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Environmental correlation effects on excitation energy transfer in photosynthetic light harvesting
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Several recent studies of energy transfer in photosynthetic light harvesting complexes have revealed a subtle
interplay between coherent and decoherent dynamic contributions to the overall transfer efficiency in these open
quantum systems. In this work we systematically investigate the impact of temporal and spatial correlations in
environmental fluctuations on excitation transport in the Fenna-Matthews-Olson photosynthetic complex. We
demonstrate that the exact nature of the correlations can have a large impact on the efficiency of light harvesting.
In particular, we find that (i) spatial correlations can enhance coherences in the site basis while slowing transport,
and (ii) the overall efficiency of transport is optimized at a finite temporal correlation that produces maximum
overlap between the environmental power spectrum and the excitonic energy differences, which in turn results
in enhanced driving of transitions between excitonic states.
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I. INTRODUCTION

Recent experimental revelations of long-lived electronic
coherence in photosynthetic light harvesting systems [1–4]
and conjugated polymers [5] have prompted a renewed
examination of energy transport in densely packed molecular
aggregates. In particular, the effect of quantum coherent
dynamics, and its interplay with environmental decoherence
and dissipation, have been closely scrutinized lately (e.g.,
Refs. [6–12]). Combined with earlier detailed modeling of
excitation transport in photosynthetic light harvesting (e.g.,
Refs. [13–15]), a preliminary understanding of the complex
dynamics of excitation transport is being molded. However,
the picture is far from complete. Most photosynthetic light
harvesting complexes (LHCs) are surrounded by protein
structures that serve multiple functions, including maintenance
of structural stability [16] and creation of energy landscapes
that facilitate energy transfer to reaction centers in the core
chromophoric networks of LHCs [17]. These same protein
structures also provide a dynamic environment that interacts
with the chromophore molecules that carry the excitation
energy. The dynamics of this environment are complex and
not very well characterized. Environmental fluctuations are
generally correlated in time [13,18,19] and are also believed
to be spatially correlated [1,2]. The effects of these correlations
on photosynthetic energy transport are generally not well
understood (although recent experimental results suggest that
spatial correlations may be directly responsible for long-
lived electronic coherence [2,5]). Furthermore, new dynamical
models capable of simulating some of these correlations (e.g.,
Refs. [20,21]) suggest that their effects are quite significant.
Thus it is important to determine the range of possible conse-
quences of temporal and spatial correlations of environmental
fluctuations on excitation energy transfer both within a single
LHC and between networked photosynthetic units.

In this paper we undertake a numerical study of these
effects, analyzing how the spatiotemporal correlations of envi-
ronmental fluctuations affect energy transport in a single LHC.
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We use a specific system, the Fenna-Matthews-Olson (FMO)
bacteriochlorophyll complex [22,23], as a prototypical model
for our study because its structural and energetic properties
are particularly well characterized [23,24]. We examine the
effects of environmental fluctuations in a systematic fashion,
employing model forms of correlations in time and space
in order to assess the generic effects of these correlations
on energy transfer efficiency. The results obtained here with
FMO can thereby be taken as indicative of the generic
effects of environmental fluctuations on other light harvesting
complexes.

The FMO complex is a small protein in green sulfur bacteria
that acts as a highly efficient energy transfer wire connecting
chlorosomes (i.e., light collecting pigment arrays) to photosyn-
thetic reaction centers. Structurally, the FMO protein is a trimer
whose monomers are believed to function independently [25].
Each monomer contains seven bacteriochlorophyll-a (BChla)
molecules embedded within a protein scaffold. Recent studies
have determined the orientation of the FMO complex within
the intermembrane region between the chlorosome antenna
and reaction center [25,26]. They present strong evidence
that the reaction center is strongly coupled to BChla 3 and
that the excitation energy enters an FMO monomer from the
chlorosomes via BChla 1 or BChla 6. In the following, we refer
to the individual BChla molecules as sites or chromophores.

