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A time-nonlocal quantum master equation coupled with a perturbative scheme to evaluate the third-order
polarization in the phase-matching directionks ) -k1 + k2 + k3 is used to efficiently simulate three-pulse
photon-echo signals. The present method is capable of describing photon-echo peak shifts including pulse
overlap and bath memory effects. In addition, the method treats the non-Markovian evolution of the density
matrix and the third-order polarization in a consistent manner, thus is expected to be useful in systems with
rapid and complex dynamics. We apply the theoretical method to describe one- and two-color three-pulse
photon-echo peak shift experiments performed on a bacterial photosynthetic reaction center and demonstrate
that, by properly incorporating the pulse overlap effects, the method can be used to describe simultaneously
all peak shift experiments and determine the electronic coupling between the localizedQy excitations on the
bacteriopheophytin (BPhy) and accessory bateriochlorophyll (BChl) in the reaction center. A value ofJ )
250 cm-1 is found for the coupling between BPhy and BChl.

1. Introduction

Recent advances in ultrafast spectroscopy have enabled
experimental study of dynamics in strongly coupled multichro-
mophoric systems.1-3 In particular, the three-pulse photon-echo
(3PPE) technique had been used to study energy transfer
dynamics in photosynthetic complexes4-8 and solvation dynam-
ics in liquids,9-11 glasses,5,12,13and proteins.4,14,15Recently, the
two-color three-pulse photon-echo peak shift (2C3PEPS) tech-
nique has proven to be an useful probe for the electronic
coupling and energy transfer dynamics between excitations in
coupled multichromophoric systems.8,16 Because the 2C3PEPS
is sensitive to correlated spectral motion between two regions
of optical excitation, it is a direct probe of electronic coupling
between chromophores. In the limit of slow population transfer,
the analytical formula proposed by Yang and Fleming and later
extended by Mancal and Fleming can be used to estimate
electronic coupling between chromophores.17-19 However, for
systems with excitation energy transfer in the time scale
comparable to the bath relaxation time scale, the analytical
expression is not valid and it is necessary to simulate the
2C3PEPS data based on a theoretical model to estimate the
electronic couplings.20 Therefore, interpretation of these experi-
ments depends critically on our ability to describe coupled
multichromophoric systems using reasonable models including
exciton-exciton interaction, exciton-phonon coupling, and
static disorder.

In the standard response function formalism of nonlinear
spectroscopy, the 3PPE experiments are described by the third-
order polarization, which can be calculated from impulsive
response functions of the material system.1 The response
function formalism has been successfully applied to describe

various third-order nonlinear techniques. However, when ul-
trafast excitation energy transfer dynamics is involved in the
system, additional time propagators of the system have to be
calculated by invoking additional approximations21,22or obtained
using other dynamical theories and inserted into the response
functions.7,17,19,23In addition, when the dynamical time scale
of the system is comparable to the pulse duration, the pulse
overlap effect can be significant and triple convoluted time
integrals over the pulse profiles and the incorporation of
additional response function terms are required to describe the
experiments. These additional requirements can substantially
reduce efficiency of the response function simulations. There-
fore, a theoretical description of third-order nonlinear spectros-
copy in which the system dynamics is treated efficiently and
consistently with the response of the system is needed.

Another theoretical approach to the calculation of nonlinear
spectroscopic signals is via a nonperturbative description of the
nonlinear polarization.24-26 By including the field-material
interaction explicitly and propagating the reduced density matrix
of the system exactly, the third-order polarization that describes
various third-order nonlinear techniques can be calculated
nonperturbatively.24,25,27-29 However, the nonperturbative ap-
proach is computationally expensive because the calculation
results in the total polarization. To extract the signal corre-
sponding to a specific experiment, one needs to compute the
total polarization at different phase angles and determine the
contribution to a specific phase-matching direction by solving
a linear matrix equation at each time step, and this extraction
procedure is quite inefficient. As a result, it is computationally
infeasible to apply the nonpertubative approach to general
multichromophoric systems.

Recently, an efficient method to calculate third-order polar-
ization via a perturbative procedure was proposed by Gelin et
al.30 This method greatly reduces the effort needed to extract
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the third-order polarization that contributes to the 3PPE signals
and can be applied to systems with higher dimensions. In this
paper, we extend this perturbative method to describe multi-
chromophoric systems and static disorder. More specifically,
we present a more complete description of the third-order 3PPE
polarization by including two-excitation states in the theory and
using a time-nonlocal quantum master equation to properly
describe the bath memory effect that is critical for three-pulse
photon-echo peak shift (3PEPS). To demonstrate the potential
of the generalized method, we apply it to simulate 3PEPS
experiments performed on a bacterial photosynthetic reaction
center (RC) and determine the electronic coupling between the
localizedQy excitations on the bacteriopheophytin and accessory
bateriochlorophyll in the RC.

2. Theoretical Methods

2.1. Exciton Hamiltonian. We consider the following total
system-plus-bath Hamiltonian

where HS is the Hamiltonian of the electronic system,Hint

describes the interaction of the system to the laser fields,HB is
the bath Hamiltonian, andHSB describes the system-bath
interaction. For the system part, we use a Frenkel-exciton model
to describe a multichromophoric system made ofN two-level
chromophores31

where |0〉 denotes the electronic ground state,an (an
†) is the

annihilation (creation) operator that destroys (creates) an excita-
tion at siten, εg is the energy of the ground state,εn is the site
energy at thenth chromophore, andJnm is the electronic coupling
between thenth and mth chromophores.an and an

† describe
electronic transitions between the molecular ground and excited
states. They satisfy the Pauli commutation relations

The Hint term denotes the system-field interaction in the
electric point dipole approximation,Hint(t) ) -µ̂E(t), where
the dipole operator in the second-quantized form is defined as

Explicit inclusion of the system-field interaction allows us to
treat the driven dynamics of the system exactly and use the
result to compute the third-order polarization. Finally, we assume
a harmonic bath of independent harmonic oscillators forHB,
and the electronic system is coupled linearly to the bath through
a number of collective bath coordinatesqm:

where Si is a general system operator in the one-excitation
subspace, andqi denotes a collective bath coordinate that is
coupled to the system through theSi operator. For example,S
) an

†an represents the energetic diagonal coupling of the
localized excitation on thenth chromophore to the bath. Without
loss of generality, we also assume that baths coupled to different

system operators are independent, i.e.,Cij(t) ) 〈qi(t)qj(0)〉 is zero
when i * j. Note that we do not limitS to be a local operator,
therefore, nonlocal bath effects can be taken into account by
considering a nonlocalS.

