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We investigate the applicability of the linearized semiclassical initial value representation (LSC-
IVR) method to excitation energy transfer (EET) problems in molecular aggregates by simulating
the EET dynamics of a dimer model in a wide range of parameter regime and comparing the results
to those obtained from a numerically exact method. It is found that the LSC-IVR approach yields
accurate population relaxation rates and decoherence rates in a broad parameter regime. However,
the classical approximation imposed by the LSC-IVR method does not satisfy the detailed balance
condition, generally leading to incorrect equilibrium populations. Based on this observation, we
propose a post-processing algorithm to solve the long time equilibrium problem and demonstrate
that this long-time correction method successfully removed the deviations from exact results for
the LSC-IVR method in all of the regimes studied in this work. Finally, we apply the LSC-IVR
method to simulate EET dynamics in the photosynthetic Fenna-Matthews-Olson complex system,
demonstrating that the LSC-IVR method with long-time correction provides excellent description of
coherent EET dynamics in this typical photosynthetic pigment-protein complex. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4979894]

I. INTRODUCTION

Quantum dynamics involving transitions between elec-
tronic states play important roles in condensed-phase sys-
tems. There, interactions between electronic degrees of
freedom and nuclear motions often govern the dynamics of
electronic transitions, and a system-bath model adopting an
electronic system coupled to nuclear bath modes is often
used to describe the dynamics. In these cases, methodologies
incorporating quantum effects while retaining favorable com-
putational cost exhibited by evolving classical dynamics are
desirable. Thus, various mixed quantum classical methods,
such as the surface hopping formalism,1,2 the mixed quan-
tum classical Liouville equation,3,4 and ring polymer molec-
ular dynamics5,6 have been developed. It has been shown
that these methods provide reasonable results in many model
systems;6–8 nevertheless, shortcomings such as incomplete
descriptions of feedback from bath parts to the system, insta-
bilities in the numerical integration scheme, or restriction to
the high temperature limit still hinder the applications of these
approaches.

Going beyond the pure classical approximation, semi-
classical (SC) methods utilize information from classical tra-
jectories to calculate the quantum propagator.9 Since these
approaches only require classical trajectories as the input,
in principle it is possible to simulate dynamics of com-
plex systems based on molecular dynamics simulations. In
particular, the semiclassical initial value representation (SC-
IVR) developed by Miller and co-workers10–12 provides

a)Electronic mail: yuanchung@ntu.edu.tw

a solid mathematical foundation for rigorous formulation
of semiclassical quantum dynamics. Moreover, for simula-
tions of nonadiabatic dynamics that involve potential energy
surfaces of multiple discrete electronic states, the Meyer-
Miller-Stock-Thoss (MMST) representation can be utilized to
provide an exact mapping of the electronic degrees of free-
dom to a set of harmonic modes to facilitate semiclassical
calculations.13–15 Nonetheless, as one focuses on truly com-
plex systems, the interference between the trajectories often
causes computational difficulty in semiclassical descriptions.
Although this problem can be largely removed by using the
forward-backward IVR,16,17 computational cost of SC-IVR is
still very high if convergent results for long-time dynamics
are needed, and this has hindered the application of the full
SC-IVR method to complex systems.

In order to deal with the problems in the SC-IVR method,
Wang et al. suggested a linearized form of the propagator.18

This linearized SC-IVR (LSC-IVR) approach provides exact
results in the high-temperature limit and the harmonic limit.19

Combined with the MMST mapping approach, LSC-IVR has
been applied to simulate electronically nonadiabatic processes,
including one-dimensional two-state scattering problems18,20

and spin-boson problems,10,21 and its shortcomings have been
extensively discussed in the literature.12,20,22–24 Besides, it was
demonstrated that the LSC-IVR approach is able to describe
quantum effects in the short time dynamics (t < ~β) of
the flux correlation functions in isomerization processes.25

Wang et al. further demonstrated that qualitative results with
important physical insights could be obtained in a spin-boson
model by the LSC-IVR approach,21 and more recent theo-
retical advances of the LSC-IVR method has significantly
expanded its range of applicability.26–28
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More recently, inspired by experiments pertaining to
quantum coherence phenomena in photosynthetic light-
harvesting systems,29–31 LSC-IVR and related approaches
have been applied to investigate coherent excitation energy
transfer (EET) dynamics in condensed-phase molecular sys-
tems.32–35 In particular, Tao and Miller have applied the LSC-
IVR approach to investigate models for EET in molecular
dimer systems as well as the EET dynamics in the photo-
synthetic Fenna-Matthews-Olson (FMO) complex to reveal
the success of the linearized semiclassical approximation in
these calculations,32 and novel insights about the nature of the
coherent dynamics in the EET processes could be obtained
from the semiclassical representation.24 Specifically, Miller
and co-workers have shown that while LSC-IVR could not
capture nuclear quantum coherence effects due to the lineariza-
tion approximation, the method correctly describes coherent
evolutions of electronic populations embedded in the Meyer-
Miller representation. In this regard, Miller had pointed out
that the coherent electronic dynamics as often displayed in
oscillatory population beatings can be described by classical
coherence effects.24,32 These studies have demonstrated that
the LSC-IVR approach is a promising method for the simula-
tion of EET dynamics in condensed-phase molecular systems.
Nevertheless, while LSC-IVR has been applied to spin-boson
problems in various parameter regimes, in general the quanti-
tative accuracy of the LSC-IVR method when applied to EET
problems is still largely unclear as a comprehensive benchmark
study for parameters suitable for EET problems is not avail-
able. Thus, it will be desirable to elucidate the applicability of
the LSC-IVR approach in a broad parameter regime for EET
processes and to improve the performance of the LSC-IVR
method if possible.

