

ARTICLE

DOI: 10.1038/s41467-017-00120-7

OPEN

A new energy transfer channel from carotenoids to chlorophylls in purple bacteria

Jin Feng¹, Chi-Wei Tseng², Tingwei Chen¹, Xia Leng¹, Huabing Yin³, Yuan-Chung Cheng², Michael Rohlfing⁴ & Yuchen Ma¹

It is unclear whether there is an intermediate dark state between the S_2 and S_1 states of carotenoids. Previous two-dimensional electronic spectroscopy measurements support its existence and its involvement in the energy transfer from carotenoids to chlorophylls, but there is still considerable debate on the origin of this dark state and how it regulates the energy transfer process. Here we use ab initio calculations on excited-state dynamics and simulated two-dimensional electronic spectrum of carotenoids from purple bacteria to provide evidence supporting that the dark state may be assigned to a new A_g^+ state. Our calculations also indicate that groups on the conjugation backbone of carotenoids may substantially affect the excited-state levels and the energy transfer process. These results contribute to a better understanding of carotenoid excited states.

¹ School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China. ² Department of Chemistry and Center for Quantum Science and Engineering, National Taiwan University, Taipei 106, Taiwan. ³ School of Physics and Electronics, Henan University, Kaifeng 475004, China. ⁴ Institut für Festkörpertheorie, Universität Münster, Münster 48149, Germany. Correspondence and requests for materials should be addressed to Y.M. (email: myc@sdu.edu.cn)

arotenoids (Cars) take part in various processes in living organisms. In living animals and humans, they act as antioxidants preventing free radicals from destroying tissue cells¹ and are relevant to the vision of retina². In the photosynthesis of plants and microorganisms, Cars are responsible for harvesting light, transferring energy to chlorophylls (Chls), and protecting against excessive light by quenching excited states of Chls^{3, 4}. Exploring the excited-state dynamic properties of Cars is fundamental to understand the mechanism of photosynthesis and is also helpful for developing artificial light-harvesting systems. Despite the studies for several decades, our knowledge on the electronic structure and excited-state properties of Cars, which determine the mechanism of energy decay in Cars and energy flow from Cars to Chls, is still limited. For example, the origin and nature of a dark state, which lies between the strongly one-photon allowed S_2 (1B_µ⁺) state and the forbidden S₁ (2A_g⁻) state, has triggered intense research and has been under debate. This dark state would have a critical role in mediating the Car-to-Chl energy transfer process and the depopulation of the S_2 state^{4–11}. Discovery of this dark state would make the conventional carotenoid photophysics model $S_0 \rightarrow S_2 \rightarrow S_1 \rightarrow S_0$ (Fig. 1a), where S_0 is the ground state $1A_g^-$, no longer accurate. Therefore, a new model may be required to account for the excited-state behavior of Cars^{4, 12, 13}.

A number of experimental and theoretical studies^{4, 8, 14, 15} have been carried out in the past 20 years to unravel this dark state. The $1B_{\mu}^{-}$ state is the popular choice for the attribution of the dark state (Fig. 1b), and it also seems to be the only choice based on the present theory on the excited-state structure of polyenes, which are closely related to the Cars. However, this assignment is controversial due to the contradiction between the properties of the dark state measured experimentally and the behavior of the $1B_u^-$ state determined from both experiments and theory⁴, ⁹. Especially, the conjugation-length dependence of the 1B_u⁻ state is not in accord with that of the dark state as observed in the emission spectra and transient absorption spectra¹⁶⁻²⁰. Recent two-dimensional electronic spectroscopy (2DES) and high-time resolution broadband pump-probe spectroscopy measurements on Cars spheroidene (N = 10), rhodopin glucoside (RG) (N = 11) and spirilloxanthin (N = 13) demonstrate clearly the decay of the S_2 state to the dark state and the energy transfer channel from the dark state to the Q_x state of Chls^{6, 10, 21, 22}. From these experiments, emission energy of the dark state seems to lie a little bit (~0.1 eV) below that of the S_2 state, irrespective of the conjugation length of Cars. Decrease of the $1B_u^-$ energy with conjugation length is much steeper than this dark state. In addition, emission energy of the $1B_u^-$ state might be smaller than 2 eV for Cars with N = 10-13 as predicted by Koyama et al.^{4, 18}, according to which energy transfer to the Chls Q_x state, whose absorption energy is ~2.1 eV, cannot realize. Thus, there may exist some other, unknown excited state in the vicinity of the S₂ state.