To describe the third-order polarization, it is necessary to
consider up to two-exciton states.21,22,31To this end, we consider
the electronic system in the Hilbert space span by the subspace
of the ground state (H g ), the one-excitation states (H e

1), and
the two-excitation states (H e

2). In the site representation,H e
1

for N two-level chromophores is spanned by the basis consist
of N one-excitation states,|n〉 ) an

†|0〉, n ) 1...N, andH e
2 is

spanned byN(N - 1)/2 two-excitation states|nm〉 defined as
|nm〉 ) an

† am
† |0〉 for all n * m andm > n. Using the exciton

commutation rule in eq 3, any operators in theH e
1 subspace,

O ) ∑nmOnman
†am, can be expanded toH e

2 using

For example, the exciton Hamiltonian in eq 2 can be represented
in the full H g X H e

1 X H e
2 Hilbert space, and the diagonal-

ization of the full matrix will result in manifolds of a ground
state,N one-exciton states, andN(N - 1)/2 two-exciton states.

The dipole operator that connects theH g and H e
1 sub-

spaces can be extended to theH e
1 X H e

2 subspace using

Equations 6 and 7 enable us to expand all system operators in
the ground and one-excitation subspace to the two-excitation
manifold. This allows us to treat excitonic dynamics in the one-
and two-excitation subspace in a consistent manner. Note that
this is possible because, in the exciton Hamiltonian (eq 2), all
nonresonant interactions between excitations are neglected
(Heitler-London approximation), and we assume that there is
no coupling between one- and two-excitation manifolds (no
configuration interaction). These approximations are reasonable
for excitations in photosynthetic pigment-protein complexes.31,32

2.2. Perturbative Evaluation of the Third-Order Polariza-
tion. We consider a four-wave mixing experiment described in
Figure 1 in which three laser pulses interact with the sample to
create a polarization. The induced third-order polarization
P(3)(t) then radiates into the phase-matching directions(k1 (k2

(k3. Experimentally, two time delays, the coherence timeτ and
the population timeT, can be varied to study the dynamics of
the optical excitations induced by the laser fields interacting
with the system. In this paper, we will focus on the 3PPE
experiments in which the signal in the phase-matching direction
ks ) -k1 + k2 + k3 is measured. In particular, we will present
a theoretical method that can be used to evaluate the 3PEPS
for a general multichromophoric system. In a 3PEPS experiment,
the integrated intensity of the echo signals at fixedT is measured
while varying τ. The peak maximum shift fromτ ) 0 (peak
shift) is recorded, and its value as a function ofT constitutes
the 3PEPS spectrum. The 3PEPS usually shows decay as a
function of T, and the decay is directly related to the time-
correlation function of the fluctuations of the optical transition
frequency modulated by the bath modes coupled to the
excitation.1,9,10 Therefore, the 3PEPS measurement provides
information on the electron-phonon couplings in the
system.

HT ) HS + Hint + HB + HSB (1)

HS ) εg|0〉〈0| + ∑
n)1

N

εnan
†an + ∑

n,m

n*m

Jnman
†am (2)

[an, am
† ] ) δnm(1 - 2an

†an), [an, am] ) 0 (3)

µ̂ ) ∑
n)1

N

µbn(an + an
†) (4)

HSB ) -∑
i

Siqi (5)

〈nm|O|n′m′〉 ) δnm′Omm′ + δmn′Onm′ + δnm′Omn′ + δmm′Onn′
(6)

〈n|µ̂|n′m′〉 ) µbn′δnm′ + µbm′δnn′

〈n|µ̂|m〉 ) 0 (7)

〈nm|µ̂|n′m′〉 ) 0
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Theoretically, the integrated photon-echo signal is described
by the third-order polarizationP3PPE

(3) (t),

Therefore, a theoretical description of 3PPE experiments requires
the determination ofP3PPE

(3) (t). In the standard perturbative
approach to nonlinear spectroscopy, the third-order polarization
is represented by response functions.1 Here we consider another
approach that incorporates the system-field interactions ex-
plicitly in the time evolution of the density matrix of the system.
In general, the time evolution of the reduced density matrix of
a quantum systemF(t) can be described by a quantum master
equation33-35

whereHS + Hint(t) is the time-dependent Hamiltonian defined
in eqs 1-4 that governs the coherent evolution of the system,
and R[‚] represents the dissipative dynamics of the system
induced by the system-bath interactions. The time-dependent
total polarization induced by the laser fields is the expectation
value of the dipole operator

where the bracket〈‚‚‚〉 means taking the expectation value of
the operator and average over static disorder. When the system-
field interaction Hint(t) is explicitly included in the time
propagation of the density matrix, the reduced density matrix
F(t) contains all the information on the time-dependent optical
response of the material system. However, the total polarization
obtained using eq 10 contains fields that radiate into all
directions and thus does not describe a real experiment in which
only signals in a specific phase-matching direction are measured.
In the response function formalism, the signal in the phase-
matching direction is well defined because each response
function corresponds to a Liouville space pathway and its
radiation direction is fixed in the rotating wave approximation
(RWA). However, in a density matrix based method, the
direction (phase) is not obvious and extra analysis is required
to extract the signals in the phase-matching direction of the
experiment. The nonperturbative method allows such analysis
by varying phase angles associated with the fields and then
solving a set of complicated matrix equations (or performing
discrete Fourier transform) to extract the experimental signal.
However, because the procedure is computationally intensive,
the nonperturbative approach is limited to small systems.24,26

