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ABSTRACT
The small polaron quantum master equation (SPQME) is a powerful method for describing quantum dynamics in molecular systems.
However, in the slow-bath regime where low-frequency vibrational modes dominate the dynamics, the fully dressed small polaron coor-
dinates lead to errors in the SPQME theory. Furthermore, low-frequency modes also cause infrared divergence in the SPQME method,
making the theory applicable only to systems described by spectral densities of the super-Ohmic form. In this study, we propose to treat
these low-frequency vibrations as dynamically arrested “frozen” modes in a semiclassical representation and apply the small polaron rep-
resentation only to the high-frequency vibrations. Furthermore, we show that a variational polaron approach can be utilized to determine
the frequency upper bound of the frozen modes, allowing dynamical simulations free of manually tuned parameters. This frozen-mode
SPQME is applied to models describing excitation energy transfer (EET) in molecular aggregates and comprehensively compared with
the quasiadiabatic path integral method a well as the Redfield theory to demonstrate the applicability of this new method. We show
that errors due to slow baths in the original SPQME theory are significantly reduced by the frozen-mode approximation. More signif-
icantly, we show that the new approach successfully extends the SPQME theory to be applicable to systems with the Drude-Lorentz
spectral density, resulting in a great expansion of the applicability of the SPQME theory for EET problems. In summary, we demonstrate
a “frozen-mode” SPQME that provides efficient and accurate simulations of EET dynamics of molecular systems in a broad parameter
regime.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5096287

I. INTRODUCTION

Excitation energy transfer (EET) is a fundamental process
that plays important roles in many physical and chemical sys-
tems, such as conjugated polymers,1–3 nanomaterials,4 and pho-
tosynthetic light-harvesting complexes.5–7 Theoretical methods for
EET dynamics have drawn much attention in recent years because
microscopic details given by theories are critical for the elucidation
of factors controlling the EET dynamics and thus device perfor-
mances in these disordered systems. Thus, comprehensive inves-
tigations on characteristics of EET dynamics in molecular sys-
tems, such as the multisite structural arrangement8–10 and effects of
surrounding environments,11–13 have been carried out using various

simulation approaches. Furthermore, theories are critical for the
interpretation of experimental observations in these complex sys-
tems, and it is important to combine theory with experiments to
provide molecular details and deeper insights about the mechanism
of EET dynamics.

Various numerically exact theoretical methods have been
applied to elucidate EET dynamics in condensed-phase molecu-
lar systems. Methods such as the path-integral influence functional
approaches,14 density matrix renormalization group,15,16 and hierar-
chy equations of motion (HEOM) method17–20 have been employed
to successfully simulate EET dynamics in molecular aggregates.
In addition, semiclassical methods21–23 based on the path inte-
gral formalism24 or hybrid approaches25–27 also seem to provide
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promising results. Nonetheless, these methods are often computa-
tionally difficult to apply to large systems, especially in the low-
temperature limit.

Therefore, perturbative methods are still widely adopted for
EET dynamics. In this regard, methods such as the Redfield the-
ory28,29 and the Förster theory30 are still the most popular for
describing EET dynamics in molecular aggregates.6,12,31–33 The for-
mer considers the coupling between a system and its surrounding
environments as the perturbation, whereas the latter regards the
coupling between different molecules weak enough. Although the
two formalisms and their extensions34–38 have been successfully uti-
lized to simulate EET dynamics in a large array of systems, one
encounters difficulties when dealing with an intermediate regime
where the couplings are comparable to each other such that there
is no obvious small parameter for perturbation. This regime is
often found in the EET dynamics in photosynthetic complex sys-
tems,31,39 and it hinders the applicable regime of simple perturbative
methodologies.

Among the perturbative theories, a second order, time local,
small polaron quantum master equation (SPQME) method that pro-
vides accurate EET dynamics in a broad parameter space40,41 has
been developed.42–46 Since the SPQME approach yields excellent
results in both the Redfield and the Förster limits,40,41 it serves as
a good starting point to go beyond these two formalisms. However,
two key drawbacks still encumber the applicability of the SPQME,
namely, that it is applicable only to the super-Ohmic bath and that
it fails in the slow-bath regime,40,41 both related to low-frequency
modes in the bath fluctuations affecting the EET dynamics. Clearly,
to improve the performance of the SPQME method, it is required
to overcome the shortcomings due to the difficulties in handling the
low-frequency bath modes.

In this regard, it is intuitive to consider the low-frequency
modes as classical degrees of freedom, while treating the remain-
ing parts quantum mechanically. Theoretical methods that parti-
tion bath modes into two portions and then treat them separately
with different mechanics have had a long history. For example, in
a multilayer theory for quantum dynamics, Wang et al.47 utilized
the mixed quantum-classical Ehrenfest mean-field approach to deal
with the low-frequency nuclear motions and applied wave function-
based multiconfigurational time-dependent Hartree method to treat
the system as well as the high-frequency vibrational modes. Fur-
thermore, the hybrid concept was combined with the noninter-
acting blip approximation method by Berkelbach et al.48,49 to
simultaneously improve the computational efficiency and retain
accuracy of the noninteracting blip method. Their idea was fur-
ther extended in a paper by Montoya-Castillo et al. to improve
Redfield theories.50 They demonstrated that the applicabilities of
Redfield theories can be extended into a highly non-Markovian
regime if the low-frequency modes are treated classically. These
results have inspired us to propose a hybrid method in the small
polaron representation to improve the performance of the SPQME
approach.

In this paper, we describe a novel method that combines a clas-
sical representation of the low-frequency bath modes with the small
polaron representation of the high-frequency bath modes to pro-
vide efficient and accurate simulations of EET dynamics in molec-
ular aggregates. A highlight of this work is the determination of the
frequency boundary of the low- and high-frequency modes based on

a variational approach, and we show that the frozen-mode approach
is related to a crude frequency dependent variational polaron the-
ory. The structure of this paper is described as follows. In Sec. II,
we briefly review the small-polaron representation and the cor-
responding quantum master equation utilized in this study. We
emphasize difficulties caused by the low-frequency modes in the
SPQME method and then present a semiclassical theory in the small-
polaron frame and approximations that incorporate influences of
classical slow modes into the SPQME theory. In addition, we fur-
ther describe the model system employed in this study and addi-
tional computational details. In Sec. III, comparisons to the numer-
ically exact quasiadiabatic path integral (QUAPI) approach51,52 with
discussions will be furnished, demonstrating that the proposed
frozen-mode SPQME yields adequate results even in the slow-
bath regime of EET parameters and allows accurate calculations
of coherent EET dynamics for systems with Ohmic-type spectral
densities.