Another important issue is how much the dark state is involved in the Car-to-Chl energy transfer. There is disagreement in the overall Car-to-Chl energy transfer efficiency between theoretical prediction and experimental measurement, e.g., 20 vs. 50–60% for *Rhodopseudomonas (Rps.) acidophila*^{23, 24}. As the spectral overlap of the dark state emission and Q_x absorption is larger than that between the S₂ and Q_x states, the dark state, which is not considered in previous theoretical calculations, has been supposed to account for this disagreement⁶. However, some experiments demonstrate that the amount of energy transferred from dark states to Chls is minor^{4, 25, 26}.

Here, we examine the excited-state dynamics of two Cars from purple bacteria and their Car-to-Chl energy transfer by virtue of many-body Green's function theory and Förster–Dexter theory. 2D spectrum is also simulated by a density matrix-based

Fig. 1 Photophysics model of carotenoids. The three-state model (**a**), the four-state model involving $1B_u^-$ (**b**) and the new four-state model containing S_y (**c**) used to interpret the excited-state dynamics of carotenoids

dynamical method to compare with experiments. We provide evidence supporting a new dark state with A_g^+ symmetry, which is denoted by S_y , in Cars. Its absorption energy would be higher than the S_2 state, whereas its emission energy would be lower. The S_y state is a singly excited state, in stark contrast to the well-known dark states $2A_g^-$ and $1B_u^-$ which are doubly excited states constituted by the two triplet excitons. The excited-state structure and the energy transfer appear to be highly sensitive to the methyl groups on the conjugated backbone of Cars.

Results

Excitation energy of S_{y}. Extensive computational researches for the dark state in Cars have been performed using various first-principle methods^{8, 14, 27-33}. However, they mainly focus on the controversial 1B_u⁻ state. With many-body Green's function theory, we study the excited-state dynamics of RG (N = 11) in Rps. acidophila (Fig. 2) and spirilloxanthin (N = 13) in Rhodospirillum rubrum. The calculated absorption energy of the S₂ state for RG and spirilloxanthin are 2.65 and 2.42 eV. In experiments, the S₂ energy is 2.48 eV for RG in methanol and 2.36 eV for spirilloxanthin in n-hexane⁴. In solution and the protein environment, absorption spectra of Cars redshift owing to the polarizability of the medium^{4, 22, 34, 35}. If taking this into account, our calculations agree well with experiments. We also prove that putting some protein fragments near Cars has limited effects on the excitation energies of Cars (Supplementary Fig. 2). Excitation energies of the S_1 and $1B_u^-$ states for RG (spirilloxanthin) are calculated to be 1.87 and 2.61 eV (1.68 and 2.32 eV), respectively, employing the scheme proposed by Tavan and Schulten³⁶. Above S_2 by 0.55 eV for RG and 0.52 eV for spirilloxanthin, our results predict a new state (S_y) of the A_g^+ symmetry. It is optically forbidden from the ground state and must be indiscernible in experimental optical absorption spectra. The S_{y} state is a singly excited state, with the wave function represented dominantly by the transitions HOMO $-1 \rightarrow$ LUMO and HOMO \rightarrow LUMO+1 (Figs. 3, 4; Supplementary Fig. 3 and Supplementary Note 2). The high-level quantum chemistry approach EOM-CCSD can also get this state and a similar S_2 - S_v energy gap (Supplementary Table 2). The transition dipole moment of the S_v state is 0.7 and 1.6 Debye for RG and spirilloxanthin, respectively, much smaller than that of the S₂ state (20.3 and 28.6 Debye) and comparable to the dark state measured in experiments¹⁸. Moreover, the S_{ν} state remains optically forbidden when twisting the conjugated backbone of Cars from all-trans to cis configurations (Supplementary Fig. 4 and Supplementary Table 3).