Here we instead adopt the efficient perturbative method
proposed by Gelin et al. to extract the 3PPE signal.30

Consider a four-wave mixing experiment in which the three
laser pulses are described by the time-dependent electric field

whereEa(t - τa) is the laser pulse profile,ωa is the carrier
frequency, andka is the momentum. In this work, we will adopt
a Gaussian pulse profileEa(t) ∼ exp(-4 ln 2(t - τa)2/τp

2),
whereτp is the pulse duration defined by the full width at half-
maximum (fwhm) of the pulse profile. Gelin et al. showed that
the third-order polarization in the 3PPE phase-matching direction
ks ) -k1 + k2 + k3 can be calculated by following the time
evolution of seven auxiliary density matrices.30 Following Gelin
et al., we define the operator

and seven auxiliary density matrices through the following
equations of motion

Note that we do not invoke the RWA here. Numerically, it is
more convenient if the RWA is invoked in the propagation of
eq 13 because the fast oscillating terms are neglected.30 Instead,
we choose to perform the propagation in the interaction picture
of HS to avoid treating fast oscillating dynamics explicitly.
Equations 12-13 can be used to propagate the seven auxiliary
density matrices, and the 3PPE polarization can be calculated
using

whereµ̂ is the dipole operator defined in eq 4. Equation 14 is
a system of seven independent linear differential equations.
Although propagating seven density matrices seems to be a

Figure 1. Three-pulse photon-echo experiment and definition of time variables. Three laser pulses centered atτ1, τ2, andτ3 are incident on the
sample to generate a signal field. The coherence timeτ is defined asτ ) τ2 - τ1, and the population timeT ) τ3 - τ2. The pulse sequence depicted
here gives positiveτ andT. The time zerot ) 0 is set at the center of the third pulse.

S(τ,T) ∼ ∫0

∞
dt|P3PPE

(3) (t)|2 (8)

F̆(t) ) -i[HS + Hint(t),F(t)] - R[F(t)] (9)

P(t) ) 〈µ̂F(t)〉 (10)

E(t) ) ∑
a)1

3

[Ea(t - τa) exp{-i(ωat - kar)} + cc] (11)

Va(t) ) Ea(t - τa) exp(iωat)µ̂ (12)

∂tF1(t) ) -i[HS - V1(t) - V2
†(t) - V3

†(t),F1(t)] - R[F1(t)]

∂tF2(t) ) -i[HS - V1(t) - V2
†(t),F2(t)] - R[F2(t)]

∂tF3(t) ) -i[HS - V1(t) - V3
†(t),F3(t)] - R[F3(t)]

∂tF4(t) ) -i[HS - V1(t),F4(t)] - R[F4(t)]

∂tF5(t) ) -i[HS - V2
†(t) - V3

†,F5(t)] - R[F5(t)]

∂tF6(t) ) -i[HS - V2
†(t),F6(t)] - R[F6(t)]

∂tF7(t) ) -i[HS - V3
†(t),F7(t)] - R[F7(t)] (13)

P3PPE
(3) (t) ) 〈µ̂(F1(t) - F2(t) - F3(t) + F4(t) - F5(t) + F6(t) +

F7(t))〉 (14)
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significant overhead in the calculation, the propagation of these
auxiliary density matrices can be performed independently and
made into parallelized program codes, which means that the
time propagation required to calculateP3PPE

(3) (t) can be imple-
mented efficiently in modern computer systems. Thus, eqs 13-
14 provide an efficient prescription for the calculation of the
3PPE signals. Note that eq 14 is obtained by using a perturbative
approach, therefore although the system-field interactions are
treated exactly, the applicability of eq 14 depends on the optical
field being weak. This is in contrast to the nonperturbative
approach that is valid for all field strengths. As a result, like
the response function approach, the current method is limited
to experiments in the weak-field limit. In this formalism, both
system-field interactions and chromophore excitonic couplings
are treated exactly, while the bath-induced dissipative dynamics
have to be treated perturbatively. In the next section, we will
describe the dissipative dynamics.

2.3. Non-Markovian Evolution in the Presence of Laser
Fields. The dissipative dynamics of the system can be treated
by considering a system-bath model in which the bath degrees
of freedom are traced out at the end of the calculation to obtain
the reduced density matrix of the system. In this section, we
consider the effect of the system-bath interaction defined in
eq 5. Without loss of generality, in this section, we will consider
only one system-bath coupling termHSB ) -S‚q and drop
the i index in eq 5. It is trivial to extend the results to include
multiple system-bath coupling terms.