In this work, we aim to examine the applicability of
the LSC-IVR method to EET problems by a comprehensive
benchmark against numerically exact results. This paper is
organized as follows: Section II first provides a concise review
of the theoretical background of the LSC-IVR method. In
Sec. III, we present a comprehensive investigation of the per-
formance of the LSC-IVR method over a wide range of EET
parameters by comparing EET dynamics of a dimer model
simulated using the LSC-IVR approach against the results
provided by the quasi-adiabatic path integral (QUAPI)36,37

method. The comparison reveals applicable regimes of the
LSC-IVR approach and physical insights about the drawbacks
of the method. These benchmark results inspired us to propose
a post-processing algorithm to improve the LSC-IVR method,
and we show that the simple correction provides accurate sim-
ulations of EET dynamics in Sec. IV. Finally, in Sec. V we
apply the LSC-IVR approach to describe EET dynamics in
the FMO complex, demonstrating that with the aid of the sim-
ple correction algorithm proposed in this work, the LSC-IVR
approach yields EET dynamics in excellent agreement with
numerically exact results in this photosynthetic system.

II. THEORETICAL BACKGROUND
A. LSC-IVR

Quantum time correlation functions38 play central roles
in calculating physical quantities and responses in dynamical

systems. For example, the diffusion coefficient is related to the
velocity-velocity time correlation function, and the absorption
lineshape is related to the dipole-dipole time correlation func-
tion. The general form of a quantum time correlation function
is given by (~ = 1)

CAB(t) = Tr
[
e−iHtAeiHtB

]
, (1)

where A and B are the two observables and H is the Hamilto-
nian of the total system. CAB(t) provides a statistical descrip-
tion of the fluctuation of the time-dependent variables of a
system in the thermal equilibrium.

In a semiclassical approach, the two propagators in the
time correlation function are substituted by semiclassical prop-
agators, which leads to a double integral over two initial phase
space distributions. In principle, these integrals can be calcu-
lated exactly in the IVR representation10,11 by using, for exam-
ple, the forward-backward IVR method; however, in practice
these exact approaches are computationally expensive and thus
limited to calculations for small systems. To deal with molec-
ular processes in complex systems, we focus on the linearized
SC-IVR method suggested by Wang et al.18 In this approach,
the contribution to the integral is assumed to mainly come from
the terms in which the differences between the positions and
the momenta of the two phase space points at time zero are
small enough; therefore, the expansion to the first order can
be used. This leads to a simple double integral over the initial
phase space,

CAB(t) ≈

(
1

2π

) f ∫
dx̄0

∫
dp̄0 AW (x̄0, p̄0)BW (x̄t , p̄t)

∗, (2)

where f is the number of the degrees of freedom and OW (x, p)
denotes the Wigner function of an operator O,

OW (x, p) =
∫

d∆x e−ip∆x〈x +
∆x
2
|O|x −

∆x
2
〉. (3)

In Equation (2), xt and pt are the classical position and momen-
tum at time t propagated by Hamilton’s equations with the
initial conditions x0 and p0, respectively. Compared to the full
SC-IVR approaches, Eq. (2) can be evaluated much more eas-
ily since it only consists of one integral over the initial phase
space.

B. Meyer-Miller-Stock-Thoss representation

The LSC-IVR method enables the evaluation of time
correlation functions by the propagation of classical dynam-
ics. In adiabatic processes, it is straightforward to apply the
LSC-IVR to calculate the dynamics on a single electronic
potential, which provides semiclassical molecular dynamics.
However, in order to consider nonadiabatic processes involv-
ing two or more electronic states in the semiclassical formal-
ism, a classical representation for discrete quantum states is
required. A consistent treatment for combined electronic and
nuclear degrees of freedom can be achieved using the mapping
approach of Meyer, Miller, Stock, and Thoss.13–15

In the Meyer-Miller-Stock-Thoss (MMST) representa-
tion, a system with Ne discrete electronic states is described
by the general Hamiltonian

H(X, P) =
Ne∑

n,m=1

Hnm(X, P)|n〉〈m|, (4)
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where X and P are the positions and the momenta of the nuclear
coordinates, respectively, and |n〉 is the nth electronic state. The
key concept is to map Ne discrete electronic states to the zero
and one quanta space of Ne harmonic oscillators,

|n〉 → |01, 02, . . . , 0n−1, 1n, 0n+1, . . . , 0Ne〉, (5)

where the suffixes label the electronic states, and |01, 02, . . . ,
0n−1, 1n, 0n+1, . . . , 0Ne〉 denotes a harmonic oscillator state in
which the nth oscillator is in the first vibrational excited state
and all the other oscillators are in the corresponding vibrational
ground states.

