongly related to the localization of excitons, which can be
determined by delocalization length taken as the inverse par-
ticipation ratio of the polaron states.50 For a dimer system, the
delocalization length L spans from 1, where eigenstates are
completely localized, to 2, the uniformly delocalized state. In
the Appendix A, we give the expressions for the delocaliza-
tion length L of polaronic states. We take

√
L − 1 that is con-

fined between 0 and 1 and multiply it by the magnitude of per-
turbation κ to obtain an estimation φ for the applicability of
SPQME under both the coherent and incoherent conditions:

φ = κ · √
L − 1 
 1. (12)

This criterion incorporates the estimation for the degree of
coherence as well as the ratio between exciton energy gap and
bath cut-off frequency. Equation (12) shows that φ is small
when the exciton is localized or when the bath relaxation is
fast, and therefore we expect it to describe both two trends we
observed in the comprehensive comparisons of SPQME and
QUAPI.

In Figs. 6(a)–6(c), we plot φ as a function of electronic
coupling J/ωc and electron-phonon coupling strength γ for
several site energy gaps and temperatures. These diagrams
present a clear assessment for the applicable regime of the
SPQME approach. In addition, we label the parameters of the
representative examples shown in Figs. 2 to 4 as points on the
diagrams to facilitate observation of correlation between the
magnitude of φ values and the dynamical comparisons be-
tween SPQME and QUAPI. The behaviour of φ completely
agrees with our dynamical comparison results. As shown in
Figs. 6(a)–6(c), φ is small when J/ωc < 1, consistent with
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FIG. 6. Contour plots of the accuracy criteria for SPQME as a function of electronic coupling J and electron-phonon coupling strength γ . (a) φ at 	 = 0.5ωc,
kBT = 0.5ωc; (b) φ at 	 = 0.5ωc, kBT = 2ωc; (c) φ at 	 = 2ωc, kBT = 0.5ωc; and (d) approximated expression φ′ at 	 = 0.5ωc. Additional points on (a)–(c)
shows the positions on the plots for the representative cases presented in Figs. 2 to 4.

the observation that SPQME yields accurate EET dynam-
ics under fast bath conditions. In the slow bath regime (J/ωc

> 1), φ is large at small electron-phonon couplings and goes
to zero as the electron-phonon coupling strength γ increases,
reflecting that EET dynamics becomes polaronic with the in-
crease of electron-phonon couplings. Comparing Figs. 6(a)
with 6(b) and 6(c), φ diminishes with the increase of site en-
ergy gap 	 and temperature, in accordance with our dynami-
cal comparisons showing that the increase of site energy gap
and temperature expands the applicable regime of SPQME
(Figs. 2(d) and 5). As a result, φ summarizes all our findings
in benchmarking SPQME against QUAPI in a broad parame-
ter regime. In general, we found that SPQME yields excellent
results when φ < 0.5.

Though φ provides an excellent criterion for the accu-
racy of SPQME, its value depends on the form of the spec-
tral density and may not be easily calculated. To reach an
expression that can be easily evaluated, we introduce further
approximations: first, we only consider the intrinsic parame-
ters of the system, i.e., site energy gap 	, electronic coupling
J, and electron-phonon coupling constant γ . Second, we ap-
proximate the Frank-Condon factor 〈θ †

1θ2〉 with an exponen-
tial function of γ : 〈θ †

1θ2〉 ∼ e−γ , which preserves the electron-
phonon contribution to exciton delocalization. With these ap-

proximations, the delocalization length factor
√

L − 1 can be
approximated as

√
L − 1 

√
2(

√
	2 + J 2e−2γ − 	)

|J | (13)

at the incoherent limit (see the Appendix A). The approxi-
mated expression yields a simple inequality for the applicable
regime of SPQME that can be easily calculated:

φ′ = (
√

	2 + J 2e−2γ − 	)
√

2 − 2e−2γ /ωc 
 1. (14)

In the coherent regime, the above expression reduces to the
relation J/ωc < 1. In the incoherent regime, the expression
goes to zero with increasing energy gap and electron-phonon
couplings, or with diminished J. We plot φ′ in Fig. 6(d).
Comparing with Fig. 6(a), we show that Eq. (14) can semi-
quantitatively approximate Eq. (12) at the low temperature
limit.

In addition to the applicable regime of SPQME, we note
that in the parameter regimes for most light-harvesting sys-
tems where both electronic couplings and reorganization en-
ergies are comparable with bath frequencies, our compar-
isons show that the contributions of inhomogeneous terms
are negligible. Though the full SPQME generally improves
accuracy in short-time dynamics, the difference between the
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results from Eqs. (3) and (4) is small. The insignificance of the
inhomogeneous terms in our comparisons can be understood
by the nature of non-equilibrium dynamics, which becomes
important when bath relaxation is extremely slow or when
the reorganization energy is huge so that the initial Frank-
Condon excitation is far from the excited-state bath equilib-
rium. Since we only consider regimes of comparable elec-
tronic couplings, reorganization energies and bath frequen-
cies, non-equilibrium effects play a minor role in the EET
dynamics.