We emphasize that a formulation of the quantum master
equation that includes non-Markovian dynamics and bath
memory effects is necessary for the description of 3PEPS
experiments because non-Markovian bath memory effects are
essential for a system to exhibit a peak shift. This is not a
problem in the standard response function approach because
the response functions corresponding to various Liouville
pathways automatically track the history of the system and the
non-Markovian effect of the bath is included in the cumulant
expansion method generally used to treat the diagonal electron-
phonon couplings in the one-exciton basis. Therefore, although
it is usually necessary to ignore the memory effects in the
dynamics induced by the off-diagonal electron-phonon cou-
plings in the response function approach (for example, memory
effects in energy transfer), calculations based on response
functions still describe peak shifts. However, for the nonper-
turbative approach or the perturbative approach described in
Section 2.2, the bath memory effects must be included in the
quantum master equation that is used to propagate the driven
dynamics of the system. Mancal et al. pointed out that, if
Redfield theory is used to propagate the density matrix in a
nonperturbative approach to evaluate the third-order polarization,
the result does not give a peak shift28 because the bath memory
effects are neglected in the Redfield theory.34,36 The Redfield
formalism was used in the nonperturbative approach to propa-
gate the reduced density matrix and calculate the 3PEPS and
electronic 2D spectra for excitonic systems,27-29 however, the
propagation given by the Redfield theory does not describe peak
shifts properly unless the system is dominated by inhomoge-
neous broadenings. To describe peak shifts, we need to use a
theory for the dissipative part of the dynamics that includes the
bath memory effects. To this end, we use the time-nonlocal
formalism proposed by Meier and Tannor.36,37

We start with the time-nonlocal (TNL, also called time-
convolution approach or chronological time-ordering prescrip-
tion) quantum master equation derived by using the projection

operator technique and neglecting terms up to the second-order
in the system-bath interactions:34

where

anda(t) andb(t) are the real part and the negative imaginary
part of the bath correlation function,C(t) ) 〈q(t)q(0)〉 ) a(t) -
ib(t), respectively.Hren is the renormalization Hamiltonian that
is required in order to avoid artificial shifts in the system energy
due to the coupling to the bath.35 The renormalization potential
Vren can be calculated in terms of the spectral density of the
bath,Vren ) 2/π∫0

∞ dωJ(ω)/ω. In addition, we have assumed
that the total system is initially a product state of the ground
state (F(0) ) |g〉〈g|) and the equilibrium bath, so that the
inhomogeneous term in the TNL quantum master equation
vanishes.

The integral in eq 15 refers to the reduced density matrix of
the system at all times, which makes the direct propagation of
eq 15 very difficult. Following Meier and Tannor, we recast
the quantum master equation into a more convenient form by
adopting an artificial bath model in which the bath spectral
density is in the following form:

where the bath spectral density is decomposed inton terms,
and λk, Ωk, and Γk are real parameters describe thekth bath
mode. The decomposition can be used to simulate arbitrary bath
spectral densities. For example, the Ohmic spectral density with
exponential cutoff can be represented by three terms (n ) 3).37

This artificial bath model describes modes that range from
overdamped oscillators (whenΓk . Ωk) to coherent oscillators
(when Ωk . Γk). As a result, the bath model is capable of
describing a wide range of bath-induced dynamics on the
system. This is even more useful when one attempts to describe
experimental data because the ansatz offers a flexible basis that
can extract a wealth of dynamical information from experimental
data.

The bath time correlation function which describes the
memory kernel in eq 16 can be represented in terms ofJ(ω) :

∂tF(t) ) -iL S
effF(t) + ∫0

t
dτK(t,τ)F(τ) (15)

L S
eff ) [HS + Hint(t) + Hren,‚]

K(t,τ) ) L_ exp+
-i∫t

τ
dt1LS(t1) [a(t - τ)L_ + b(t - τ)L+]

LS ) [HS + Hint(t),‚]

L_ ) -i[S,‚], L+ ) [S,‚]+

Hren ) 1
2
VrenS

2 (16)

J(ω) ) ∑
k)1

n 4λkΓk
3ω

[(ω + Ωk)
2 + Γk

2][ω - Ωk)
2 + Γk

2]
(17)

C(t) ) 〈q(t)q(0)〉

) 1
π ∫0

∞
J(ω) cos(ωt) coth(âω/2) dω -

i
π ∫0

∞
J(ω) sin(ωt) dω

≡ a(t) - ib(t) (18)
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The real part and negative imaginary part of the correlation for
the artificial bath model in eq 17 can then be obtained
analytically

where we have definedΩk
+ ) Ωk + iΓk, Ωk

- ) Ωk - iΓk, and
â is the inverse temperature. The last part ina(t) is the Matsubara
terms with Matsubara frequencyνk ) 2πk/â. The sum over
Matsubara terms is an infinite one, but in practice we can
truncate the sum at a finite number ofnm terms, especially at
higher temperatures. In eq 19,a(t) and b(t) can be expressed
by nr ) 2n + nm andni ) 2n exponential terms, respectively.
Therefore, we can writea(t) and b(t) as sum of exponentials

a(t) ) ∑k)1
nr Rk

r e
γk

rt
, andb(t) ) ∑k)1

ni Rk
i e

γk
it
, whereRk

r, Rk
i , γk

r,
and γk

i are complex coefficients defined by eq 19. This
exponential form of the correlation function allows us to recast
the time-nonlocal quantum master equation into a set of coupled
time-local, first-order differential equations36,37

Note that, in order to propagate the TNL dynamics, additional
auxiliary matricesFk

r andFk
i are introduced. Propagating these

additional matrices entails a significant overhead on the ef-
ficiency of the calculation, but it is necessary in order to include
bath memory effects. Equation 20 is the final form of the TNL
quantum master equation that we use to propagateF1(t) - F7(t)
in eq 13 and then calculateP3PPE

(3) (t) according to eq 14. In
addition, to properly describe the third-order polarization, it is
necessary to include contributions from the two-excitation states.
Therefore, all operators in eq 20 have to be considered in the
full H g X H e

1 X H e
2 Hilbert according to eqs 6 and 7. In our

simulation, we numerically propagate the TNL dynamics using
an iterated Crank-Nicholson scheme.38 To calculate the 3PEPS
as a function of the population timeT, we compute the integrated
signal S(τ,T) (eq 8) on a two-dimensional grid of coherence
time (τ) and population time (T) points and then use a numerical
cubic spline interpolation algorithm to determine the peak shift
from τ ) 0.