After recasting Eq. (4) in the second quantization form and
transforming from ladder operators to momentum and position
operators, the final expression of the Hamiltonian in the MMST
representation can be obtained,14

H(X, P)MMST =
∑

n

1
2

(x2
n +p2

n−1)Hnn +
∑
m>n

(xnxm +pnpm)Hnm.

(6)
Equation (6) is equivalent to Eq. (4) if the dynamics are treated
quantum mechanically. In this case, the propagation is con-
fined in the mapped zero and one occupation number states of
the vibrational Hilbert space since the number operator com-
mutes with the Hamiltonian, and as a result the mapping is
exact. However, when we regard the operators x and p as con-
tinuous classical variables, the semiclassical propagation in
the mapped basis deviates from the zero- and single-excitation
subspace to the complete Hilbert space, leading to errors in the
dynamics. This violation of the conservation of the mapping
subspace was referred to as the zero-point energy flow prob-
lem in the literature.22,39 In the LSC-IVR representation, the
mapping is accurate only at the infinite temperature.

C. Model system

In order to investigate the applicability of the LSC-IVR
method to EET problems, we follow the framework developed
by Tao and Miller. In this paper, we confine ourself to a simple
EET model40 composed of a dimer system linearly coupled to
harmonic baths described by the following Hamiltonian:

H = Hs + Hb + Hsb, (7)

where
Hs = ∆σz + Jσx, (8)

and σz and σx are the Pauli matrices, 2∆ is the site energy gap,
and J is the coupling between the two sites. Moreover, the bath
Hamiltonian and the system-bath coupling are described by

Hb + Hsb=

Nb∑
i=1

ωi(
1
2

X2
i +

1
2

P2
i ) +

∑
n=1,2

∑
i

√
2ωiginXia

†
nan, (9)

with ωi and gi the frequency of the ith bath mode and the
system-bath coupling constant between the ith bath mode and
the nth site, respectively. We consider a model in which the
system-bath interactions are determined from a super-Ohmic
spectral density, and the details will be described in Sec. II D.

In this work, we suppose that the system is initially excited
on site 1, and thus the total density matrix at t = 0 is in a
factorized product state of the form

ρ(0) = |1〉〈1| ⊗ ρb
eq, (10)

where β = 1/kBT is the inverse temperature and ρb
eq

= e−βHb/Z . In general, this initial condition might not be ap-
propriate since it neglects the correlation between the system
and the bath. Nevertheless, this initial state describes the elec-
tronic excitation processes because it is in accord with the
Franck-Condon approximation. Finally, note that although a
harmonic system is considered here, it should be clear that
a generalization to the anharmonic bath and the nonlinear
system-bath coupling would not increase any additional effort
in the calculation using the LSC-IVR approach.

D. Bath discretization

To model condense-phase environments, the couplings of
the system to the bath can be specified by spectral density
functions generally defined as

Jnm(ω) ≡
∑

i

gingimω
2
i δ(ω − ωi). (11)

There, Jnn describes the coupling of the nth pigment to the
bath modes, and Jnm (n , m) describes correlated coupling
of the bath modes shared between the nth and the mth sites.
Following previous works in the description of EET systems,
here we study the super-Ohmic spectral density

Jnm(ω) = δnmγ
ω3

ω2
c

e−ω/ωc , (12)

where γ is the coupling strength and ωc is the bath cut-off
frequency. For simplicity, we assume that the baths coupled to
each site to be identical and independent.

In the LSC-IVR with MMST representation, however, the
dynamics of the bath should be described by a finite set of
discrete bath modes. As a result, we need to find a set of discrete
bath modes that best represents the spectral density. We carry
out the bath discretization following the procedure of Wang
et al.21 In this approach, a density of state function W (ω) that
satisfies the following two conditions21 is introduced:∫ ωM

0
W (ω) dω = Nb, (13)

∫ ωi

0
W (ω) dω = i, (14)

where Nb is the number of bath modes, i labels the ith mode
with frequency ωi, and ωM is the largest discrete frequency of
the mode modes we choose. The precise functional form of
W (ω) does not affect the average results of the dynamics if a
large number of bath modes are included. We have examined
various forms of the W (ω), and we find that the difference
among them is the number of trajectories required for achiev-
ing numerical convergences. All simulation results presented
in the paper adopt the following choice of W (ω):

Wn(ω) = a
Jnn(ω)

ω
, (15)

where a is a normalization constant determined by Eq. (13).
With the density of state function determined, the correspond-
ing system-bath coupling to each mode gi can be obtained from
the definition of the spectral density (Eq. (11))

g2
i =

Jnn(ωi)

ω2
i W (ωi)

. (16)
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Note that samplings of classical harmonic bath frequencies
based on Eq. (15) mainly focus on the low frequency part
because most contributions from the high frequency modes
quickly cancel out as we take the ensemble average. All results
presented in this work includes Nb = 200 modes and 50 000
trajectories for ensemble average, and we have numerically
confirmed the convergence of all the calculations.