Under moderate laser driving (or in vivo) there is at most one
excitation in a single FMO complex. In these conditions, the
reversible dynamics of the electronic degrees of freedom are
described by the so-called Frenkel exciton Hamiltonian: Hel =∑7

j=1 Ej |j 〉〈j | + ∑7
j=1

∑7
i>j Jij (|j 〉〈i| + |i〉〈j |). Here |j 〉

represents the state where only the j th chromophore is
excited and all other chromophores are in their electronic
ground states. Ej is the transition energy of chromophore j ,
including any static shifts due to the interactions with the
protein environment, and Jij describe the excitonic coupling
between chromophores i and j . We adopt a classical stochastic
model of the FMO environment and describe the interactions
between excitations and surrounding protein environments
as fluctuations of the chromophore transition energies: Hs =∑7

j=1 �j (t)|j 〉〈j |, where �j (t) are time-dependent random
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variables whose properties we describe shortly. We ignore
fluctuations in the off-diagonal couplings for simplicity, but
our treatment can be generalized to treat such noise as
well. This model is equivalent to a stochastic Liouville
treatment of excitation dynamics and leads to dephasing
in the site basis when the dynamics are averaged over the
random process [27–29]. Since we are treating the fluctuating
phonon environment as a classical quantity, the dynamics
under this stochastic Liouville treatment is only exact for
an infinite-temperature phonon environment, although it is
known to become increasingly accurate for high-temperature
baths [29]. In the context of this work, the primary utility
of this model comes from the fact that it allows one to
numerically incorporate any spatial and temporal correlation
of the environment into the dynamics of the chromophores and
thus enables systematic studies of a range of correlated bath
dynamics. This is difficult or even impossible for alternative
treatments of the chromophore-environment interactions such
as Redfield equations, Markovian master equations, or cumu-
lant expansion techniques [30]. Since the main conclusions we
draw from the present study pertain to the relative effects of
environmental correlations, this stochastic model is sufficient
for our purposes. In summary, the dynamics of the FMO
complex are described by the following master equation:

dρ

dt
= −i

h̄
[H,ρ] + γl

7∑
j=1

D[σ−
j ]ρ + γtD[σ+

trapσ
−
3 ]ρ (1)

where H ≡ Hel + Hs, and the second and third terms describe,
respectively, radiative excitation decay and excitation trapping
at site 3 due to interaction with the reaction center. The
Lindblad superoperator D[A]ρ ≡ AρA† − 1

2A†Aρ − 1
2ρA†A

for any operator A, and σ−
j = |0〉〈j | is a lowering operator (|0〉

denotes the electronic ground state of all seven chromophores).
The stochastic noise processes �j (t) are Gaussian with

zero mean, a reasonable form for noise terms resulting
from coupling to a dynamic protein environment [13]. The
temporal correlations are taken to be of exponential form:
〈�j (t)�j (t + τ )〉 = �2

0 exp(−|τ |/τc), where the correlation
time, τc, is a free parameter which we vary in the simulations
below. The magnitude of the noise variation, �0, characterizes
the size of the environmental fluctuations, which we expect to
be a function of the environmental dynamics and temperature.
Consistent with the stochastic Liouville treatment, we use a
high temperature approximation for the variance of phononic
fluctuations (e.g., see Chap. 8 of Ref. [31]) to arrive at
�2

0 = 2ERkBT , where ER is the reorganization energy and
T is the temperature. The true form of the decay of temporal
correlations in protein dynamics is complex. It is typically a
combination of Gaussian decay at initial times and multiple
exponential decays at longer times. Due to the complexity
of simulating such a correlation and the lack of detailed
knowledge of temporal correlation in the FMO environment,
we have chosen to simulate the temporal correlation decay
with a single exponential. At the temperatures and timescales
relevant to light harvesting complex dynamics this approx-
imation is reasonable and corresponds to a coarse-graining
of environmental dynamics [20]. This is also the justification
provided for the use of the overdamped Brownian oscillator
model commonly employed to model protein dynamics in

LHCs (e.g., Refs. [13,32,33]). In fact, the single exponen-
tial decay form we use is the high-temperature limit of
the symmetrized correlation function for the overdamped
Brownian oscillator model—where the Matsubara terms can
be ignored [32]. Another justification for this form of temporal
correlation decay comes from Doob’s theorem [34], which
states that any stationary, Gaussian, or Markov random process
(all plausible properties for the environmental fluctuations
in pigment-protein complexes at physiological temperatures)
must possess an exponentially decaying temporal correlation.