This formalism seems to be limited to weak exciton-phonon
couplings because the TNL quantum master equation is based
on the assumption that the system-bath interactions are weak
and that neglect of higher-order terms in the memory kernels
is valid. This weak-coupling condition may not be a serious
limitation, however, because in many physical scenarios, the
system is strongly coupled to only a few bath modes. Therefore,
the system-bath boundary can be redefined to include strongly
coupled modes into the system, and the weak coupling ap-
proximation can still be employed.

2.4. Static Disorder. So far, we have focused on the
calculation of third-order polarization for a single system with
well-defined system Hamiltonian. To include the effects of static
disorder, an average of the third-order polarization over a
statistical distribution of systems is required. Conventionally,
Monte Carlo (MC) sampling is used to average the signal over
a statistic distribution of transition frequencies.39 However, an
MC average usually requires repeating the calculation for
thousands of realizations of the system Hamiltonian in order to
achieve reasonable convergence. The MC average procedure is
inefficient and frequently the bottleneck of a simulation of
nonlinear spectroscopic signals. Thus, a more efficient means
to perform the average over static disorder would significantly
improve our ability to simulate and describe experimental
results.

We consider diagonal energetic disorder on each site de-
scribed by a random variableδεn, which is defined by a
Gaussian distribution with zero mean (〈δεn〉 ) 0) and standard
deviationσn. The average over the distribution of static energetic
disorder can be represented by Gaussian integral over all
disorder random variables:

whereΓ(δε) is a vector representing the random variables{δεn}.
If the integrandP(Γ(δε); τ,T,t) is smooth within the Gaussian
profile, which is satisfied when the static disorderσn is small
compared to the characteristic frequency of the polarization
(usually the differences between transition frequencies of
excitations), the Gaussian weighted integral can be evaluated
most efficiently using the Gauss-Hermite quadrature method.40

Therefore, a more efficient way than MC sampling is to evaluate
P(Γ(δε); τ,T,t) using the Gauss-Hermite rule for each random
variableδεn. For high-dimensional systems with many random
variables, high-dimensional quadrature rules exist that can be
used to estimate the integral in eq 21 efficiently.40,41In addition,
the numerical method can be generalized to treat more general
forms of static disorder such as correlated energetic disorder or
off-diagonal static disorder without any additional computational
efforts.

3. 3PEPS of a Model Two-Level System

To demonstrate our new approach for the calculation of
3PEPS signal, we consider a simple two-level system (ground
state and excited state) and study the effects of pulse overlap
and static disorder. In the calculations, we assume a model two-
level system coupled to a single overdamped bath mode with
λ0 ) 150 cm-1, Ω0 ) 50 cm-1, Γ0 ) 80 cm-1, and that the
laser pulse frequency is on resonance with the optical|g〉 f |e〉
transition. In addition, a Gaussian static disorder with standard
deviationσs ) 100 cm-1 is also included.

We first compare the Gauss-Hermite quadrature method for
the average over Gaussian static disorder to the standard MC
sampling method. In Figure 2, we show the results calculated
using a 11-point Gauss-Hermite rule and an average over 5000
realizations using MC sampling over a Gaussian distribution.
The peak shift decays to a finite value at large population time,
which is a signature for systems with static disorder. Withσs

) 100 cm-1, the Gaussian sampling is not converged when 5000
random points are used; in contrast, the Gauss-Hermite rule
gives a satisfactory result with 11 points.

In Figure 3, we show the 3PEPS for the model system
calculated using different pulse widths. The result calculated

〈P(τ, T, t)〉static) ∫-∞

∞
dΓ(δε) ∏

n

e-δεn
2/2σn

2
P(Γ(δε); τ,T,t)

(21)

a(t) ) ∑
k)1

n λkΓk
2

2Ωk

{coth(âΩk
-/2) e-iΩk

-
+ coth

(âΩk
+/2) eiΩk

+
} +

2i

â
∑
k)1

nm

J(iνk) e-νkt

b(t) ) -i∑
k)1

n λkΓk
2

2Ωk

{e-iΩk
-

+ eiΩk
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by using the response function approach in the impulsive limit
is also shown.1 Clearly, a significant portion of the initial peak
shift decay atT < 100 fs is due to the pulse overlap effect. In
addition, a longer pulse duration results in larger initial peak
shift, as expected.9

4. 1C- and 2C3PEPS of a Bacterial RC: Electronic
Coupling between H and B

In this section, we turn our attention to a specific experiment
and demonstrate that the theoretical method presented in Section
2 can be applied to simulate 3PEPS decay in a bacterial
photosynthetic reaction center (RC) and determine the electronic
coupling constant between the bacteriopheophytin and accessory
bateriochlorophyll in the RC.

We focus on one-color (1C) and two-color (2C) 3PEPS data
for the RC of the photosynthetic purple bacteriumRhodobacter
sphaeroides, whose primary electron donor P is chemically
oxidized. The RC contains two bateriochorophylls constituting
the special pair (P), an accessory bateriochorophyl adjacent to
P on each side (BChl; BA and BB), and a bateriopheophytin
next to each B (BPhy; HA and HB).42,43 The RC converts
harvested solar energy into chemical charge separation with a
quantum yield near 1 in about 3 ps at room temperature.44-47

In addition, in the isolated RC, energy transfer occurs from H
to B in about 100 fs and from B to P in about 150 fs.48-52

Oxidation of the special pair of the RC by K3Fe(CN)6 in our
experiment blocks electron transfer from P to HA, however, the
downward energy transfer from H to B to P still occurs in a
time scale similar to the neutral RC.51-53 Knowing the coupling
constant between B and H is critical for the understanding of
the rapid energy transfer from H to B, and the 2C3PEPS
technique provides an experimental probe for the electronic
coupling. However, given that the energy transfer from H to B
occurs in∼100 fs time scale and the pulse duration in the
experiment is∼40 fs, it is clear that both the energy transfer
dynamics and pulse-overlap effects must be treated properly to
account for the peak shift decay in the 100 fs time scale.