II. THEORETICAL BACKGROUND
A. Small-polaron transformation

In order to investigate EET dynamics in molecular aggregates,
we adopt a system-bath model with a Frenkel exciton system with
multiple molecular sites coupled to a harmonic bath (h̵ = 1),

H = Hs + Hb + Hsb, (1)

Hs = ∑
n
�n∣n⟩⟨n∣ + ∑

n≠m
Jnm∣n⟩⟨m∣, (2)

Hb = ∑
i
ωi(b†

i bi +
1
2
), (3)

Hsb = ∑
n,i

gniωi∣n⟩⟨n∣(bi + b†
i ). (4)

Here, Hs is the system Hamiltonian, where |n⟩ describes a local
excitation at the nth site, the site energy �n denotes the excitation
energy of |n⟩, and Jnm is the excitonic coupling between |n⟩ and |m⟩.
Environmental effects are included through a harmonic bath Hamil-
tonian Hb and a bilinear system-bath coupling Hamiltonian Hsb,
where ωi and b†

i (bi) are the corresponding vibrational frequency
and rising (lowering) operator of the ith bath mode, respectively.
The harmonic oscillators are diagonally coupled to the multisite
system, with a dimensionless exciton-phonon coupling constant gni
describing the coupling between the ith harmonic oscillator and the
nth site. To describe the system-bath couplings in the condensed-
phase, we assume the bath modes and system-bath couplings are
described by spectral density functions Jnm(ω), which are defined
as

Jnm(ω) = ∑
i
gnigmiω2

i δ(ω − ωi). (5)

Following Jang et al.,42,44 we transform the total Hamiltonian H
into a small polaron frame using a unitary transform H̃ = eSHe−S,
where

S = −∑
n,i

gni(bi − b†
i )∣n⟩⟨n∣. (6)
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This unitary transformation displaces the nuclear coordinate of each
mode i from the electronic ground state vibrational minimum to
the excited state vibrational minimum as the nth site is excited. The
polaron-transformed Hamiltonian H̃ is then regrouped into three
parts,

H̃ = H′
s + H′

b + H′
sb, (7)

H′
s = ∑

n
(�n −∑

i
g2
niωi)∣n⟩⟨n∣ + ∑

n≠m
Jnm⟨θ†nθm⟩∣n⟩⟨m∣, (8)

H′
b = ∑

i
ωi(b†

i bi +
1
2
), (9)

H′
sb = ∑

n≠m
Jnm∣n⟩⟨m∣(θ†nθm − ⟨θ†nθm⟩), (10)

where ⟨⋅⟩ represents the thermal average and

θn = exp{∑
i
gni(bi − b†

i )} (11)

is a bath displacement operator for vibrations on the nth site. ⟨θ†nθm⟩
is a temperature-dependent Franck-Condon factor which can be
evaluated to yield

⟨θ†nθm⟩ = exp{
−1
2 ∑i

(gni − gnj)2 coth(
βωi

2
)}, (12)

where we have defined the inverse temperature β = 1/kBT. The
new system Hamiltonian H′

s includes bath reorganization energies
λn = ∑i g

2
niωi and bath-renormalized electronic couplings Jnm⟨θ†nθm⟩

because it describes fully dressed polaron states that combine exci-
tons and their polarized environments (displaced oscillators). To
retain the coherence effects between the different sites, Jnm⟨θ†nθm⟩ is
intentionally added to the system part H′

s . In a perturbative treat-
ment, we adopt H′

0 = H′
s + H′

b as the zeroth order Hamiltonian
and treat H′

sb as the perturbation. In addition, since the Franck-
Condon factor ⟨θ†nθm⟩ goes to zero both in the strong system-
bath coupling and high temperature limits, Jnm⟨θ†nθm⟩ also tends
to zero in both limits, leading to the dynamical localization in the
zeroth-order Hamiltonian.53 Finally, the transformed system-bath
couplings in the polaron frameH′

sb represent fluctuations of effective
electronic couplings around the thermal average Jnm⟨θ†nθm⟩, and this
form also effectively reduces the magnitude of the polaron-phonon
interactions. As a result, the time-dependent second-order pertur-
bative expansion in the polaron frame is more accurate than simple
Redfield theories.

B. Small-polaron quantum master equation
In the original SPQME approach, a time-local second order

quantum master equation in the polaron representation is employed
to derive the reduced dynamics of the polaron states. The resulting
equation of motion reads42–46

σ̇ = − i[H′
s ,σ(t)] − ∫

t

0
dτTrb{[H′

sb, [H′
sb(−τ),σ(t)ρeq

b ]]}

− iTrb{[H′
sb, e−iH

′

0t(Qρ(0))eiH
′

0t]}

− ∫

t

0
dτTrb{[H′

sb, [H′
sb(τ − t), e−iH

′

0t(Qρ(0))eiH
′

0t]]}, (13)

where Trb{⋅} denotes the trace over all bath degrees of freedom,
σ(t) = Trb{ρ(t)} is the reduced density matrix of the excitonic sys-
tem, and ρeq

b = e−βH
′

b/Trb{e−βH
′

b} is the thermalized density matrix

of the bath. In addition, H′
sb(t) = eiH

′

0tH′
sbe

−iH′

0t , where H′
0 = H′

s +H′
b

is the zeroth-order Hamiltonian. Q = 1 − P is the complementary
part of a projection operator defined by P = ρeq

b Trb{⋅}.
The first term in Eq. (13) describes the coherent dynamics of

the polaron system, the second term characterizes the dissipative
dynamics induced by the system-bath couplings, and the last two
terms are inhomogeneous terms describing dynamics of polaron
formation. The inhomogeneous terms go to zero rapidly as the
total system reaches equilibrium. In this study, we assume that the
bath relaxation following the vertical excitation is extremely fast
such that we can neglect the inhomogeneous terms. This approx-
imation is valid especially in simulating EET dynamics of molec-
ular aggregates since the bath relaxation normally takes place in a
much shorter time scale compared to the time scale of the system
dynamics.53

Previous studies have demonstrated that the SPQME approach,
which imposes fully dressed polaron coordinates, provides excellent
results in a wide range of parameters. However, in the slow-bath
regime, the small polaron method does not yield good results.40,53

Moreover, when the Ohmic bath is used in the small polaron the-
ory, the thermally averaged Franck-Condon factor ⟨θ†nθm⟩ becomes
zero, which makes the theory unable to describe coherent dynamics
in Ohmic bath systems.54 In addition, the expansion of the dissipa-
tion term in Eq. (13) includes time correlation functions compris-
ing integral kernels that diverge at the low-frequency regime if the
bath spectral density is of an Ohmic form. This is an infrared diver-
gence. Spectral densities such as the Drude-Lorentz spectral density,
however, are widely and successfully utilized for theoretical analysis
of experimental results for many EET systems. As a result, a gen-
eralized SPQME that can circumvent the problems caused by the
low-frequency modes will be highly desirable.

C. Frozen-mode small-polaron quantum
master equation

Since at a finite temperature, the low-frequency modes behave
more classically than the high-frequency vibrations, we seek to sep-
arate them from the remaining system and describe them from a
classical point of view, while leaving high-frequency modes to be
treated within the SPQME framework. In order to obtain the classi-
cal correspondence of the low-frequency modes, we apply the partial
Wigner transform over the low-frequency degrees of freedom. The
Hamiltonian in Eq. (1) can be recast as

HW
(Plow,Qlow) =∑

n
�n∣n⟩⟨n∣ + ∑

n≠m
Jnm∣n⟩⟨m∣ + ∑

i∈high
ωi(b†

i bi +
1
2
)

+ ∑
n,i∈high

gniωi∣n⟩⟨n∣(bi + b†
i ) + ∑

i∈low

1
2
ωi(P2

i + Q2
i )

+ ∑
n,i∈low

√
2gniωiQi∣n⟩⟨n∣, (14)

where the subscript low (high) denotes the low-frequency (high-
frequency) modes, the superscript W represents the partial Wigner
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transform over the low-frequency modes, and Pi and Qi are the clas-
sical momentum and position of the ith mode, respectively. In this
representation, the corresponding expectation value for a Hermitian
operator O is calculated from

⟨O⟩ = Tr{∫ dPlow ∫ dQlow ρ
W
(Plow,Qlow, t)OW

(Plow,Qlow)}.