Spatial correlations of the noise processes are described by
a matrix C with elements Cij = 1

�2
0
〈�i(t)�j (t)〉. The spatial

correlation of protein dynamics in photosynthetic complexes
is not a well-studied subject and there are currently no precise
characterizations of either the nature or the extent of spatial
correlation between electron-phonon couplings or phonon
fluctuations. In this study we therefore explore the effects of
generic forms for C, within the restriction of having positive
correlations between fluctuations at different chromophores
(i.e., positive definite matrix Cij � 0). Specifically, we exam-
ine the following three models:

(1) No spatial correlations. CN
ij = δij .

(2) Dimerized correlations. Excitons in FMO are mostly
delocalized on two chromophores [35]. The chromophores
that are the most strongly coupled are the pairs 1-2, 5-6, and,
to a lesser extent, 4-5 and 4-7. This dimerization motivates
us to use a correlation matrix, CD , with the only nonzero off-
diagonal entries being CD

12 = CD
21 = CD

56 = CD
65 = 0.9, CD

45 =
CD

54 = CD
47 = CD

74 = 0.4. That is, only the strongly coupled
chromophores experience correlated fluctuations.

(3) Distance-dependent correlations. The typical distances
between chromophores in the Chlorobium tepidum FMO
monomer are known from its crystal structure [23,24]. It is
common in the literature to assume spatial correlations that
decay exponentially with distance: CE

ij = e−dij /Rc , where Rc

is a variable correlation radius [36]. However, microscopic
justification for this form is an open question [37] and so we
have carried out calculations with both exponential and inverse
polynomial decay of spatial correlations.

Taken together, these three models allow a systematic study
of the effects of increasing spatial correlations.

II. RESULTS

Equation (1) was numerically integrated using the Adams-
Bashforth-Moulton multistep method. The temporal corre-
lations in the noise processes were generated from white
noise by passing the latter through a finite impulse response
filter [38]. At each time instant, the spatial correlation between
fluctuations at different sites was realized by the standard
technique of using the Cholesky decomposition of C (see,
e.g., Ref. [39]). The electronic Hamiltonian, Hel, was formed
using site energies and coupling strengths for C. tepidum FMO
from Tables 1 (column 3) and 4 (trimer column) of Ref. [25].
Finally, we used values of ER = 35 cm−1, γl = 1 ns−1, and
γt = 1 ps−1, all of which are consistent with the most detailed
experimental and theoretical literature on FMO [25,40].

We focus primarily on the time evolution of the average
trapping probability of the excitation. This is formally defined

011906-2



ENVIRONMENTAL CORRELATION EFFECTS ON . . . PHYSICAL REVIEW E 83, 011906 (2011)

0 50 100 150
0.7

0.75

0.8

0.85

0.9

Correlation time, 
c
 [fs]

P
tr

ap
 a

t 
20

 p
s

77 K

(a) Dimerized correlations

0 50 100 150
0.6

0.65

0.7

0.75

0.8

0.85

0.9

Correlation time, τ
c
 [fs]

P
tr

ap
 a

t 
20

 p
s

77 K

R
c
= 5

R
c
=10

R
c
=20

(b) Exponential correlations

FIG. 1. (Color online) Trapping probability at 20 ps as a function of the temporal correlation of the FMO environment for various spatial
correlation models. The initial state is an excitation localized on BChla 1, and the temperature in both panels is T = 77 K. The curves are
polynomial fits to the data points that indicate the general trend, and the error bars show the standard deviation of the average taken over 100
sample evolutions. In both panels, the blue (solid) curve corresponds the case of no spatial correlation CN , the red (dotted) curve corresponds
to the case of dimerized spatial correlation CD , and the black (dashed) curves correspond to exponential spatial correlation CE , with the labeled
correlation radii. (a) Comparison of the trapping probability for the case of no spatial correlation to the case of dimerized correlations and
(b) comparison of no correlation with exponential correlations.