III. PERFORMANCE OF LSC-IVR

In this section, the accuracy of the LSC-IVR approach
in simulating EET population dynamics is investigated by
comparing it with the numerically exact quasi adiabatic path
integral (QUAPI)36,37 method. To this end, we investigate the
population transfer dynamics of dimer systems with differ-
ent parameters (site energy gap 2∆, electronic coupling J,
system bath coupling strength γ, and temperature T ) when
the system is initially excited on site 1 (Eq. (10)). The
parameters used here cover a broad EET parameter space
and should be large enough to comprehend physics we are
interested in.

Representative results of population dynamics calculated
by the LSC-IVR method at various parameter regimes are
depicted in Fig. 1. Figure 1(a) is a case with small energy
gap (D/ωc = 0.1), small electronic coupling (J/ωc = 0.5),
intermediate system-bath coupling (γ = 0.2/π), and high
temperature (kBT/ωc = 10.0). It is clear that the LSC-IVR
method yields excellent results in this case, and this is expected
since the temperature is high. In addition, the error from the
approximation of the MMST representation is also negligi-
ble in this intermediate system-bath coupling regime. Fig-
ure 1(b) shows a case with same parameters as Fig. 1(a)
except for a larger energy gap (D/ωc = 0.5) and lower

temperature (kBT/ωc = 2.0). In this case, the LSC-IVR
result clearly deviates from the exact result. Notice that the
decoherence rate is still accurately described by the LSC-
IVR approach; nonetheless, the discrepancy in the population
could be observed which is due to the classical approximation
imposed in this approach, leading to the incorrect equilibrium
position at long times. In Fig. 1(c), we provide an example with
a strong system-bath coupling (γ = 2.0/π) and at a low temper-
ature (kBT/ωc = 0.5), which is expected to cause difficulties
to the LSC-IVR method. Indeed, we find a large difference
between the results calculated by the LSC-IVR method and
the QUAPI data in this over-damped regime. Nevertheless,
we observe that the LSC-IVR approach still accurately pre-
dicts the decaying rate. Again, it is observed that the LSC-IVR
dynamics incorrectly predicts the equilibrium positions. These
phenomena are a key problem of LSC-IVR dynamics which
is observed in a large parameter regime, demonstrating that
the key pitfall of the LSC-IVR in the MMST representation
approach is the violation of the detail balance.

In Fig. 2 we investigate the effect of eigen-energy gap
on the accuracy of the LSC-IVR approach. The eigen-energy
gap, ∆E = 2

√
∆2 + J2, is the energy gap between the eigen-

states of the system Hamiltonian Hs. Figures 2(a)–2(c) show
dynamics of systems with the same system-bath coupling
strength γ = 0.5/π and temperature kBT/ωc = 0.5, but
the eigen-energy gap ∆E/ωc is set at 1.02, 1.41, and 2.24,
respectively. If we ignore the deviations of equilibrium pop-
ulations, we can observe that the LSC-IVR method yields
better population beating dynamics with the increase of ∆E.
In the case of small ∆E/ωc, the LSC-IVR significantly over-
estimates the decoherence rate, and this is because the large
numbers of high-frequency bath modes incorrectly influence
the dynamics due to classical representation of these modes.

FIG. 1. Population dynamics cal-
culated from the LSC-IVR method
(blue line) and the numerically exact
QUAPI method (red dots). We plot
the population at site 1 as a function
of time. Parameters used here: (a)
∆/ωc = 0.1, J/ωc = 0.5, γ = 0.2/π,
kBT/ωc = 10.0; (b) ∆/ωc = 0.5, J/ωc
= 0.5, γ = 0.2/π, kBT/ωc = 2.0; (c)
∆/ωc = 2.0, J/ωc = 2.0, γ = 2.0/π,
kBT/ωc = 0.5.