IV. CONCLUSION

In this work, we have investigated the accuracy of EET
dynamics simulated by the SPQME approach through com-
parisons with numerically exact QUAPI results. From the
comprehensive benchmark, we confirm that SPQME exhibits
a wide applicable range in simulations of EET dynamics.
Specifically, SPQME performs accurately in the incoherent
regime where electron-phonon couplings are large and the co-
herent, fast bath regime where the bath relaxation is rapid.
Moreover, through the particular choice of the perturbation
term, the small polaron theory is also exact at the weak
electron-phonon coupling limit.

With the comprehensive comparisons, we conclude that
the accuracy of the small polaron theory is determined by the
degree of coherence and the ratio between the exciton energy
gap and bath cut-off frequency. In the incoherent regime, EET
is dominated by phonon-mediated dissipation and the polaron
framework becomes a natural representation to describe EET
dynamics.33 When coherent dynamics dominates, the inter-
play of coherent oscillation and bath relaxation (polaron for-
mation) controls the accuracy of SPQME. When bath relax-
ation is faster than coherent oscillation, polaron representa-
tion is capable of describing EET dynamics accurately. When
bath relaxation is slower than the electronic dynamics, the
small polaron theory underrates coherence due to the over-
dressing in the small-polaron ansatz.28, 35, 43 Our dynamical
comparisons are consistent with the investigations of equilib-
rium properties of the small polaron theory in Ref. 36, yet we
have extended the conclusions to dynamical behaviours and
revealed the importance of the coherence factor.

Incorporating these factors, we have proposed simple
parameters φ and φ′ to estimate the applicable regime of
SPQME. We have demonstrated that φ and φ′ successfully
summarize the applicable regimes of the SPQME approach.
We believe our investigations in this work not only provide a
reliable assertion of the applicable range of the small polaron
theory for its applications to EET dynamics in molecular sys-
tems, but also reveal the nature of EET dynamics in broader
parameter regimes. Our results also indicate that exciton delo-
calization length and bath relaxation time are two key factors
affecting the accuracy of the small polaron method.

As an additional note, our proposed criterion should be
relevant to other polaronic theories. For example, in the devel-
opment of reduced density matrix hybrid approach, Berkel-
bach et al. found a similar criterion (J < ωc) for the applicable
regime of NIBA.51 Besides, they discovered that semiclassi-
cal Ehrenfest method performs well in the opposite regime

(J > ωc). These findings could serve as a useful insight to
guide future improvements of the small polaron theory or de-
velopments of novel theoretical methods for EET dynamics
that could complement the SPQME approach.
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APPENDIX: APPROXIMATION FOR DELOCALIZATION
LENGTH

The delocalization length L of an exciton state is taken as
the inverse participation ratio of its exciton wave function. In
the dimer model system, the delocalization length of the two
electronic eigenstates are the same and can be expressed as

L = (x2 + y2)2

x4 + y4
, (A1)

with x =
√

	2 + J 2〈θ †
1θ2〉2 − 	 and y = J 〈θ †

1θ2〉. The delo-
calization factor L − 1 can thus be written as

L − 1 = 2

( x
y

)2 + ( y

x
)2

.

Since x/y goes to zero as the dynamics becomes incoherent (γ
→ ∞, 	 → ∞, or J → 0), at the incoherent limit

√
L − 1

can be simplified as

√
L − 1  x

√
2

y
=

√
2(

√
	2 + J 2〈θ †

1θ2〉2 − 	)

|J |〈θ †
1θ2〉

. (A2)

Omitting the Frank-Condon factor in denominator since the
remaining terms can already approximates the coherent to in-
coherent behaviour of delocalization, we obtain

√
(L − 1) 

√
2(

√
	2 + J 2〈θ †

1θ2〉2 − 	)

|J | . (A3)

Approximating the Frank-Condon factor with e−γ , the above
expression leads to Eq. (13).

1R. E. Blankenship, Molecular Mechanisms of Photosynthesis (Wiley-
Blackwell, Oxford, 2002).

2Organic Photovoltaics: Concepts and Realization, edited by C. Brabec,
V. Dyakonov, J. Parisi, and N. Sariciftci (Springer, Berlin, 2003).