as Ptrap(t) = E�[〈trap|ρ(t)|trap〉], where ρ(t) is the state of
the system at time t , and E�[·] denotes an ensemble average
over instances of the stochastic process. In the simulations
presented below, we perform this ensemble average over
100 instances. Ptrap provides a measure of the efficiency of
excitation transport across the FMO protein, from the initial
absorption at sites 1 or 6 to the trap, which represents the
reaction center. Figures 1, 2, 3, and 4 show the average
trapping probability at 20 ps as a function of the temporal
correlation time of the environmental fluctuations for various
temperatures and initial states. In all the figures, the blue
(solid) curve shows the trapping probability for the case of
no spatial correlations, the red (dotted) curve shows Ptrap

for the case of dimerized spatial correlations, and the black
(dashed) curve shows the same quantity for exponential spatial
correlations, with the labeled correlation radii. We choose to
plot the average trapping probability at 20 ps because we
wish to compare relative efficiencies at times when transient
effects are absent and thus we are interested in the asymptotic
behavior. However, we note that at earlier times the curves
look qualitatively similar to those in Figs. 1–4 and the
conclusions given below hold for all times in the interval
10–25 ps.

Several distinct features are evident from Figs. 1–4. First,
with any spatial correlation, there is an optimal temporal
correlation time where the efficiency of excitation transport
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(a) Dimerized correlations
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FIG. 2. (Color online) Trapping probability at 20 ps as a function of the temporal correlation of the FMO environment, for various spatial
correlation models. The initial state is an excitation localized on BChla 1, and the temperature in both panels is T = 300 K. The curves are
polynomial fits to the data points that indicate the general trend, and the error bars show the standard deviation of the average taken over 100
sample evolutions. The color coding for the curves is the same as in Fig. 1. (a) Comparison of the trapping probability for the case of no spatial
correlation to the case of dimerized correlations and (b) comparison of no correlation with exponential correlations.
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FIG. 3. (Color online) Trapping probability at 20 ps as a function of the temporal correlation of the FMO environment for various spatial
correlation models. The initial state is an excitation localized on BChla 6, and the temperature in both panels is T = 77 K. The curves are
polynomial fits to the data points that indicate the general trend, and the error bars show the standard deviation of the average taken over 100
sample evolutions. The color coding for the curves is the same as in Fig. 1. (a) Comparison of the trapping probability for the case of no spatial
correlation to the case of dimerized correlations and (b) comparison of no correlation with exponential correlations.

is maximized with respect to environmental fluctuations. For
T = 77 K, this optimal time is ∼40 fs when the initial state
is an excitation on site 1 (Fig. 1), and ∼30 fs when the initial
state is an excitation on site 6 (Fig. 3). The efficiency dies
off very quickly for shorter correlation times and more slowly
for longer correlation times. A second feature evident in these
figures is the large effect that spatial correlations have on the
efficiency of excitation transport. Uncorrelated fluctuations
provide the greatest efficiency and generally the efficiency
decreases with increasing spatial correlation. There is very
little difference between the uncorrelated spatial fluctuations
case and exponential correlated case with the smallest correla-
tion radius Rc = 5 Å, for both initial states and temperatures.
And the dimerized correlations result in efficiencies that are
similar to those produced by the exponential correlation with

Rc = 10 Å. This is not surprising since the dimers in FMO
are formed by pigments separated by roughly 10 Å. Also, in
comparing Figs. 1 and 3, we see that energy transfer from
initial state 6 is more sensitive to spatiotemporal correlations
than that from initial state 1.