Emission energy of S_y. After optical absorption, Cars first relax in the S₂ state. From the ground-state geometry (R₀ in Fig. 3) to the excited-state minimum geometry of the S₂ state (R₂ in Fig. 3), Stokes shift of the S₂ state is 0.18 eV for both RG and spirillox-anthin. This is in accord with the shift of 0.15 eV for RG measured experimentally⁴, ²³. In this process, the S_y state downshifts

Fig. 2 Structure of *Rps. acidophila.* **a** Top view of the structure of light-harvesting complex II in *Rps. acidophila.* **b** Enlarged view of carotenoids and chlorophylls in **a**. For a better distinction, carotenoids, the nine B800 chlorophylls, and the eighteen B850 chlorophylls are depicted in *red, green,* and *blue,* respectively in **b**. After these antenna pigments absorb light, carotenoids transfer energy to chlorophylls B800 and B850, mainly through the S₂ state, partly through the S_y and S₁ states as illustrated in **c**

Fig. 3 Scheme of the potential energy curves for carotenoids with $N \ge 9$ (*left*) and the compositions of excited states (*right*). R₀, R₂, and R_y represent geometries at the potential minima of states S₀, S₂, and S_y, respectively. H and L represent the highest occupied and the lowest unoccupied molecular orbitals, respectively. *Arrows* on the orbital illustrate the population and the spins of electrons in this orbital. S₂ and S_y are singly excited states. S₁ (formed by two T₁) and 1B_u⁻ (formed by T₁ and T₂) are doubly excited states. T₁ and T₂ are the lowest and the second lowest triplet exciton, respectively

by 0.66 eV for RG and 0.68 eV for spirilloxanthin, respectively (Fig. 3). Now, at the potential minimum of the S₂ state, the energy of the S_y state is just a little bit higher (0.07 eV for RG and 0.02 eV for spirilloxanthin) than the S₂ state. If extrapolating further along the R₀ \rightarrow R₂ reaction coordinate, the energy of the S_y state falls by an additional 0.1 eV (Fig. 3). The emission energy of the S₂ state (see also Supplementary Figs. 8 and 9; Supplementary Note 4). Although the crossing point between the S₂ and S_y states is not in the R₀ \rightarrow R₂ region, nonadiabatic transition from S₂ to S_y can happen with the aid of vibration. The S_y state may also have a role in tuning the relaxation to lower states like S₁ (Fig. 1c). The emission energy of the S_y state for RG and spirilloxanthin is above the absorption energy of the Chlorophyll Q_x state, making the Car-to-Chl energy transfer via the S_y state realizable.

From the R_0 to R_2 geometries, the bond length alternation, i.e., the difference between the average lengths of C–C and C=C bonds, is reduced. As the S_2 state is an ionic excited state, whereas

Fig. 4 Molecular orbitals of rhodopsin glucoside. The wave function isosurfaces for the highest two occupied and the lowest two unoccupied orbitals of rhodopsin glucoside. C, O, and H atoms are shown in *blue, red,* and *cyan,* respectively

the S_y state can be considered to be a covalent-like one due to its weak transition dipole moment, the electron-hole binding energy (E_b) in the S₂ state should be much more influenced by structural variation than that in the S_y state. We do find that from R₀ to R₂, E_b in the S_y state remains constant while that in the S₂ state reduces by ~0.5 eV. From R₀ to R₂, the gap between the unoccupied and occupied molecular orbitals (E_{gap}) narrows by ~0.7 eV. The excitation energy, which equals $E_{gap}-E_b$ in physics, thus decreases faster for the S_y state than the S₂ state from R₀ to R₂ (Fig. 5c). Energies of the S₁ and 1B_u⁻ states are also found to exhibit much higher sensitivity on the bond length alternation than the S₂ state⁸, ³⁶.