FIG. 2. Population dynamics calcu-
lated from the LSC-IVR method (blue
line) and the numerically exact QUAPI
method (red dots) at different eigen-
energy gaps. (a) ∆E/ωc = 1.02, (b)
∆E/ωc = 1.41, (c) ∆E/ωc = 2.24.
The other parameters are γ = 0.5/π
and kBT/ωc = 0.5, representative of
the weak system-bath coupling and low
temperature regime.
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FIG. 3. Temperature dependent dy-
namics calculated from the LSC-IVR
method (blue line) and the numerically
exact QUAPI method (red dots). We
plot the population at site 1 as a func-
tion of time at different temperatures:
(a) kBT/ωc = 0.5, (b) kBT/ωc = 1.0,
(c) kBT/ωc = 2.0. Other parameters are
∆/ωc = 0.1, J/ωc = 0.5, and γ = 0.2/π.

In a fully quantum representation, these modes should not
be directly involved in the energy transfer processes because
their mode frequencies exceed the energy gap of the electronic
system.

Moreover, we explore how the accuracy of the LSC-IVR
method depends on the temperature. Figure 3 shows LSC-
IVR dynamics at different temperatures. In Fig. 3, we observe
that with the increase of the temperature from kBT/ωc = 0.5
to 2.0, both the decoherence rate and the equilibrium pop-
ulation become more accurately described by the LSC-IVR
approach, even in the small ∆E/ωc regime. As expected,
in the high temperature case, the errors from the classical
approximations become negligible. In addition, the LSC-IVR
approach provides accurate oscillation frequencies, even in the
low temperature cases (Fig. 3(a)). This indicates that even with
the linearized semiclassical propagator, the LSC-IVR method
provides accurate description of population beating dynam-
ics for EET problems, leading to an appropriate approach
for calculating quantum dynamics and spectral properties in
condensed-phase systems.

Finally, we focus on the effects of the system-bath cou-
pling strength γ on the performance of the LSC-IVR method.
In Fig. 4, results with different system-bath coupling strengths
(γ) are presented. We found that the LSC-IVR approach in gen-
eral overestimates the decoherence rate in the large γ regime.
Note that in the limit of zero system-bath coupling γ, the total
system can be considered as 2 + Nb independent harmonic
oscillators written in the MMST representation. In this sit-
uation, the analytic solution of the population at site 1 can
be easily obtained in the LSC-IVR method, and it actually
yields the exact result. However, as the coupling strength γ
increases, errors from treating the bath position/momentum

operators as classical continuous variables increase, making
the approach deviate from quantum results and leading to
overestimation of decoherence rates. Note that in the limit of
zero electronic couplings (J = 0), the Hamiltonian describes a
pure-dephasing model, and the LSC-IVR is also exact in this
case.

In summary, despite the incorrect equilibrium populations
in most conditions and overestimated decoherence rates in
some cases, the LSC-IVR method always yields correct oscil-
lating frequencies in all parameter regime studied in this work.
Moreover, the rates of the population transfer calculated by the
LSC-IVR method are in excellent agreement with those from
the QUAPI method, which motivates us to propose a long time
limit correction algorithm to improve the performance of the
LSC-IVR approach.

IV. LONG TIME CORRECTION

Our investigation of the accuracy of the LSC-IVR method
for EET dynamics presented in Sec. III indicates that the major
shortcoming of the LSC-IVR approach in simulating EET
dynamics is the violation of detailed balance, which leads
to incorrect equilibrium populations. To apply the LSC-IVR
approach appropriately, we can either concentrate on models
where the correct long time populations can be reproduced in
the classical limit (e.g., a pure-dephasing system or a symmet-
ric dimer system) or we should aim to amend this incorrect
long-time limit. In this work, we propose to fix this shortcom-
ing by using a post-processing algorithm to enforce that the
equilibrium populations do satisfy the zeroth order equilib-
rium determined by the Boltzmann distribution according to
the electronic Hamiltonian Hs.

FIG. 4. Dynamics calculated from the
LSC-IVR method (blue line) and the
numerically exact QUAPI method (red
dots) at different system-bath coupling
strengths: (a)γ/π = 0.2, (b)γ/π = 1.0,
(c) γ/π = 2.0. Other three parame-
ters are ∆/ωc = 0.5, J/ωc = 0.5, and
kBT/ωc = 0.5.
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To this end, we aim specifically to make corrections
to the long-time, incoherent dynamics, and the correction
should leave the short-time dynamics along as accurate (or
inaccurate) as before the correction. Therefore, we propose to
use a correcting function to shift the longtime populations back
to the proper equilibrium values. Given the time-dependent
population at each site calculated by the LSC-IVR method,
PLSC-IVR

n (t), we aim to compute a corrected population for each
site, P′n(t), that will approach the estimated equilibrium pop-
ulation Peq

n = 〈n|e
−βHs |n〉/Z at the longtime limit. We assume

that P′n(t) can be computed from a correcting function ln(t),

P′n(t) = PLSC-IVR
n (t) − ln(t). (17)