Comparison of Fig. 1 with Fig. 2 and Fig. 3 with
Fig. 4 shows that the effect of increasing temperature, which
in our model increases the variance of fluctuations, is to
render the excitation transport less sensitive to temporal and
spatial correlations. The optimal temporal correlation time
is less pronounced; there is a wide plateau of comparable
efficiencies across the range 30 < τc < 90 fs (Figs. 2 and 4).
Similarly, the variation of average trapping probability with
spatial correlation is less at high temperature, although the
general trend of decreased efficiency with increased spatial
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FIG. 4. (Color online) Trapping probability at 20 ps as a function of the temporal correlation of the FMO environment for various spatial
correlation models. The initial state is an excitation localized on BChla 6, and the temperature in both panels is T = 300 K. The curves are
polynomial fits to the data points that indicate the general trend, and the error bars show the standard deviation of the average taken over 100
sample evolutions. The color coding for the curves is the same as in Fig. 1. (a) Comparison of the trapping probability for the case of no spatial
correlation to the case of dimerized correlations and (b) comparison of no correlation with exponential correlations.
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FIG. 5. (Color online) Average trapping probability as a function of time for calculations with two representative environmental correlation
times, (a) τc = 45 fs and (b) τc = 120 fs. In each case the main panel shows the behavior at T = 77 K while the insets show behavior at
T = 300 K. The initial state is an excitation on BChla 6. In both panels the blue (solid) curves are for no spatial correlations, CN , and the red
(dotted) and black (dashed) curves are for exponential spatial correlations with Rc = 10 Å and Rc = 20 Å, respectively. The averages are taken
over 100 sample evolutions. Error bars are omitted for clarity: the variation from these average curves is small.

correlation still persists. These simulations also show that the
average efficiency of transport is more robust to the initial state
at higher temperatures; that is, there is less variation between
Figs. 2 and 4 than between Figs. 1 and 3.

For completeness, in Fig. 5 we also show representative
time traces of the average trapping probability for temporal
correlation times τc = 45 fs and τc = 120 fs and for the three
different spatial correlation models. The trapping probability
curves have similar trends for all spatiotemporal correlations
and the insets show that the dependence on spatial correlation
length becomes less pronounced at higher temperatures.
Figure 6 shows the survival probability: Psurv ≡ 1 − Ptrap at
the two temperatures 77 and 300 K, for the case of no spatial
correlations and temporal correlation time τc = 45 fs. The
time dependence of this survival probability is often examined
in the analysis of random walk dynamics with trapping [41].
For the stochastic Liouville description used here and for the
graph defined by the FMO complex, we see that at T = 77 K
the survival probability at short times shows a complex
modified exponential decay that is well fit (except in the t → 0
limit) by a function of the form Psurv ∝ e

∑
i ci t

i

with i ranging
from 0 to 3 at least, containing both subexponential (ci < 0)
and superexponential (ci > 0) contributions. The decay at
long times fits well to a simple exponential decay e−βt . At
the higher temperature, T = 300 K, the modified exponential
decay regime is shortened significantly, and most of the decay
is simply exponential.

III. DISCUSSION

To understand the behavior of trapping efficiency with
temporal correlation, we focus on the case of no spatial
correlation in fluctuations since the general behavior with
respect to τc is the same for all spatial correlations considered.

We begin by examining the excitonic structure of FMO, shown
in Table I. The wave functions of the two lowest-energy exci-
tons have significant overlap with the trapping site, BChla 3.
Similarly, the initial state of an excitation localized on site
1 (site 6) primarily has components of excitons 2 and 5
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FIG. 6. (Color online) Log-linear plot of the average survival
probability as a function of time for calculations with environmental
correlation time τc = 45 fs and initial state an excitation on BChla 6.
This figure only shows the case of no spatial correlations; the temporal
scaling is similar for all three models of spatial correlations analyzed
in this work. The blue (solid) curve shows behavior at T = 77 K
and the red (dotted) for T = 300 K. The inset is a zoom of the short
time region. The average is taken over 100 sample evolutions. Error
bars are omitted for clarity: the variation from these average curves
is small.
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TABLE I. FMO excitons (energy eigenstates of Hel). The exciton
energies are in cm−1 (normalized so that the lowest-energy exciton
has energy zero).