Dependence of the S_y emission energy on conjugation length. Dependence of the emission energy of the dark state on the conjugation length of Cars is a crucial factor to determine the attribution of the dark state⁴. Polyenes are ideal models to investigate this issue. We examine a series of polyenes $H_3C-(C_2H_2)_N$ -CH₃ with N=6-15 (Fig. 5). Although the absorption energy of the S_y state varies faster with the conjugation length than that of the S₂ state (Fig. 5a), the S₂-S_y energy gap at

Fig. 5 Dependence of excitation energies of polyenes on the conjugation length *N*. **a** At the ground-state geometry. **b** At the S₂ state potential minimum geometry. **c** The energy shifts of the S₂ and S_y states from the ground-state geometry to the S₂ state potential minimum geometry. Energies of $1B_u^-$ in **b** are taken from the experimental fluorescence spectra⁴

the potential minimum of the S₂ state remains at ~0.03 eV for $N \ge 10$ with the S_y below S₂ (Fig. 5b). Taking into account the additional 0.1 eV downshift of the S_y state to its own potential minimum as discussed above, the emission energy of the S_y state is lower than that of the S₂ state for $N \ge 9$ and the gap between them remains at ~0.1 eV. This agrees well with the transient absorption studies that the dark state lies below the S₂ state for Cars with $N \ge 9^{11}$, and also 2DES measurements that the potential minimum of the dark state is 0.1 eV below that of the S₂ state for N = 10, 11, and 13^{6} , 10, 21.

2D spectrum of Rps. acidophila. In a recent study, Scholes and coworkers utilized the broadband 2DES to investigate carotenoid dark states in purple bacteria⁶. The 2DES is a four-wave mixing technique that is extremely sensitive to electronic coherence and energy relaxation dynamics^{37, 38}. To verify our model, we calculate theoretical 2D spectrum of Rps. acidophila based on a model Hamiltonian that is consistent with our ab initio calculations. Note that the original 2D experiment is carried out using a broadband pulse that overlaps with the very red edge of the S₂ band and the blue edge of the Q_x band in a sample of *Rps. acidophila*. The experimentally observed 2D S₂ peak at ~535 nm (2.34 eV) is dependent of the excitation laser spectrum, and is also in good agreement with the calculated S₂ transition energy at the S₂ minimum. This excitation energy corresponds to a highly displaced geometry along the bond length-alternation coordinate. In this geometry, the four-state model with the S_{ν} state energy lower than that of the S_2 state applies, therefore, we place the S_y energy minimum at 0.1 eV below the S2 energy minimum in our 2D simulation, in accordance with our calculations for RG. Figure 6 shows the simulated 2D spectrum at a delay time of 200 fs, and the simulated spectrum is in agreement with the experimental spectrum⁶. Specifically, the diagonal peaks, S_2/S_{ν} crosspeak, and pronounced S_2/S_1 excited-state absorption peak that splits into two by the lower-diagonal S_2/S_{ν} cross-peak are all correctly reproduced in our model simulations. Therefore, our theoretical calculations are consistent with the 2D experiments.

Influence of groups on the excitation energies of Cars. Comparing RG with the N = 11 polyene and spirilloxanthin with the N = 13 polyene, the S_y - S_2 energy gap in the Cars is the same as that in the polyene. However, the S_2 - $1B_u$ and S_2 - S_1 energy gaps in the polyene are about 0.3 eV wider than those in the Cars