(15)

Note that ρW and OW are operators in the excitonic plus high-
frequency vibrational Hilbert space, and the trace is taken over all
these fast degrees of freedom.

The partial Wigner transform over slow degrees of freedom
provides rigorous semiclassical representation of quantum systems.
Various hybrid approaches have been developed in this repre-
sentation, such as the mixed quantum-classical Liouville dynam-
ics25–27 and the reduced density matrix hybrid approach.48,49 There,
a semiclassical approximation is often applied, and the transformed
degrees of freedom are then propagated by the classical Hamilton’s
equations. However, the interactions between the quantum and the
classical regions often lead to difficulties of hybrid approaches, and
the description of feedbacks from the quantum degrees of free-
dom to the classical degrees of freedom often leads to high com-
putational cost. Therefore, applications of semiclassical methods are
highly nontrivial, and their applicabilities must be examined for each
particular physical problem.

In a recent study, Montoya-Castillo et al. demonstrated that by
treating low-frequency modes classically, the applicabilities of Red-
field theories can be extended into highly non-Markovian regime.50

In their work, two different treatments of the classical modes were
examined. They first tested a frozen-mode approximation that has
the low-frequency modes “frozen” in the initial phase space points
(P0

low,Q0
low) sampled from the thermalized distribution, and then,

they relaxed this approximation and allowed the high-frequency
modes to be evolved in the mean field of the low-frequency modes
that are propagated based on Newtonian dynamics. Nonetheless,
they have demonstrated that the frozen-mode approximation yields
excellent results, and the dynamical treatment of the classical slow
modes exhibits a much higher computational cost yet only a slight
improvement of the results. Hence, in this study, we focus on the
frozen mode approximation. Since we aim to treat the remaining
high-frequency degrees of freedom with the SPQME theory, we
apply the polaron transformation to the high-frequency modes to
reach the polaron-transformed Hamiltonian in the partial Wigner
representation

H̃W(P0
low,Q0

low) =∑
n

⎛

⎝
�n − ∑

i∈high
g2
niωi + ∆�n(P0

low,Q0
low)

⎞

⎠
∣n⟩⟨n∣

+ ∑
i∈high

ωi(b†
i bi +

1
2
) + ∑

n≠m
Jnm∣n⟩⟨m∣θ†nθm, (16)

where the influence of the low-frequency modes in Eq. (14) becomes
static energy disorders in the renormalized site energies,

∆�n(P0
low,Q0

low) = ∑
i∈low

ωi[((P0
i )

2
+ (Q0

i )
2
)/2 + gni

√
2Q0

i ]. (17)

In addition, the expectation value in Eq. (15) is significantly simpli-
fied,

⟨O⟩ ≃ Tr{∫ dP0
low d∫ Q0

low ρ
W
(P0

low,Q0
low, 0)OW

(P0
low,Q0

low)},

(18)

which can be calculated straightforwardly by Monte Carlo sam-
pling over the initial Wigner distribution ρW

(P0
low,Q0

low, 0). Note
that if the initial bath modes are in thermal equilibrium described by
the density matrix, ρeq

b , the partial Wigner transform over the low-
frequency modes in Eq. (18) results in a multivariate distribution
calculated from a multiplication of independent normal distribu-
tions N(x; x0,σ) = 1√

2πσ
e−(x−x0)2/2σ2

with zero mean and standard
deviation σi for the classical momentum (Pi) and position (Qi) of
each low-frequency mode (i ∈ low),

(ρeq
b,low)

W
(P0

low,Q0
low) = ∏

n∈low
N(P0

i ; 0,σi)N(Q0
i ; 0,σi), (19)

where

σi =
√

1
2 tanh (ωiβ/2)

. (20)

Equation (19) leads to efficient samplings for calculating expecta-
tion values [Eq. (18)]. Note that the reduced dynamics given by
the polaron-transformed Hamiltonian in the partial Wigner rep-
resentation follows the same SPQME using the spectral density of
the high-frequency modes. Therefore, an average over static disor-
der caused by the frozen low-frequency modes will recover the full
dynamics.

Moreover, the separation of bath modes into a high-frequency
part and a low-frequency part can be achieved by introducing a
splitting term, S(ω), defined by48,49

S(ω) =
⎧⎪⎪
⎨
⎪⎪⎩

[1 − (ω/ωs)
2
]

2
, ω ≤ ωs,

0, ω > ωs.
(21)

Here, ωs is the splitting frequency that separates the low-frequency
part from the high-frequency part, and it is an adjustable param-
eter which will be determined from a physical point of view later.
We multiply S(ω) onto the original spectral density of the system
to yield two spectral densities mainly consisted of low-frequency
modes and high-frequency modes, respectively,

Jnm,low(ω) = S(ω)Jnm(ω), (22)
Jnm,high(ω) = (1 − S(ω))Jnm(ω). (23)

Clearly, Jnm(ω) = Jnm,low(ω) + Jnm,high(ω) is preserved. Note that
when ωs = 0, all bath modes are addressed with the small-polaron
transformation and no frozen mode exists, and this recovers the
original SPQME method. On the other hand, in the ωs = ∞ limit,
all modes will be treated statically and classically, and no polaron
transformation will be applied [Eq. (14)]. As a result, the excitation
will propagate on the static potential energy surface caused by the
frozen modes, which reduces to pure adiabatic dynamics. It is inter-
esting to note that theoretical analysis of Redfield theory50 and non-
interacting blip approximation method48 in the ωs = ∞ limit were
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carried out for two-level systems previously, and both methods
also reduce to adiabatic dynamics in the limit. Furthermore, the
splitting function in Eq. (23), (1 − S), exhibits an ω4 frequency
dependence in the low-frequency regime; hence, the divergence
problem in the SPQME can be avoided, allowing the SPQME to
be applied to systems whose spectral density has an Ohmic form.
We will show that our frozen-mode small polaron-quantum master
equation (FM-SPQME) method is applicable to the Drude-Lorentz
spectral density, without numerical difficulties due to the infrared
divergence.