The functional form of ln(t) is not important as long as it cor-
rectly shifts the equilibrium position at the long-time limit,
while at the short and intermediate times it preserves dynam-
ics given by the LSC-IVR method. This could be achieved by
an exponential function of the following form:

ln(t) =
[
PLSC-IVR

n (∞) − Peq
n

]
(1 − e−κnt), (18)

where PLSC-IVR
n (∞) is the long-time population given by the

LSC-IVR method, and κn is an adjustable dynamical factor
that controls the effective time scale of the correction. Note
that ln(t) vanishes at the high temperature limit. Moreover, the
long time limit of the LSC-IVR method cannot be obtained
directly from the equations of motion, consequently we need
to propagate the dynamics to obtain PLSC-IVR

n (∞). Here, κn

should be chosen such that the original population decay and
decoherence rates given by the LSC-IVR method would not be
affected. Therefore, we consider the relaxation time obtained
from the LSC-IVR method

τn =
1

PLSC-IVR
n (0) − PLSC-IVR

n (∞)

×

∫ ∞
0

[
PLSC-IVR

n (t) − PLSC-IVR
n (∞)

]
dt, (19)

where τn represents the time scale of population relaxation pre-
dicted by the LSC-IVR method, and we argue that κn should
be proportional to τn. Additional factors influence that popu-
lation rates should also be included in the exponent κn; hence,
we conjecture that the exponent should be dependent on the
system-bath coupling strength γ. After a systematic bench-
mark study, we find that κn = γ/τn yields excellent results
when compared with the QUAPI results in most parameter
regime studied in this work.

In this work, we estimate the equilibrium population using
the Boltzmann distribution according to the zeroth order elec-
tronic Hamiltonian Peq

n = 〈n|e
−βHs |n〉/Z . Note that even more

accurate long time populations could be achieved by the imag-
inary time path integral method,41 but the consequences will
be negligible in the parameter regimes examined in this work.
As a result, we limit our approach to corrections for the zeroth
order equilibrium.

Figure 5 shows the corrected dynamics for models with the
most severe long time limit problems in Sec. III. Clearly, the
equilibrium populations are prominently revamped by using
the ad hoc post-processing algorithm. It is interesting to note
that with the long-time correction, the LSC-IVR method actu-
ally captures the short-time population beating dynamics quite
well in a broad range of EET parameters studied here, as
indicated in the nicely reproduced oscillation frequencies and
dephasing times. This means that in the EET parameter space
investigated in this work, the unphysical energy flow caused by
the zero-point energy problem is mostly incoherent in nature.
Note that we do not infer that the long-time correction also
improves the shot-time dynamics; the correction only shifts
the population decay curve to exhibit a better comparison to
the exact results.

In order to further examine the effectiveness of the LSC-
IVR method with the long time correction, we provide addi-
tional results in Fig. 6 for parameter regimes that cause diffi-
culties for perturbative methods. First we focus on the weak
system-bath coupling regime with γ = 0.2/π (Figs. 6(a)
and 6(b)), where the LSC-IVR method with the long time
correction yields excellent results. Note that Fig. 6(b) repre-
sents the situation in which the exciton energy gap exceeds
the bath cutoff frequency. In this regime, the small polaron
quantum master equation (SPQME) breaks down since the
theory enforces a full displacement of bath coordinates to
excited state vibrational equilibrium, whereas the slow bath
modes should be more appropriately described by a partially
displaced representation.42

Moreover, we examine the strong electronic coupling
regime (J/ωc = 2.0) where the electronic coherence is dom-
inant. At a weak system-bath coupling strength (Fig. 6(c)),
the LSC-IVR method with long time correction performs
extremely well. Nevertheless, at a strong system-bath elec-
tronic coupling regime (Fig. 6(d)), the classical approxima-
tions still have effect on the decoherence time scale. The small
deviation in the long time limit to the exact result is caused
by the estimation of equilibrium population form the zeroth

FIG. 5. Population dynamics calcu-
lated from the LSC-IVR method with
the long time correction (green line)
and the QUAPI method (red dots). The
corresponding LSC-IVR results without
the long time correction are shown in (a)
Fig. 1(c), (b) Fig. 2(c), and (c) Fig. 4(c).
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FIG. 6. Population dynamics calculated from the LSC-IVR method with the
long-time correction (green line) and the QUAPI method (red dots). (a) and
(b) are in the weak system-bath coupling regime (γ = 0.2/π), where the other
parameters are set as follows: (a) ∆/ωc = 0.5, J/ωc = 1.0, kBT/ωc = 0.5;
(b) ∆/ωc = 0.5, J/ωc = 2.0, kBT/ωc = 0.5. (c) and (d) are in the strong
electronic coupling regime (J/ωc = 2.0), where the other parameters are set
as follows: (c) ∆/ωc = 0.5, γ = 0.2/π, kBT/ωc = 2.0; (d) ∆/ωc = 0.5,
γ = 2.0/π, kBT/ωc = 2.0.

order exciton Hamiltonian, which neglects shifts in equilib-
rium caused by the system-bath interactions. Notice that this
regime also causes difficulty for the SPQME method due to
the slow bath dynamics.42

In addition, we benchmark the performance of the
LSC-IVR approach at the weak electronic coupling regime
(J/ωc = 0.5). Figure 7 shows that the LSC-IVR method
with the long-time correction provides excellent results in this
parameter regime. Note that in this regime, the coherent mod-
ified Redfield theory (CMRT) is not applicable.43,44 Since the
CMRT is a perturbative method based on the exciton basis, it
overestimates the coherence in this regime due the neglect of
the dynamical localization.