The 3PEPS technique has been used to study the electron-
phonon couplings in a neutral RC at room temperature and 77
K.15,20 In ref 20, the 1C- and 2C3PEPS experiments were
performed and used to estimate the electronic coupling between
H and B in the neutral RC. In that work, Parkinson et al. used
response function formalism to describe 3PEPS. By fitting to
the 1C3PEPS, they obtained line shape function of individual
chromophores. Assuming the fluctuations of transition energies
on H and B are independent, they were able to estimate an H-B
coupling constant of∼170 cm-1 by fitting to the uphill
2C3PEPS data. However, the downhill 2C3PEPS data was not
well described by the response function formalism, presumably
because the rapid energy transfer and direct charge separation
dynamics in the RC is not properly described by the response
functions. Here, we will adopt a similar scheme to estimate the
electronic coupling between H and B in the P-oxidized RC and
demonstrate that the present theoretical method can adequately
describe all four 3PEPS experiments.

4.1. Methods and Materials. His-tagged Rhodobacter
sphaeroidescells were kindly supplied by the Boxer lab. They
were grown and the RC was purified as published previously.51

Briefly, cells were grown in semi-aerobic and dark conditions.
By using a French press, we disrupted the cells and solubilized
the RC with the detergent laurydimethylamide oxide (LDAO).
Purification was carried out with a Ni-NTA column, followed
by a DEAE column. After concentration of the sample,∼100
mM of K3Fe(CN)6 was added to oxidize the primary electron
donor, P, just prior to the experiment. The samples were diluted
with 60% v/v glycerol and placed in a 0.2 mm quartz cell
(Starna) for measurements. The optical density of the sample
at 800 nm was 0.1-0.3. Figure 4 shows the absorption spectrum
of the P-oxidized RC at 77 K, showing the H band at 750 nm
and the B band at 800 nm. The oxidation of the special pair
was confirmed by both the absorption spectrum (Figure 4) and
a 800 nm one-color transient absorption (TA) measurement; both
the P band in the absorption spectrum and the several picosecond
rising components in the 800 nm TA signal due to charge
separation disappear.51 The 800 nm one-color TA experiments
were also carried out before and after each scan to confirm the
integrity of the sample, and our data were consistent with the
literature.51 The experiments were performed at 77 K using an
Optistat DN cryostat from Oxford Instruments.

Our setup for the 3PEPS experiments was described in detail
elsewhere,9,16,54 and here we briefly describe relevant details
for the completeness of this work. The 800 and 750 nm laser
pulses were chosen to be on resonance with the B and H
transitions, respectively (Figure 4). The 800 nm pulse was
generated from a home-built regenerative amplifier at 1 kHz,
which was seeded by a Femtosource Compact Pro Ti:sapphire
oscillator (Femtolasers, Inc.) Part of this beam was used to pump

Figure 2. Comparison of numerical methods for the average over static
disorder. We show the peak shift results calculated using the 11-point
Gauss-Hermite method (solid line) and Monte Carlo sampling using
5000 points (open circles). The model system is a two-level system
(ground state and a singlely excited state) with bath parameters:λ0 )
150 cm-1, Ω0 ) 50 cm-1, Γ0 ) 80 cm-1, and Gaussian static energy
disorder withσs ) 100 cm-1. The pulse width used in the simulations
is 20 fs.

Figure 3. Pulse-overlap effects in simulated 3PEPS signals. The model
system is a two-level system (ground state and a single excited state)
with bath parameters:λ0 ) 150 cm-1, Ω0 ) 50 cm-1, Γ0 ) 80 cm-1,
and Gaussian static energy disorder withσs ) 100 cm-1.
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an optical parametric amplifier (Coherent 9450) to produce a
750 nm pulse. This was passed through an optical filter centered
at 750 nm with bandwidth of 25 nm. Both pulses were measured
to have∼40 fs fwhm pulse duration at the sample position.
Figure 4 shows the spectral profiles of the laser pulses; note
that the spectral overlap between the pulses is minimal, that
each pulse overlaps with most of the corresponding spectral
band, and that each pulse has negligible overlap with the other
spectral band. In the experiments, the total input power was
kept between 1 and 5µW.

The three pulses were arranged in equilateral triangle
geometry and focused onto the sample with a 20 cm singlet
lens. Four 3PEPS experiments were carried out on the RC. For
the one-color experiments, three pulses of the same wavelength
(750 nm or 800 nm in this case) were used. For two-color
experiments, the first two pulses were set to a pump wavelength,
while the third pulse was set to a probe wavelength. Two
different types of 2C3PEPS scans were carried out in this work.
In the first, the “downhill” experiment, the pump wavelength
is set to 750 nm and the probe wavelength is set to 800 nm. In
the second, the “uphill” experiment, the pump wavelength is
set to 800 nm and the probe wavelength is set to 750 nm.
Integrated echo profiles were measured as a function of the
coherence timeτ for fixed values of the population timeT. The
peak shift for a given population time is the value of the
coherence time that gives the maximum signal as determined
by fitting to a single Gaussian function. The integrated photon-
echo signal is collected on a photomultiplier tube (PMT) in the
phase-matching direction. For the two-color experiments, 25
nm bandwidth filters corresponding to the probe wavelengths
were placed in front of the PMT to prevent scattering from the
pump beams. Data were collected using an optical chopper and
lock-in amplifier.