D. Variational determination of the splitting
frequency

At this point, we shall have a discussion on the justification
of the frozen-mode approach in the variational polaron framework
and a proposal to determine the splitting frequency without manu-
ally tunable parameters. In this work, the fully dressed small polaron
basis is adopted to perturbatively determine the excitation energy
transfer dynamics in molecular aggregates. However, it is also well
known that the strengths of electronic couplings, exciton-phonon
couplings, and temperature are all significant factors that influ-
ence the degree of polaronic interactions, and a variational polaron
ansatz with variational parameters determining the degree of pola-
ronic dressing would provide much more accurate results.55–58 As
a result, the variational polaron approach has been developed to
accurately treat EET dynamics in molecular aggregates and pho-
tosynthetic systems without the shortcomings of the small polaron
method.40,54,59–61

In this work, instead of adopting the variational polaron
approaches that exhibit much more complicated equations of
motion, we use a variational ansatz to determine the splitting fre-
quency for the frozen-mode. The frozen-mode method is justified by
the observation that the degree of polaronic dressing also depends on
the frequency of the phonon mode. In this regard, our frozen-mode
method can be considered as a crude variational polaron theory with
step-function frequency-dependent polaronic dressing coefficient,
plus a semiclassical treatment to the low-frequency slow dynam-
ics. The crude step-function ansatz is justified by the sharp polaron
transition shown in numerical calculations of polaronic effects.57,58

To determine the splitting frequency based on a variational
polaron method, we adopt the theory with a single dressing coef-
ficient described by Cheng and Silbey.58 In the theory, the electronic
system is coupled to a selected vibrational mode to each site, and a
partial polaron transformation is considered,

U = e−∑n fn(bn−b†n )∣n⟩⟨n∣, (24)

where f n is a real number between 0 and gn that we termed the dress-
ing coefficient. The f n = 0 limit corresponds to the bare exciton basis,
and the f n = gn limit recovers the small polaron theory. To determine
the value of f n variationally, we focus on a dimer system,

Hs = ∆σz + J0σx, (25)

where each site is coupled to an identical and independent vibra-
tional mode with frequency ω. In this case, the upper bound of
the free energy can be expressed as a function of the dressing

coefficient,58

A = ∑
n
ωfn( fn − 2gn) − β−1 ln{Tr[e−β(∆σz+Jeffσx)]}, (26)

where the dressed excitonic coupling reads

Jeff = J0 ⋅ exp{−∑
n
f 2
n coth(

βωn

2
)}. (27)

In order to minimize A with respect to f n, we consider solving
∂A/∂f k = 0. It turns out that

fn/gn =
⎧⎪⎪
⎨
⎪⎪⎩

1 + tanh (β
√
∆2 + (Jeff)2)

(Jeff)
2 coth (βω/2)

ω
√
∆2 + (Jeff)2

⎫⎪⎪
⎬
⎪⎪⎭

−1

. (28)

Note that the dressing ratio f n/gn → 1 as ω → ∞, and f n/gn → 0
as ω → 0. Therefore, the variational theory predicts that the degree
of optimal polaronic dressing is dependent on the mode frequency.
Low frequency modes tend to be weakly dressed, and high fre-
quency modes tend to be strongly dressed. This clearly justified the
frequency-dependent treatment of exciton-phonon dynamics pro-
posed in this paper. Numerical determination of the optimal f n/gn
in a broad parameter regime shows that its value changes sharply
from almost zero to 1 as a function of ω at a certain frequency,58

which shall correspond to the splitting frequency described in this
work. As a result, it is reasonable to set our splitting frequency ωs at
the point f n/gn = 1/2, which leads to

ωs

coth (βωs/2)
=

(Jeff)
2 tanh (β

√
∆2 + (Jeff)2)

√
∆2 + (Jeff)2

, (29)

and Jeff can now be generalized to a set of continuous modes,

Jeff = J0e−∑n(
gn
2 )

2 coth ( βωn2 ) (30)

= J0e−∫
∞

ωs
dωJ(ω) 1

ω2 coth ( βω2 ). (31)

Equations (29) and (31) allow us to determine the splitting frequency
from ∆, J0, and β. Note that this variationally determined splitting
frequency also considers the temperature effect on ωs. Moreover, in
the low temperature limit,

ωs =
(Jeff)

2
√
∆2 + (Jeff)2

, (32)

whereas in the high temperature limit,

ωs =
√

2(Jeff)2. (33)

E. Bath discretization and frozen-mode sampling
Given a spectral density Jnm(ω) and a splitting frequency ωs,

the spectral density of the low-frequency modes can be determined
[Eq. (22)]. However, since the resulting Jnm,low(ω) is a continu-
ous function, a discretized correspondence of classical modes to
Jnm,low(ω) is required in order to treat the low-frequency vibra-
tions classically. To this end, we follow a procedure of bath dis-
cretization proposed by Wang et al.62 To describe the continuous
Jnm(ω) using N low harmonic modes, we assume that the density
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of state, W(ω), of the low-frequency modes has the mathematical
form

W(ω) = a
Jnm,low(ω)

ω
, (34)

where a is a normalization constant. The functional form of W(ω)
is not important as long as in the calculations N low is large enough.
Nevertheless, different choices of the functional form may result in
different rates of convergence. The density of states must satisfy two
physical conditions, namely, the normalization to a total of N low
modes,

∫

∞

0
W(ω)dω = Nlow, (35)

and a proper frequency assigned to the kth mode,

∫

ωk

0
W(ω)dω = k, (36)

where k = 1, 2, . . ., N low is the mode index. Given these two con-
ditions, the normalization factor a can be obtained from Eq. (35),
and the sampled frequency ωk can be determined from Eq. (36). In
addition, the coupling constant gnk between the nth site and the kth
low-frequency mode can be determined from the definition of the
spectral density [Eq. (5)], resulting in

gnkgmk =
Jnm(ωk)

ω2
kW(ωk)

. (37)

In summary, we propose a frozen-mode small-polaron quan-
tum master equation (FM-SPQME) method that amounts to run-
ning SPQME dynamics with disordered Hamiltonian given by static
disorders calculated from positions and momenta sampled from
equilibrium Wigner distribution of frozen low-frequency modes.
The FM-SPQME propagates reduced dynamics in the small-polaron
frame based on the polaron-transformed Hamiltonian in the par-
tial Wigner representation [Eq. (16)] and the spectral density of
the high-frequency modes [Eq. (23)], while the influences of the
slow vibrational modes are included by averaging over an ensem-
ble of trajectories with static energetic disorders sampled from the
equilibrium Wigner distribution of the low-frequency vibrations
[Eq. (22)]. In our investigation over a wide range of parameters, 200
low-frequency modes and 200 trajectories for the sampling are suffi-
cient to achieve excellent convergence. As a result, the FM-SPQME
approach is computationally efficient, and this excellent conver-
gence property is attained by the proper choice of the functional
form of the density of states as well as the frozen-mode approxima-
tion. Note that the current formalism can be directly generalized to
achieve a hybrid quantum-classical method that incorporates clas-
sical dynamics of the slow modes to go beyond the frozen-mode
approximation. Nevertheless, the consideration of classical dynam-
ics in a hybrid quantum-classical approach often leads to rapid oscil-
lations in quantum phase factors, and the required number of tra-
jectories for obtaining an accurate ensemble average often increases
rapidly as a function of the evolution time. As a result, long-time
dynamics in a hybrid quantum-classical method often suffer from
convergence problems. By contrast, methods with the frozen-mode
approximation cleverly avoid the demand of myriad sampling of
trajectories.