FIG. 7. Population dynamics calculated from the LSC-IVR method with the
long time correction (green line) and the QUAPI method (red dots). We plot the
population at site 1 as a function of time at the weak electronic coupling regime
(J/ωc = 0.5). Other parameters are as follows: (a) ∆/ωc = 0.5, γ = 0.2/π,
and kBT/ωc = 2.0; (b) ∆/ωc = 0.5, γ = 2.0/π, and kBT/ωc = 2.0.

FIG. 8. Population dynamics calculated from the LSC-IVR in method with
the long time correction (green line) and the QUAPI method (red dots). We
plot the population at site 1 as a function of time for systems with a small
excitonic energy gap (∆/ωc = 0.1, J/ωc = 0.5) at different temperatures as
follows: (a) kBT/ωc = 0.5, (b) kBT/ωc = 2.0. The system-bath coupling
strength is set as γ = 0.5/π.

Finally we analyze the influence of the temperature at a
small excitonic energy gap regime (∆/ωc = 0.5, J/ωc = 0.5).
In this regime, the accuracy of the LSC-IVR method declines
(Fig. 8). At a low temperature (Fig. 8(a)), the quantum effect
is dominant and the LSC-IVR method with long time cor-
rection underestimates the decoherence time. However, when
the temperature increases, the error caused from the classical
approximations can be alleviated (Fig. 8(b)). Form the results
in this section, we conclude that the applicable parameter range
of the LSC-IVR seems to exceed that of several popular per-
turbative methods such as the small-polaron approach and the
modified Redfield theory.

V. FMO DYNAMICS

To demonstrate that the LSC-IVR method with long-time
correction is not limited to dimer systems, we apply the LSC-
IVR method to simulate EET dynamics in the photosynthetic
FMO complex. The FMO complex is a well-studied pigment-
protein complex with a high-quality structure and effective
Hamiltonian.45,46 It is composed of three identical subunits
arranged in a three-fold symmetry and each of them contains
seven or eight bacteriochlorophyll a (Bchl a) pigments embed-
ded in a protein environment. The FMO complex conducts
energy from the chlorosome light-harvesting antenna to the
reaction center in the photosynthetic units of the green sul-
fur bacteria, and it has become a very popular model for the
study of EET on the photosynthetic complex because of its
remarkable near unity quantum efficiency.

We adopt the model for the FMO complex utilized in
Ishizaki and Fleming’s work.47 The details of the model are
described in the Appendix. To demonstrate the simulation of
population beating dynamics, we focus on the low tempera-
ture case, T = 77 K, and assume that site 1 is initially excited.
We use 300 000 trajectories in the LSC-IVR sampling for
convergent results.

We first compare the population dynamics obtained from
the original LSC-IVR method and those calculated by the hier-
archy equation of motion (HEOM) approach48,49 in Fig. 9(a).
We observe that both the oscillating frequencies and dephasing
times are excellently reproduced by the LSC-IVR approach
at all the sites. However, within the time scale relevant to
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FIG. 9. Population dynamics of the FMO complex calculated from the LSC-
IVR method (solid lines) and the HEOM method (dash-dot lines). (a) Original
LSC-IVR without the long-time correction, (b) LSC-IVR with the long-time
correction. For simplicity, we only show the results of sites 1, 3, and 4.

the EET process in the FMO complex, significant discrep-
ancies between the LSC-IVR population dynamics and the
exact results can be clearly seen, indicating serious problems
in the long time limit of the LSC-IVR approach. As a result,
we further apply the long time correction method proposed in
Sec. IV to this model using the expected equilibrium popula-
tions estimated from the Boltzmann distribution of the system
part (Fig. 9(b)). One should notice that since the τn’s are differ-
ent for each site, the direct application of Eq. (18) will lead to
non-conserved total population. We therefore renormalize the
total population to unity in each step of the dynamical propa-
gation. We observe that the correction makes minor effect on
the population at the site 4 but significantly mitigates problems
at sites 1 and 3. Clearly, the simple correction to the long-time
limit significantly improved the performance of the LSC-IVR
method in simulating EET dynamics in photosynthetic sys-
tems. Finally, we note that Tao and Miller have investigated the
same model for EET dynamics in the FMO complex using the
LSC-IVR method.32 Compared to their results, our LSC-IVR
calculation with the aid of the long-time correction method
provides much improved accuracy as demonstrated by our
benchmark against the numerically exact HEOM data.