4.2. Theoretical Model for the RC. To simulate the peak
shift, we consider a coupled heterodimer system representing
the coupled accessory BChl and BPhy molecules on the same
branch. The transition dipole moments for theQy transitions
on the accessory BChl and BPhy are taken from the semiem-
prical quantum chemistry study in ref 52. In general, peak shift
decay is relatively insensitive to the transition dipole of
excitations,19 therefore we fix the transition dipole moments and

do not treat them as fitting parameters. In addition, we assume
the bath modes coupled to the accessory BChl and BPhy are
independent and the electronic couplings are small compared
to the site energy difference between them so that the main
characters of the H band and B band are the localized BPhy
and accessory BChlQy excitations, respectively. In this limit,
we can use the 1C3PEPS data at 750 and 800 nm to directly
determine the spectral density of bath modes coupled to BPhy
and accessory BChl.

For the system-bath interactions, we consider diagonal
system-bath couplings in the site representation that modulate
the site energies of BChl and BPhyQy excitations and treat the
bath parameters in the spectral density (eq 17) as free parameters
to be determined by fitting to the 1C3PEPS experiments. Note
that, in the present model, the Hf B energy transfer dynamics
is determined by the system Hamiltonian and the bath param-
eters according to the TNL quantum master equation in eq 20.
To include the rapid Bf P+ population transfer in our
simulations, we consider an additional P+ state acting as an
energy sink that traps population from B. This additional
population transfer channel is included by adding a dark state
in the Hamiltonian and an additional Markovian Lindblad
population transfer term34 with time constant of 150 fs in the
quantum master equation (eq 20). In our 2C3PEPS simulations,
we found that this term is necessary to reproduce the negative
2C3PEPS observed in the experiments.

4.3. Results and Discussion.Figures 5 and 6 show the
1C3PEPS and 2C3PEPS of the P-oxidized RC. The 1C3PEPS
measurements on B and H both show very rapid peak shift decay
in about 100 fs, and then a plateau between 100 to 200 fs. In
addition, quite different initial peak shifts and residual peak shifts
at T ∼ 300 fs are observed, indicating that the excitation-
phonon couplings for B and H are different. Note that we only
show the peak shift for population times up toT ) 300 fs
because the intensity of the 3PPE signal atT > 300 fs is small
and the signal is noisy. This is because the vary rapid H to B
to P+ energy transfer removes the population and causes the
3PPE signal to decay rapidly. Thus, we will focus our analysis
on the data betweenT ) 0 andT ) 300 fs. Clearly, the peak
shift does not decay to zero in this time scale, which means
some nuclear motion is static in this time scale. A noticeable
feature in the 2C3PEPS data is the negative peak shift, which
is also observed in the neutral RC and was considered to be
the effect due to the rapid population dynamics.20

Figure 4. Linear absorption spectrum of the P-oxidized RC at 77 K
(solid line). The spectrum consists of two absorption bands labeled as
H and B, which correspond to the excitations mainly on the accessory
bacteriochlorophyll and the bacteriopheophytin molecules, respectively.
The spectral profiles of the 750 nm (dashed line) and 800 nm (dash-
dotted line) pulses are also shown. The 750 nm pulse is on resonance
with the H band, and the 800 nm pulse is on resonance with the B
band.

Figure 5. One-color three-pulse photon-echo peak shift for the
P-oxidized RC. The 1C3PEPS results using pulses centered at 750 nm
(H band, open triangle) and at 800 nm (B band, open circle) measured
at 77 K are shown. The solid lines are simulations using bath parameters
listed in Table 1.
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In Figure 5, we show the 1C3PEPS simulations calculated
using the theoretical method described in Section 2. The bath
parameters used to reproduce the experiments are listed in Table
1. We found that the B band 1C3PEPS data requires two bath
terms to describe it adequately, while the H band 1C3PEPS
data can be reasonably reproduced by a single overdamped
oscillator term. This is mainly due to the structure aroundT )
150 fs on the B band 1C3PEPS. Note that the 220 cm-1 mode
is also observed in the 1C3PEPS and Raman measurements for
the neutral RC at room temperature, in agreement with our
result.15,55 Our numerical simulation indicates that the plateau
observed in the B band 1C3PEPS atT ∼ 150 fs is due to the
interference between vibrational contributions. Note that the
simulations reproduce the peak shifts measured at smallT,
indicating the improvement due to the proper inclusion of pulse-

overlap effects. This is critical for the current study. Because
the peak shift decays on the 100 fs time scale and reliable data
is only available forT < 300 fs, to obtain a meaningful
interpretation of the experimental data, one needs to be able to
describe the sub-100 fs part of the peak shift decay. Moreover,
the inhomogeneous Gaussian static disorder withσ ) 60 cm-1

obtained from 1C3PEPS experiment on the accessory pigments
of the RC is in good agreement with the value reported
previously in the room-temperature 1C3PEPS and Raman
studies.15,55

We use the bath parameters extracted from the 1C3PEPS data
(Table 1) to simulate the 2C downhill and uphill experiments.
By varying the electronic coupling constantJ with the constraint
that the energy difference between the excitonic H and B states
is fixed at 680 cm-1, we found a value ofJ ) 250 cm-1 gives
the best fit to both measurements. The simulated 2C downhill
and uphill 3PEPS are shown in Figure 6, in which simulations
with J ) 200 cm-1 and 300 cm-1 are also shown to demonstrate
that the 2C3PEPS measurement is sensitive to the electronic
couplings. The estimated value ofJ ) 250 cm-1 is slightly larger
than the value observed in the wild-type RC20 (J ) 170 cm-1)
and the theoretical value calculated using semiemprical quantum
chemistry method52 (J ) 200 cm-1); the largerJ may explain
the rapid H to B excitation energy transfer.