III. RESULTS AND DISCUSSIONS
To investigate the applicability of the FM-SPQME method for

coherent energy transfer in molecular aggregates, we first study
EET dynamics in a model dimer system. This simple model sys-
tem allows us to fully explore the applicable parameter space and
the effectiveness of the frozen-mode approximation.

We adopt the following dimer exciton Hamiltonian:

Hs = ∆σz + Jσx, (38)

where σz and σx are the Pauli matrices, 2∆ is the site energy gap,
and J represents the excitonic coupling between the two sites. For
simplicity, we assume that the two sites are coupled to identical inde-
pendent harmonic baths in this study, i.e., Jnm(ω) = J(ω)δnm. The
initial condition is considered as a product state,

ρ(0) = ∣1⟩⟨1∣ ⊗ ρeq
b , (39)

with the system initially excited at site 1 and the bath in thermal
equilibrium.

A. Super-Ohmic spectral density
In this section, we provide comparisons between the FM-

SPQME method and the quasiadiabatic path integral (QUAPI)
approach51,52 for a model system described by a super-Ohmic spec-
tral density,

Jso(ω) = γ
ω3

ω2
c
e−ω/ωc , (40)

where γ is the exciton-phonon coupling strength and ωc is the bath
cut-off frequency. We aim to investigate the applicable regime of the
FM-SPQME and examine its performance in the slow-bath limit.
The QUAPI data were published previously.41 For the numerical
scheme of QUAPI, the method detailed in Refs. 52 and 63 was used.
The numerical calculation is based upon the symmetric Trotter split-
ting of short time propagators, and the sizes of the time slice and
memory-time window critically affect the accuracy of the results,
especially for dynamics with slow bath modes and long memory
times. In all the QUAPI calculations, the time slice is gradually
reduced and memory-time window is gradually enlarged for each
parameter set individually to ensure convergence.

A key parameter in the FM-SPQME method is the splitting
frequency ωs that divides the bath modes into the low- and high-
frequency parts. In order to examine the choices of ωs, we compare
population dynamics calculated using the FM-SPQME with differ-
ent values of ωs to dynamics obtained from the numerically exact
QUAPI method in a slow-bath regime (J/ωc > 1) (Fig. 1). As the fully
dressed coordinates are not a proper representation in this regime, it
is no surprise that the SPQME significantly overestimates the deco-
herence rate. By contrast, we observe that the FM-SPQME dynamics
gradually approach the exact result with a change in ωs from 0 to
J. From previous studies,40,53 we know that the ratio of the funda-
mental frequency of the system dynamics to the bath dynamics, J/ωc,
gauges the performance of the small polaron method. Note that the
variationally determined splitting frequency ωs is also close to J in
this strong excitonic coupling and low temperature limit [Eq. (32)].
Moreover, Fig. 1 shows that when ωs is too large, FM-SPQME no
longer yields accurate dynamics because too many bath modes are
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FIG. 1. Population dynamics simulated by the FM-SPQME (lines) and QUAPI
(black dots) in a strong excitonic coupling regime (J/ωc = 2.0). We examine
the effects of different values of splitting frequency ωs. Other parameters are
∆/ωc = 0.5, γ = 0.2/π, and βωc = 2.0.

considered frozen. In the calculations for the Ohmic system pre-
sented in the following, we employ variationally determined ωs as
our standard splitting frequency for the FM-SPQME method.

Figure 2 shows population dynamics simulated by the FM-
SPQME and those by the QUAPI method for systems in the weak
excitonic coupling regime (J/ωc = 0.5) with different system-bath
coupling strengths. This weak excitonic coupling case is a param-
eter regime in which the SPQME yields excellent results because the
dynamics of the bath is faster than that of the system. Note that
the FM-SPQME method also yields excellent results even with a
sizable splitting frequency, ωs, in which a significant portion of
vibrational harmonics is treated as frozen modes. This excellent
performance of the FM-SPQME indicates that the frozen-mode

approximation does capture the essential physics of the dynami-
cally arrested low-frequency motions. Moreover, the FM-SPQME
method yields accurate results in the incoherent Föster limit
[Fig. 2(c)]. We conclude that at this weak excitonic coupling regime,
the frozen-mode approximation with variationally determined ωs
does not affect the quality of the SPQME results across a broad range
of system-bath coupling strengths.

On the other hand, in Fig. 3, we benchmark the performance
of the FM-SPQME method in a strong excitonic coupling regime
(J/ωc = 2.0). This is a case in which the bath dynamics is much
slower than the EET dynamics. Noticeably, SPQME fails to describe
the decoherence time of the system even at the weak system-bath
coupling strength (γ = 0.2/π) [Fig. 3(a)]. Clearly, the small polaron
frame does not provide a suitable representation in this limit because
the system dynamics is so fast that the harmonic modes do not have
sufficient time to respond accordingly. By contrast, with the frozen-
mode treatment for the low-frequency modes, the FM-SPQME leads
to much better agreement with the profile of the QUAPI results. The
Rabi frequency looks wrong, but this is mostly due to the undersam-
pling of the QUAPI data points. In the weak system-bath coupling
limit shown in Fig. 3, we estimate a bare exciton energy gap of about
4.12ωc, corresponding to a period of about 1.53/ωc, which is close
to the FM-SPQME results. Moreover, as the system-bath coupling
strength γ increases, the system is more strongly influenced by the
phonons. Therefore, the population dynamics of trajectories sam-
pled in the FM-SPQME calculation gradually become incoherent
transfer and the ensemble average provides an accurate description,
as shown in Fig. 3(c).

In Fig. 4, we investigate temperature effects on the performance
of the FM-SPQME method for a model system in the interme-
diate coupling regime. We observe that the FM-SPQME provides
improved results over simple SPQME across the whole temperature
range studied in this work. Also, it is insightful to note the tempera-
ture dependence of the performance of the small-polaron approach
here. At high temperatures [Fig. 4(c)], the system is strongly scat-
tered by the thermal bath, causing the system to localize dynamically
on the two sites. The situation is similar to the case of weak excitonic

FIG. 2. Population dynamics simulated by the SPQME (red line), the FM-SPQME (blue line), and the QUAPI (black dots) in a weak excitonic coupling regime (J/ωc = 0.5)
with different values of system-bath coupling strengths: (a) γ = 0.2/π, (b) γ = 0.5/π, (c) γ = 2.0/π. Other parameters are ∆/ωc = 0.5 and βωc = 0.5. FM-SPQME splitting
frequencies are (a) ωs/ωc = 0.60, (b) ωs/ωc = 0.45, (c) ωs/ωc = 0.057.
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FIG. 3. Population dynamics simulated by the SPQME (red line), the FM-SPQME (blue line), and the QUAPI (black dots) in a strong excitonic coupling regime (J = 2.0ωc)
with different values of system-bath coupling strengths: (a) γ = 0.2/π, (b) γ = 0.5/π, (c) γ = 2.0/π. Other parameters are ∆/ωc = 0.5 and βωc = 0.5. FM-SPQME splitting
frequencies are (a) ωs/ωc = 2.56, (b) ωs/ωc = 2.46, (c) ωs/ωc = 0.86.

coupling, and polaron-based methods are expected to be suitable in
this regime. On the other hand, the quality of the SPQME dynam-
ics deteriorated when going from the low temperature [Fig. 4(a)]
to the intermediate temperature [Fig. 4(b)]. This observation can
be explained by the variance of the perturbation term in the small
polaron frame,

Trb{H′2
sbρ

eq
b } = J2

(1 − ⟨θ†1θ2⟩
2
), (41)

where the Franck-Codon factor ⟨θ†1θ2⟩ is given in Eq. (12). Note that
the Franck-Codon factor is temperature dependent, and it decreases
as temperature increases due to thermal population of the phonon
modes. Hence, in the low temperature case, the variance increases as
the temperature increases, which leads to the slight deviation of the
SPQME results from the exact results in Fig. 4(b). Interestingly, by
treating the more populated low-frequency modes using the classical

approximation, the FM-SPQME reduces the variance of the per-
turbation term and clearly improves the results at the intermediate
temperature.