Exciton 0 1 2 3 4 5 6

Energy 0 102.8 177 272.7 297.5 402.7 497.2
Site overlapa 3, 4 3, 4, 5, 7 1, 2 5, 7 4, 5, 6 1, 2 5, 6

aSites that the exciton wave function has the largest overlap with.

(excitons 4 and 6). Using a second-order cumulant expansion
technique,1 Blumen and Silbey showed that for such a model,
when written in the interaction picture with respect to Hel, the
populations in the exciton basis evolve according to the master
equation [42]

d

dt
ραα(t) = 1

N

N−1∑
β=0


αβ(t) (−ραα(t) + ρββ(t)),

where N is the total number of chromophores, and we used
Greek indices for the exciton basis. 
αβ is a population
transition rate from exciton level α to β, and it is explicitly (in
our notation)


αβ(t) = 2�2
0

{
τc

1 + τ 2
c ω2

αβ

+ τc
2e−t/τc

1 + τ 2
c ω2

αβ

×
[
ωαβ sin(ωαβt) − cos(ωαβt)

τc

]}
,

where ωαβ ≡ ωα − ωβ is a difference between exciton fre-
quencies. For times t � τc, which is when most of the excita-
tion transfer occurs, the second, time-dependent term in Eq. (2)
is damped by the exponential prefactor and can be neglected.

1The second-order truncation ignores the effects of all third and
higher moments of the fluctuating operator in the Hamiltonian.

Hence, the transition rates are essentially determined by the
constant term, which is equal to the Lorentzian power spectrum

of the exponentially correlated noise: J�(ω) = 2�2
0τc

1+τ 2
c ω2 . In

order to maximize transport efficiency, it is advantageous
to maximize the rate of transitions between exciton states.
The time-independent part of the rates 
αβ is maximized
when the correlation time of the fluctuations matches the
energy differences between the exciton levels of the complex
(i.e., τc = 1/ωαβ ). Physically, this results from the fact that
noise power at an exciton energy difference drives population
transitions between the corresponding exciton levels. As can
be seen from Table I, the exciton energy differences in
FMO are mostly in the region �E ∼ 90–350 cm−1. For
this range of energy differences, the range of correlation
times that maximizes J� is τc ∼ 15–60 fs. This is precisely
the range in which the peaks in average efficiency lie in
Figs. 1–4. Thus we conclude that the peak in average efficiency
with respect to temporal correlation is due to noise-assisted
transfer.

Now we turn to the effects of spatial correlations. The
primary mechanism by which energy fluctuations affect exci-
tation transport is by modulating energy mismatches between
chromophores [11,19]. The rate of excitation transfer between
two chromophores is enhanced when their average energy
gap decreases. Positive correlations in the energy fluctuations
suppress line broadening, and in the limit of perfectly corre-
lated fluctuations the energy gaps remain unchanged. This can
equivalently be viewed as a renormalization in which positive
correlations reduce the reorganization energy and hence the
dephasing rate [43]. The suppression of line broadening
has two key effects on excitations: it leads to longer-lived
coherence between sites and it slows the average transport
by reducing transfer rates between energy-mismatched chro-
mophores. We illustrate both of these effects in Fig. 7. The
main axes plot the time evolution of total coherence in FMO,
which is defined here as C = ∑

i 	=j |ρij |. The initial state is
an excitation localized on BChla 6, and the two panels show
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(a) T = 77K
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(b) T = 300K

FIG. 7. (Color online) Average total coherence (main axes) and average displacement in angstroms (insets) in the FMO complex as a
function of time for two temperatures. The initial state is an excitation on BChla 6 and τc = 45 fs. The blue (solid) curves are for no spatial
correlations, CN ; the red (dotted) and black (dashed) curves are for exponential spatial correlations with Rc = 10 Å and Rc = 20 Å, respectively.
The average is taken over 100 sample evolutions. Error bars are omitted for clarity; the variation from these average curves is small. The inset
shows the mean displacement X (defined in the main text) as a function of time for the same spatial correlation cases.
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the decay of coherence at two temperatures. Both plots clearly
show the preservation of coherence by spatially correlated
fluctuations, although the effect is less dramatic for the higher
temperature. Furthermore, to demonstrate the second point that
correlated fluctuations lead to slower excitation transport, in
the insets we plot the mean displacement of the excitation,
defined as X (t) = ∑

i d6iρii(t), where d6i is the distance
between the initial site 6 and site i.