The negative peak shifts observed in the 2C3PEPS experiment
were attributed by Parkinson et al. to the rapid energy transfer
dynamics in the RC.20 For example, in the 2C uphill experiment,
the B f P+ energy transfer rapidly removes population on B
during the time period between the second and the third pulses
and significantly reduces the total signal strength as the time
increases. The negative peak shift occurs because, at a given
population timeT, the time period between the second and the
third pulses decreases when the coherence timeτ becomes more
negative (Figure 1). Our dynamical simulations confirmed this
explanation and showed that the rapid Bf P+ energy transfer
is responsible for the negative peak shifts in both the uphill
and downhill experiments. In Figure 7, we compare theoretical
uphill 2CPEPS simulations with Bf P+ population transfer to
simulations without Bf P+ population transfer. Clearly, the
population dynamics in general reduces the peak shift and gives
rise to negative peak shifts at shortT. The effects in the downhill
2C3PEPS are an interplay of the Bf P+ dynamics, which

Figure 6. Two-color three-pulse photon-echo peak shift for the
P-oxidized RC (open circle). The 2C3PEPS results at 77 K using
downhill (upper panel) and uphill (lower panel) pulse sequences are
shown. The solid lines are simulations using the bath parameters listed
in Table 1 and an electronic coupling constantJ ) 250 cm-1.
Simulations using different couplingsJ ) 200 and 300 cm-1 are shown
as dashed and dash-dotted lines, respectively.

TABLE 1: Bath Parameters for H and B of the P-oxidized
RC of Rb. sphaeroidesObtained from 1C3PEPS
Measurements (cm-1)

λa Ωa Γa σb

accessory BChl 75 100 150 60
1500 220 10

BPhy 250 50 150 60

a Coupling strengthλ, characteristic frequencyΩ, and damping
constantΓ defined in eq 17.b Standard deviation of the Gaussian static
disorder.

Figure 7. Effects of rapid energy transfer on the uphill 2C3PEPS.
We show simulated curves of the uphill 2C3PEPS without Bf P+

population transfer (solid line) and with Bf P+ population transfer at
100 fs (dashed line) and 50 fs (dash-dotted line). The additional
population transfer channels were included by adding additional
Lindblad terms in the quantum master equation. In the simulations,
the bath parameters listed in Table 1 andJ ) 250 cm-1 were used.

9506 J. Phys. Chem. A, Vol. 111, No. 38, 2007 Cheng et al.



reduces signal strength and causes negative peak shifts, and the
H f B dynamics, which actually generates additional signals.
As a result, the downhill 2C3PEPS is less negative compared
to the uphill 2C3PEPS and is almost flat after the bath relaxation
time scale (Figure 6).

Note that we assume that the bath mode coupled to chro-
mophores H and B are uncorrelated, which should be a good
approximation for chromophores that are spatially far apart.
However, in a densely packed protein-pigment complex such
as the RC, in which the center-to-center distance between BPhy
and BChl chromophores is about 10 Å, the uncorrelated bath
assumption is likely to be broken. A recent experiment in our
group shows that the transition energy fluctuations on BPhy
and BChl are highly correlated, which results in a long-lasting
coherence between H and B excitonic states and indicates that
a theoretical model that includes correlated bath dynamics and
coherent energy transfer dynamics is needed to describe the
system.56 In this case, the present theoretical method for third-
order nonlinear spectroscopy can be extended to include
nonlocal bath effects by considering system-bath coupling
terms with nonlocal system operators. Work is currently in
progress to extend the present approach to include nonlocal bath
effects and refine our estimate of the electronic coupling.

5. Conclusions

We have combined a time-nonlocal non-Markovian quantum
master equation37 and a perturbative scheme30 for the calculation
of the third-order polarization in the phase-matching direction
ks ) -k1 + k2 + k3 to calculate the three-pulse photon-echo
signals. We have extended the formalism proposed by Gelin et
al. to describe multichromophoric systems with a two-excitation
manifold, thus enabling the calculation of general three-pulse
photon-echo signals. In addition, an efficient numerical integra-
tion scheme based on the Gauss-Hermite quadrature rule was
used to perform an average over a statistical Gaussian distribu-
tion of transition frequencies and thus include the effects of
static disorder. This allows the efficient calculation of three-
pulse photon-echo peak shifts of coupled chromophores in
condensed phase environments.

Compared to the standard perturbative approach of nonlinear
spectroscopy, this new scheme has several key advantages. First,
unlike the standard approach that works in the impulsive limit
and RWA, the present method incorporates all relevant optical
fields into the system Hamiltonian and propagates the driven
dynamics of the system numerically. Therefore, arbitrary pulse
durations can be used in the simulations and all pulse-overlap
effects are automatically accounted for. This enables us to
correctly simulate 3PEPS at short population times. Second,
because we use a time-nonlocal non-Markovian theory, all
relevant dissipative dynamics of the system are included in the
new method. For example, effects of coherent energy transfer
and non-Markovian dynamics are included in a unified manner,
which would be difficult to implement in the standard pertur-
bative approach. Third, no additional effort is needed to apply
this method to systems with a time-dependent Hamiltonian. This
should be useful for study of a system whose electronic
Hamiltonian is modulated by slow nuclear coordinates.

We applied the theoretical method to simulate one-color and
two-color 3PEPS experiments on a bacterial reaction center
whose special pair is chemically oxidized. With the new
theoretical approach, we are able to reproduce all experimental
results simultaneously and determine that the electronic coupling
J ) 250 cm-1 between the localizedQy excitations on the
bacteriopheophytin and accessory bateriochlorophyll in the RC.

Recently, two-dimensional (2D) electronic spectroscopy has
been shown to be an effective probe of electronic couplings
and dynamical information in multichromophoric systems.3,57-60

The 2D technique is complementary to the 3PEPS measurements
described in this work.19 Because the 2D spectra can be
calculated by performing a double Fourier transform on
P3PPE

(3) (τ,T,t), the theoretical method presented in this work can
be used to calculate 2D spectra without any modification.
Because the full dynamics and pulse-overlap effects are
incorporated, the current method will also be useful for the
interpretation of 2D electronic spectroscopic measurements.
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