In summary, it is clear that the FM-SPQME yields improved
results over the SPQME method when the slow modes dominate the
dynamics. This frozen-mode approximation is well funded physi-
cally. In the parameter regime investigated in this work, the frozen-
mode approximation does not reduce the quality of the results. Note
that this is no surprise since the super-Ohmic spectral density is
predominated by high-frequency vibrations.

B. Drude-Lorentz spectral density
In order to confirm that the FM-SPQME is not restricted to

the super-Ohmic spectral density, we apply the method to simu-
late the EET dynamics in a model system with the Drude-Lorentz

FIG. 4. Population dynamics simulated by the SPQME (red line), the FM-SPQME (blue line), and the QUAPI (black dots) at different values of inverse temperatures:
(a) βωc = 2.0, (b) βωc = 0.5, (c) βωc = 0.1. Other parameters are ∆/ωc = 0.1, J/ωc = 0.5, and γ = 0.5/π. FM-SPQME splitting frequencies are (a) ωs/ωc = 0.57,
(b) ωs/ωc = 0.46, (c) ωs/ωc = 0.032.
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FIG. 5. Population dynamics simulated by the FM-SPQME method and the Redfield theory at a low temperature (T = 77 K) with different values of excitonic couplings:
(a) J = 25 cm−1, (b) J = 50 cm−1, (c) J = 100 cm−1. Other parameters are λ = 1 cm−1, ∆ = 25 cm−1, and ωc = 50 cm−1. FM-SPQME splitting frequencies are
(a) ωs/ωc = 0.60, (b) ωs/ωc = 1.20, (c) ωs/ωc = 2.19.

spectral density,

JDL(ω) = 2λ
ωωc

ω2 + ω2
c

, (42)

where λ is the reorganization energy and ωc is the cut-off frequency.
Note that the SPQME method cannot describe coherent dynamics
for systems with this form of spectral density due to the infrared
divergence problem in the small-polaron memory kernel. We also
know that the most problematic parameter regime for the SPQME
is at the slow-bath limit and weak system-bath couplings. Thus,
we focus our study here in the weak system-bath coupling regime
and choose to compare the FM-SPQME method with the Redfield
theory. The Redfield theory is expected to yield accurate results in
this regime. Note that in this work we aim to provide a proof-of-
principle study to investigate the frozen mode approximation for the
SPQME method in systems with the Drude-Lorentz spectral den-
sity, and a complete exploration of the validity of FM-SPQME for

the Drude-Lorentz model in full EET parameter space or compar-
isons to numerically exact methods (such as the HEOM approach)
are outside the scope of this work. Furthermore, in this study, we
choose to use an extremely small reorganization energy (λ = 1 cm−1)
to ensure the accuracy of the Redfield theory, and other parameters
are set to imitate EET dynamics in photosynthetic light-harvesting
systems.

Figure 5 shows population dynamics simulated by the FM-
SPQME method and the Redfield theory for a model dimer system
at a low temperature (T = 77 K) and different values of excitonic
couplings. Following the results presented in Sec. III A, we also use
variational ωs [Eq. (31)] in the FM-SPQME calculations. Further-
more, since the original SPQME method cannot be utilized to cal-
culate EET dynamics in this system because of the Drude-Lorentz
spectral density, we present FM-SPQME results with a minuscule
splitting frequency (ωs = 0.1ωc) to implicate the dynamics in a small-
polaron theory. In addition, to examine a broad parameter range,

FIG. 6. Population dynamics simulated by the FM-SPQME method and the Redfield theory at a high temperature (T = 300 K) with different values of excitonic couplings: (a)
J = 25 cm−1, (b) J = 50 cm−1, (c) J = 100 cm−1. Other parameters are λ = 1 cm−1, ∆ = 25 cm−1, and ωc = 50 cm−1. FM-SPQME splitting frequencies are (a) ωs/ωc = 0.52,
(b) ωs/ωc = 1.28, (c) ωs/ωc = 2.60.
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we vary J from the fast bath limit [Fig. 5(a)] to the slow bath limit
[Fig. 5(c)] in this study. It is clear that the FM-SPQME with ωs = 0.1J
fails terribly in all parameters as long as the Drude-Lorentz spec-
tral density is adopted. By contrast, the FM-SPQME with ωs = J
successfully captures the coherent dynamics even in the slow-bath
limit [Fig. 5(c)].

In Fig. 6, we furnish high temperature results. Unphysical
dynamics provided by the full small-polaron treatment are clearly
observed in Fig. 6, and these unphysical results are caused by the
infrared divergence problem in the small polaron formalism. The
difficulty has also been revealed in previous studies.54 On the other
hand, the FM-SPQME approach still yields excellent results, demon-
strating that the frozen-mode approximation circumvents problems
caused by the low-frequency modes in the small-polaron framework.
These results clearly show that with a small increase in the com-
putational cost, the FM-SPQME method significantly extends the
applicable regime of the SPQME into the slow-bath regime.

IV. CONCLUDING REMARKS
In order to expand the applicable regime of the small-polaron

approach for EET dynamics in molecular aggregates, we propose a
mixed quantum-classical representation to separate the bath modes
into two parts. One mainly comprises the fast high-frequency modes
and is treated with the small polaron quantum master equation. The
other portion consists of slow low-frequency modes and is envis-
aged as dynamically arrested frozen modes that cause diagonal static
disorder in the polaron transformed Hamiltonian. The separation
is achieved by multiplying a splitting function onto the spectral
density, with a splitting frequency ωs to divide the two parts. Fur-
thermore, we suggest using a variational approach to determine the
splitting frequency. This leads to a frozen-mode SPQME method for
quantum dynamics in molecular aggregates. We also note that the
frozen-mode approach is related to a crude frequency dependent
variational polaron theory.