3Y.-C. Cheng and G. R. Fleming, Annu. Rev. Phys. Chem. 60, 241 (2009).
4A. Ishizaki and G. R. Fleming, J. Chem. Phys. 130, 234110 (2009).
5A. Olaya-Castro and G. D. Scholes, Int. Rev. Phys. Chem. 30, 49 (2011).
6S. Jang and Y.-C. Cheng, WIREs Comput. Mol. Sci. 3, 84 (2013).
7H. Wiesenhofer, D. Beljonne, G. D. Scholes, E. Hennebicq, J.-L. Bredas,
and E. Zojer, Adv. Funct. Mater. 15, 155 (2005).

8G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y.-C. Cheng,
R. E. Blankenship, and G. R. Fleming, Nature (London) 446, 782 (2007).

9E. Collini and G. D. Scholes, Science 323, 369 (2009).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

140.112.55.234 On: Sun, 15 Dec 2013 10:09:36

http://dx.doi.org/10.1146/annurev.physchem.040808.090259
http://dx.doi.org/10.1063/1.3155214
http://dx.doi.org/10.1080/0144235X.2010.537060
http://dx.doi.org/10.1002/wcms.1111
http://dx.doi.org/10.1002/adfm.200400108
http://dx.doi.org/10.1038/nature05678
http://dx.doi.org/10.1126/science.1164016


224112-11 Chang, Zhang, and Cheng J. Chem. Phys. 139, 224112 (2013)

10E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D.
Scholes, Nature (London) 463, 644 (2010).

11G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J.
Wen, R. E. Blankenship, and G. S. Engel, Proc. Natl. Acad. Sci. U.S.A.
107, 12766 (2010).

12D. Beljonne, C. Curutchet, G. D. Scholes, and R. J. Silbey, J. Phys. Chem.
B 113, 6583 (2009).

13N. Makri and D. E. Makarov, J. Chem. Phys. 102, 4600 (1995).
14N. Makri and D. E. Makarov, J. Chem. Phys. 102, 4611 (1995).
15A. Ishizaki and G. R. Fleming, J. Chem. Phys. 130, 234111 (2009).
16J. Prior, A. Chin, S. Huelga, and M. Plenio, Phys. Rev. Lett. 105, 050404

(2010).
17P. Nalbach and M. Thorwart, J. Chem. Phys. 132, 194111 (2010).
18P. Nalbach, A. Ishizaki, G. R. Fleming, and M. Thorwart, New J. Phys. 13,

063040 (2011).
19C. Kreisbeck, T. Kramer, M. Rodrguez, and B. Hein, J. Chem. Theory.

Comput. 7, 2166 (2011).
20A. W. Chin, J. Prior, R. Rosenbach, F. Caycedo-Soler, S. F. Huelga, and M.

B. Plenio, Nat. Phys. 9, 113 (2013).
21S. Jang, Y.-C. Cheng, D. R. Reichman, and J. D. Eaves, J. Chem. Phys. 129,

101104 (2008).
22S. Jang, J. Chem. Phys. 131, 164101 (2009).
23S. Jang, J. Chem. Phys. 135, 034105 (2011).
24A. Nazir, Phys. Rev. Lett. 103, 146404 (2009).
25D. McCutcheon and A. Nazir, Phys. Rev. B 83, 165101 (2011).
26A. Kolli, A. Nazir, and A. Olaya-Castro, J. Chem. Phys. 135, 154112

(2011).
27R. J. Silbey and T. Harris, J. Chem. Phys. 80, 2615 (1984).
28D. P. S. McCutcheon and A. Nazir, J. Chem. Phys. 135, 114501 (2011).
29 D. P. S. McCutcheon, N. S. Dattani, E. M. Gauger, B. W. Lovett, and A.

Nazir, Phys. Rev. B 84, 081305(R) (2011).

30F. A. Pollock, D. P. S. McCutcheon, B. W. Lovett, E. M. Gauger, and A.
Nazir, New J. Phys. 15, 075018 (2013).

31M. Grover and R. J. Silbey, J. Chem. Phys. 54, 4843 (1971).
32R. Silbey and R. Munn, J. Chem. Phys. 72, 2763 (1980).
33H.-T. Chang and Y.-C. Cheng, J. Chem. Phys. 137, 165103

(2012).
34A. Kolli, E. J. O’Reilly, G. D. Scholes, and A. Olaya-Castro, J. Chem. Phys.

137, 174109 (2012).
35E. N. Zimanyi and R. J. Silbey, Philos. Trans. R. Soc. London, Ser. A 370,

3620 (2012).
36C. K. Lee, J. Moix, and J. Cao, J. Chem. Phys. 136, 204120 (2012).
37H. van Amerongen, L. Valkunas, and R. van Grondelle, Photosynthetic Ex-

citons (World Scientific, Singapore, 2000).
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