VI. CONCLUSION

In this work, we systematically investigated the accuracy
of the LSC-IVR method in simulating EET dynamics of molec-
ular aggregates. To this end, we benchmark the EET dynamics
of a dimer system calculated by the LSC-IVR method against
the dynamics simulated by the numerically exact QUAPI
approach in a broad parameter regime. We reveal that the LSC-
IVR method captures correct population beating dynamics
and decoherence rates; however, the equilibrium populations
obtained from the LSC-IVR method are often incorrect. Gen-
erally speaking, the deviations of LSC-IVR from the exact
results can be explained by the violation of detailed balance
due to the classical approximations made in the approach. It
is also worthwhile to mention that the LSC-IVR method pro-
vides accurate transfer rates which are often the observables
directly linked to experimental results. In this regard, LSC-
IVR approach should provide an excellent rate theory for EET
dynamics.

The problem of incorrect equilibrium populations can be
largely removed by considering a post-processing algorithm

that applies exponential correction to the long-time dynamics
to ensure equilibrium populations satisfying a Boltzmann dis-
tribution according to the zeroth-order electronic Hamiltonian.
From a comprehensive benchmark, we find that the LSC-
IVR method with this long-time correction provides excellent
results in a wide range of EET parameters. In summary, we
conclude that the LSC-IVR approach exhibits an applica-
ble range that is broader than either the SPQME or CMRT
approach. Finally, we utilize the LSC-IVR approach to sim-
ulate the EET dynamics in a representative photosynthesis
complex, the FMO complex. When the long-time correction is
applied, the LSC-IVR results are in excellent agreement with
the numerically exact HEOM data.

It is noteworthy that while our work focuses on a cor-
rection to the long-time dynamics, a systematic approach to
improve the short time dynamics that also partially corrects
the long-time dynamics had been proposed and tested by
Golosov and Reichman.23 Furthermore, recently Cotton and
Miller have proposed to utilize a symmetrical quasi-classical
(SQC) windowing model to provide proper quantization of the
electronic states in the MMST representation.50,51 This new
approach has the same form as the LSC-IVR approach, but
correctly treats the detailed balance in nonadiabatic dynamics
by enforcing correct quantization conditions using a histogram
window function, as have been demonstrated in asymmetric
spin-boson problems52 and EET problems.53 It will be inter-
esting to benchmark the applicability of the SQC method in
a broad EET parameter space, as we have demonstrated for
the simple LSC-IVR method in this work. Nevertheless, given
that the LSC-IVR and related methods are still quite popular
in simulating quantum dynamical processes, we believe that
the benchmark and physical insights presented in this work
will be useful for more general applications of semiclassical
methods to EET problems.

Notice that the LSC-IVR is exact in the high-temperature
limit as well as the harmonic limit. The success of the LSC-IVR
method in applications to EET dynamics in photosynthetic
systems illustrates the strength of semiclassical methods in
simulations of harmonic dynamics (in this case, the baths are
harmonic), and we expect such semiclassical approaches could
find broad applications by providing accurate and efficient
means to simulate dynamical properties of similar spin-boson-
like systems. Furthermore, since the LSC-IVR approach uti-
lizes classical trajectories to describe the influence of the
bath environments on the electronic sub-system, in principle,
there will be no additional overhead to incorporate more gen-
eral bath conditions such as correlated baths,34 non-harmonic
baths, or even realistic bath dynamics obtained from molecu-
lar dynamics simulations.54–57 We conclude that with the aid
of the long-time correction algorithm proposed here, the LSC-
IVR approach could be a powerful addition to our theoretical
arsenal for simulating EET dynamics in molecular aggregates.
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APPENDIX: MODEL FMO HAMILITONIAN

The model utilized for describing the EET dynamics in
the photosynthetic FMO complex is taken from Ishizaki and
Fleming.47 The Hamiltonian reads

HFMO =

*...........
,

300.0 −87.7 5.5 −5.9 6.7 −13.7 −9.9
−87.7 420.0 30.8 8.2 0.7 11.8 4.3

5.5 30.8 100.0 −53.5 −2.2 −9.6 6.0
−5.9 8.2 −53.5 210.0 −70.7 −17.0 −63.3
6.7 0.7 −2.2 −70.7 370.0 81.1 −1.3
−13.7 11.8 −9.6 −17.0 81.1 520.0 39.7
−9.9 4.3 6.0 −63.3 −1.3 39.7 330.0

+///////////
-

.

(A1)

The spectral density function used in the model describes
an over-damped Brownian oscillator expressed in the Drude-
Lorentz form

JB(ω) = 2λωγ/(ω2 + γ2), (A2)

and it can be discretized by the same procedure described in
Sec. II D. Following Ishizaki and Fleming, we set the reorga-
nization energy λ and the bath relaxation rate γ as 35 cm−1 and
1/50 fs−1, respectively. To simulate the spectral density using
discrete harmonic modes, we use 200 bath modes coupled to
each site in our LSC-IVR calculations.
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