To demonstrate the applicability of the FM-SPQME method,
we compare EET dynamics calculated from the new method to
numerically exact results for model dimer systems in a large param-
eter space. We show that the FM-SPQME formalism yields accurate
EET dynamics for systems with the super-Ohmic spectral density in
a large EET parameter space. Even in the slow-bath regime where the
small polaron frame is not applicable, the combination of the frozen-
mode approximation for the low-frequency vibrations and small
polaron representation for the high-frequency modes adequately
describes the coherent dynamics. Furthermore, the separated treat-
ment of low-frequency modes further helps us to extend the appli-
cability of the SPQME method to systems with a spectral density of
the Ohmic form. We investigate the EET dynamics calculated from
the FM-SPQME method for a model dimer system with a Drude-
Lorentz spectral density in the weak system-bath coupling limit and
then compare the results with those calculated from the Redfield the-
ory. We demonstrate that the FM-SPQME method is applicable in
this Ohmic form spectral density, avoiding the infrared divergence
problem in the original SPQME. The success of the FM-SPQME
method echoes a great physical insight that the difficulty in describ-
ing non-Markovian, multistep relaxation dynamics is the cause of
failures in many perturbative methods, as have been emphasized by
Reichman and co-workers.48–50

This simple extension of the SPQME method significantly
expands the applicability of the small-polaron approach and at the
same time provides useful physical insights into the role of the low-
frequency modes in the polaron representation. The success of the
frozen-mode approximation indicates that the low-frequency part
of the environmental modes does not dynamically modulate the
EET dynamics. These modes remain “static” in the EET dynam-
ics, providing only a Gaussian random energetic background in the
ensemble. We believe this is a general principle in condensed-phase
quantum dynamics, and it would be interesting to test this picture
and its applicability in various systems spectroscopically, for exam-
ple, using the photon echo spectroscopy. Notably, in a recent study,
Fetherolf and Berkelbach64 have demonstrated that the idea based
on separate treatment of homogeneous and inhomogeneous spec-
tral broadening enables accurate simulations of linear and nonlinear
spectroscopy using perturbative second-order time-convolutionless
quantum master equations.

Moreover, it is interesting to note that while various variational
polaron methods also solve the slow-bath problems confronted
in the SPQME,40,54,59 the FM-SPQME method retains the advan-
tage of low computational cost and rapid convergence attributable
to the frozen-mode approximation. In fact, simulations of quan-
tum dynamics in molecular aggregate systems in condensed phases
often require the inclusion of static disorders in site energies that
lead to inhomogeneous broadening in spectra. Therefore, in such
calculations, the sampling over thermalized phase space distribu-
tion for low-frequency modes in the FM-SPQME method posts
no additional cost. Thus, we believe that the FM-SPQME method
accomplishes accuracy and computational efficiency simultane-
ously. Finally, we emphasize that the utilization of the frozen-mode
approximation in a polaronic framework is based on the physical
insight that the adequacy of the fully dressed small polaron rep-
resentation depends on the time scale of bath dynamics. Using
the variationally determined splitting frequency, the frozen-mode
method can be considered as a crude variational polaron theory with
frequency-dependent polaronic dressing coefficient. The idea should
not be limited to descriptions of EET dynamics, and it should be
fruitful to extend the FM-SPQME method to treat charge mobility as
well as charge separation processes in a broad range of biological and
chemical systems. Further improvement of the FM-SPQME method
such as a better determination of the splitting frequency for general
bath spectral densities, generalization to treat charge-mobility prob-
lems, and a more comprehensive benchmark in the case of Ohmic
spectral density is a worthy path to pursue.

ACKNOWLEDGMENTS
Y.-C.C. thanks the Ministry of Science and Technology, Taiwan

(Grant No. MOST 105-2113-M-002-012), National Taiwan Uni-
versity (Grant No. 103R891305), and Center for Quantum Science
and Engineering (Subproject No. 103R891401) for financial sup-
port. H.-H.T. and B.-Y.J. acknowledge the financial support from
the Ministry of Science and Technology, Taiwan (Grant No. NSC
105-2628-M-002-012). We are grateful to Computer and Informa-
tion Networking Center, National Taiwan University, for the sup-
port of high-performance computing facilities. We are grateful to
the National Center for High-performance Computing for computer
time and facilities.

J. Chem. Phys. 150, 224110 (2019); doi: 10.1063/1.5096287 150, 224110-10

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

REFERENCES
1P. F. Barbara, A. J. Gesquiere, S.-J. Park, and Y. J. Lee, Acc. Chem. Res. 38, 602
(2005).
2I. Burghardt, V. May, D. A. Micha, and E. R. Bittner, Energy Transfer Dynamics
in Biomaterial Systems (Springer, 2009).
3I. Hwang and G. D. Scholes, Chem. Mater. 23, 610 (2011).
4G. D. Scholes and G. Rumbles, Nat. Mater. 5, 683 (2006).
5T. Renger, V. May, and O. Kühn, Phys. Rep. 343, 137 (2001).
6Y.-C. Cheng and G. R. Fleming, Annu. Rev. Phys. Chem. 60, 241 (2009).
7V. May and O. Kühn,Charge and Energy Transfer Dynamics inMolecular Systems
(Wiley VCH, 2011).
8S. Yang, D. Z. Xu, Z. Song, and C. P. Sun, J. Chem. Phys. 132, 234501 (2010).
9T. Scholak, F. de Melo, T. Wellens, F. Mintert, and A. Buchleitner, Phys. Rev. E
83, 021912 (2011).
10Q. Ai, T.-C. Yen, B.-Y. Jin, and Y.-C. Cheng, J. Phys. Chem. Lett. 4, 2577 (2013).
11T. Renger, A. Klinger, F. Steinecker, M. Schmidt, J. Numata, and F. Müh, J. Phys.
Chem. B 116, 14565 (2012).
12F. Fassioli, R. Dinshaw, P. C. Arpin, and G. D. Scholes, J. R. Soc., Interface 11,
20130901 (2013).
13S. Chandrasekaran, M. Aghtar, S. Valleau, A. Aspuru-Guzik, and U. Kleinekathöfer,
J. Phys. Chem. B 119, 9995 (2015).
14J. M. Moix, Y. Zhao, and J. Cao, Phys. Rev. B 85, 115412 (2012).
15U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
16J. Prior, A. W. Chin, S. F Huelga, and M. B. Plenio, Phys. Rev. Lett. 105, 050404
(2010).
17Y. Tanimura and R. Kubo, J. Phys. Soc. Jpn. 58, 101 (1989).
18Y. Tanimura, J. Phys. Soc. Jpn. 75, 082001 (2006).
19A. Ishizaki and G. R. Fleming, J. Chem. Phys. 130, 234111 (2009).
20J. Jin, X. Zheng, and Y. Yan, J. Chem. Phys. 128, 234703 (2008).
21G. Tao and W. H. Miller, J. Phys. Chem. Lett. 1, 891 (2010).
22P. Huo, T. F. Miller III, and D. F Coker, J. Chem. Phys. 139, 151103 (2013).
23M. K. Lee, P. Huo, and D. F. Coker, Annu. Rev. Phys. Chem. 67, 639 (2016).
24N. Makri, Comput. Phys. Commun. 63, 389 (1991).
25R. Kapral, Annu. Rev. Phys. Chem. 57, 129 (2006).
26R. Kapral and G. Ciccotti, J. Chem. Phys. 110, 8919 (1999).
27S. Bai, W. Xie, and Q. Shi, J. Phys. Chem. A 118, 9262 (2014).
28A. G. Redfield, IBM J. Res. Dev. 1, 19 (1957).
29W. T. Pollard, A. K. Felts, and R. A. Friesner, Adv. Chem. Phys. 93, 77 (1996).
30V. T. Förster, Ann. Phys. 437, 55 (1948).
31R. van Grondelle and V. I. Novoderezhkin, Phys. Chem. Chem. Phys. 8, 793
(2006).