It is clear from these plots that, after the first few hundred
femtoseconds, the average rate of transfer of the excitation
is reduced in the presence of spatially correlated fluctuations.
Again, the effect is less dramatic at higher temperatures where
the line broadening is inherently larger and the renormalization
by spatial correlations has less of an impact. Thus we conclude
that positive spatial correlations in environmental noise lead
to both longer-lived coherence and slower excitation transport.
These conclusions agree with recent studies of the influence of
spatial correlations in chromophoric systems using a variety
of techniques [9,43–46].

As noted above, in view of the fact that the exact nature of
the spatial correlation present in the environmental fluctuations
is unknown [18,37], we also simulated excitation dynamics
assuming a polynomial instead of exponential dependence
of the spatial correlations. In particular, we used CDB

ij =
1
d2

ij

β, that is, an inverse-squared dependency of vibrational

correlations in the protein scaffolding on the distance between
chromophores. Here β is the largest constant less than 1
that ensures that the matrix CDB is positive definite; the
magnitude of β thus constitutes an upper bound on the
magnitude of correlations between fluctuations on different
sites. With the interchromophore distances from Ref. [23],
we find β ≈ 0.85. Our calculations of the dynamics resulting
from this correlation of the environmental fluctuations (not
shown here) are very similar to that presented for exponentially
decaying correlations in Figures 1–5. In particular, there is an
optimal temporal correlation time of ∼40 fs for initial state 1
(and ∼30 fs for initial state 6), and the overall efficiency of
energy transfer is seen to be lowered by the spatial correlation,
while coherence in the site basis is enhanced, as in Figure 7.

IV. CONCLUSION

We have systematically studied the effects of temporal and
spatial correlations of noise on the transport of excitations
across a prototypical light harvesting complex. We emphasize
that, since we employed a classical stochastic model of the
phonon environment, it is not possible to draw quantitative

conclusions regarding energy transfer in FMO from the present
study. However, our model does enable us to examine the
relative effects on transport of varying amounts of correlation.
We have shown that temporal correlations can enhance noise
power in certain spectral regions and consequently enhance
exciton transitions lying in these regions. We also showed
that spatially correlated fluctuations can preserve coherence
while resulting in slower transport to the trapping site. While
this paper was under review we learned of recent studies
using the more physically accurate generalized Bloch-Redfield
equation approach [45,46], which arrive at similar conclusions.
These authors further investigated the dependence of these
phenomena on the reorganization energy of the protein
pigment complex and found that, depending on the magnitude
of the reorganization energy, positive spatial correlations can
either decrease or increase the overall efficiency of the energy
transfer process. This interesting result is consistent with
both the fact that spatial correlations act to effectively decrease
the reorganization energy of the system and the fact that
there is an optimal value for the reorganization energy. Thus,
depending whether the reorganization energy is smaller or
larger than the optimal value, spatial correlations may shift
the value either toward the optimal, increasing the efficiency,
or away from it, decreasing the efficiency. Finally, although
we have specifically analyzed the FMO complex in this work,
the conclusions drawn here about the effects of correlated
fluctuations on excitation transport also apply to larger light
harvesting complexes and are generally applicable to transport
phenomena in densely packed molecular assemblies, including
J aggregates and other photosynthetic units [47].

This study also raises several intriguing questions of
biological import. Most significantly, why is it that spatially
correlated fluctuations are likely present in some LHCs [1,2] if
they serve to reduce rather than to enhance the efficiency and
speed of excitation transport? Second, is the correlation time
of environmental fluctuations in FMO within the window that
maximizes transport efficiency? Clearly, more detailed studies
are warranted of the complex environments for electronic
energy transport that are found in natural organic molecular
assemblies, in particular for light harvesting complexes.
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