32A. Olaya-Castro and G. D. Scholes, Int. Rev. Phys. Chem. 30, 49 (2011).
33M. Schröter, S. Ivanov, J. Schulze, S. Polyutov, Y. Yan, T. Pullerits, and O. Kühn,
Phys. Rep. 567, 1 (2015).
34W. M. Zhang, T. Meier, V. Chernyak, and S. Mukamel, J. Chem. Phys. 108, 7763
(1998).
35M. Yang and G. R. Fleming, Chem. Phys. 282, 163 (2002).
36S. Jang and Y.-C. Cheng, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 3, 84
(2013).
37Y.-H. Hwang-Fu, W. Chen, and Y.-C. Cheng, Chem. Phys. 447, 46 (2015).
38Y. Chang and Y.-C. Cheng, J. Chem. Phys. 142, 034109 (2015).
39A. Ishizaki and G. R. Fleming, J. Chem. Phys. 130, 234110 (2009).
40C. K. Lee, J. Moix, and J. Cao, J. Chem. Phys. 136, 204120 (2012).
41H.-T. Chang, P.-P. Zhang, and Y.-C. Cheng, J. Chem. Phys. 139, 224112 (2013).
42S. Jang, J. Chem. Phys. 131, 164101 (2009).
43A. Nazir, Phys. Rev. Lett. 103, 146404 (2009).
44S. Jang, J. Chem. Phys. 135, 034105 (2011).
45D. P. S. McCutcheon and A. Nazir, Phys. Rev. B 83, 165101 (2011).
46A. Kolli, A. Nazir, and A. Olaya-Castro, J. Chem. Phys. 135, 154112 (2011).
47H. Wang, M. Thoss, and W. H. Miller, J. Chem. Phys. 115, 2979 (2001).
48T. C. Berkelbach, D. R. Reichman, and T. E. Markland, J. Chem. Phys. 136,
034113 (2012).
49T. C. Berkelbach, T. E. Markland, and D. R. Reichman, J. Chem. Phys. 136,
084104 (2012).
50A. Montoya-Castillo, T. C. Berkelbach, and D. R. Reichman, J. Chem. Phys. 143,
194108 (2015).
51N. Makri and D. E. Makarov, J. Chem. Phys. 102, 4600 (1995).
52N. Makri and D. E. Makarov, J. Chem. Phys. 102, 4611 (1995).
53H.-T. Chang and Y.-C. Cheng, J. Chem. Phys. 137, 165103 (2012).
54D. P. S. McCutcheon and A. Nazir, J. Chem. Phys. 135, 114501 (2011).
55D. R. Yarkony and R. J. Silbey, J. Chem. Phys. 67, 5818 (1977).
56T. Harris and R. J. Silbey, J. Chem. Phys. 83, 1069 (1985).
57A. H. Romero, D. W. Brown, and K. Lindenberg, Phys. Rev. B 59, 13728 (1999).
58Y.-C. Cheng and R. J. Silbey, J. Chem. Phys. 128, 114713 (2008).
59F. A. Pollock, D. P. S. McCutcheon, B. W. Lovett, E. M. Gauger, and A. Nazir,
New J. Phys. 15, 075018 (2013).
60A. Nazir, D. P. S. McCutcheon, and A. W. Chin, Phys. Rev. B 85, 224301 (2012).
61Y. Fujihashi and A. Kimura, J. Phys. Chem. B 119, 8349 (2015).
62H. Wang, X. Song, D. Chandler, and W. H. Miller, J. Chem. Phys. 110, 4828
(1999).
63J. Eckel, S. Weiss, and M. Thorwart, Eur. Phys. J. B 53, 91 (2006).
64J. H. Fetherolf and T. C. Berkelbach, J. Chem. Phys. 147, 244109 (2017).

J. Chem. Phys. 150, 224110 (2019); doi: 10.1063/1.5096287 150, 224110-11

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1021/ar040141w
https://doi.org/10.1021/cm102360x
https://doi.org/10.1038/nmat1710
https://doi.org/10.1016/s0370-1573(00)00078-8
https://doi.org/10.1146/annurev.physchem.040808.090259
https://doi.org/10.1063/1.3435213
https://doi.org/10.1103/physreve.83.021912
https://doi.org/10.1021/jz4011477
https://doi.org/10.1021/jp3094935
https://doi.org/10.1021/jp3094935
https://doi.org/10.1098/rsif.2013.0901
https://doi.org/10.1021/acs.jpcb.5b03654
https://doi.org/10.1103/physrevb.85.115412
https://doi.org/10.1103/revmodphys.77.259
https://doi.org/10.1103/physrevlett.105.050404
https://doi.org/10.1143/jpsj.58.101
https://doi.org/10.1143/jpsj.75.082001
https://doi.org/10.1063/1.3155372
https://doi.org/10.1063/1.2938087
https://doi.org/10.1021/jz1000825
https://doi.org/10.1063/1.4826163
https://doi.org/10.1146/annurev-physchem-040215-112252
https://doi.org/10.1016/0010-4655(91)90265-m
https://doi.org/10.1146/annurev.physchem.57.032905.104702
https://doi.org/10.1063/1.478811
https://doi.org/10.1021/jp503522g
https://doi.org/10.1147/rd.11.0019
https://doi.org/10.1002/9780470141526.ch3
https://doi.org/10.1002/andp.19484370105
https://doi.org/10.1039/b514032c
https://doi.org/10.1080/0144235x.2010.537060
https://doi.org/10.1016/j.physrep.2014.12.001
https://doi.org/10.1063/1.476212
https://doi.org/10.1016/s0301-0104(02)00604-3
https://doi.org/10.1002/wcms.1111
https://doi.org/10.1016/j.chemphys.2014.11.026
https://doi.org/10.1063/1.4905721
https://doi.org/10.1063/1.3155214
https://doi.org/10.1063/1.4722336
https://doi.org/10.1063/1.4840795
https://doi.org/10.1063/1.3247899
https://doi.org/10.1103/physrevlett.103.146404
https://doi.org/10.1063/1.3608914
https://doi.org/10.1103/physrevb.83.165101
https://doi.org/10.1063/1.3652227
https://doi.org/10.1063/1.1385561
https://doi.org/10.1063/1.3671372
https://doi.org/10.1063/1.3687342
https://doi.org/10.1063/1.4935443
https://doi.org/10.1063/1.469508
https://doi.org/10.1063/1.469509
https://doi.org/10.1063/1.4761929
https://doi.org/10.1063/1.3636081
https://doi.org/10.1063/1.434789
https://doi.org/10.1063/1.449469
https://doi.org/10.1103/physrevb.59.13728
https://doi.org/10.1063/1.2894840
https://doi.org/10.1088/1367-2630/15/7/075018
https://doi.org/10.1103/physrevb.85.224301
https://doi.org/10.1021/acs.jpcb.5b04503
https://doi.org/10.1063/1.478388
https://doi.org/10.1140/epjb/e2006-00346-y
https://doi.org/10.1063/1.5006824