Fig. 6 Simulated two-dimensional (2D) electronic spectrum of *Rps. acidophila* at the population time T = 200 fs. The diagonal peaks are symbolized by the corresponding state; the cross-peaks indicate that energy is transferred from the state represented by the *first symbol* to the acceptor state represented by the *second symbol*

of the same conjugation length. The structural difference between Cars and polyenes is reflected in two respects: (i) the conjugated backbone is symmetrical in polyenes but distorted in Cars, (ii) there are groups, e.g., methyl groups, on the conjugated backbone in Cars but not in polyenes. Through changing the shape of the polyene and substituting some hydrogen atoms on it by groups (Supplementary Fig. 5), we find that groups affect substantially the energy gap between the S_2 state and the doubly excited states S_1 and $1B_u^-$, whereas the gap between the S_2 and S_y states is independent of any modification to the conjugated backbone (Supplementary Table 4). This implies that energies of the S_1 and $1B_u^-$ states, and thus the competition between the $S_2 \rightarrow S_1$ decay and the Car-to-Chl energy transfer might be tuned by modifying the groups attached to the conjugated backbone.

Energy transfer from Cars to Chls. Contribution of the dark state to the Car-to-Chl energy transfer is still an open question. It is recently proposed that the dark state-mediated energy transfer rate is of the same magnitude as the S₂-mediated one^{6, 21}. This is in contradiction with previous work^{4, 25, 26}. The nonadiabatic transition from the S₂ to S_y states is always present for longer Cars according to discussions in the previous sections. The S_y state must be involved in the Car-to-Chl energy transfer. We thus further investigate the energy transfer capability of the S_y state, which is important for understanding the energy transfer mechanism in photosynthesis and resolving the controversies in this respect.

We calculate the energy transfer in the RG-B850 and RG-B800 pairs in Rps. acidophila as linked by dashed lines in Fig. 2b. Energy flow in these two kinds of pairs has been supposed to dominate the Car-to-Chl energy transfer²⁴. Figure 7a shows the calculated absorption spectrum of the RG-B800 pairs, which is comparable to the experimental spectrum of LH2 complex in *Rps. acidophila* strain $10050^{3, 6}$. Positions of the Q_x and Q_y peaks deviate from the experimental ones by <0.1 eV. A charge-transfer state, with the electron excited from the Car to the Chl, appears between the S_2 and Q_x states, which can result in the formation of Car radicals as detected in experiments⁴. The rate of energy transfer is evaluated via $k = (2\pi/\hbar)|V_{\rm DA}|^2 J_{\rm DA}$, where $V_{\rm DA}$ and $J_{\rm DA}$ are the electronic coupling strength and the spectral overlap between donor (D) and acceptor (A) transitions, respectively. $V_{\rm DA}$ is calculated within the framework of many-body Green's function theory.

Fig. 7 Absorption spectrum and electronic coupling strength for a carotenoid-chlorophyll complex. **a** Calculated absorption spectrum of the rhodopin glucoside-B800 complex as linked by the *dashed line* in Fig. 2b. CT denotes the charge-transfer state. Oscillator strengths of the S_y and CT states are very weak. Here *arrows* are used to indicate their positions. **b** Electronic coupling strengths (in cm⁻¹) for the energy transfer passways from the S₂ and S_y states to the Q_x and Q_y states in the rhodopin glucoside-B850 and rhodopin glucoside-B800 pairs as linked by *dashed lines* in Fig. 2b. Distances between the centers of corresponding rhodopin glucoside and B850/B800 molecules are given in Fig. 2b

We use the spectral overlap data from Krueger et al.²⁴ and Ostroumov et al.²¹, where $J_{DA}(S_2-Q_x) = 13J_{DA}(S_2-Q_y)$ and $J_{DA}(S_2-Q_x) = J_{DA}(S_y-Q_x)$. Figure 7b compares the electronic coupling strength for each energy transfer passway from Car to Chl. We find that the energy transfer rate of the S_2 -B800 Q_{ν} channel is much higher than expected theoretically before²⁴ and can reach 70% of that of the S_2 -B850 Q_x channel which has been considered to be the dominating channel. This branching ratio is in good agreement with the experiment³⁹, supporting the experimental observations that both Q_x and Q_y have the role of energy acceptors and the amount of energy transferred to B800 is comparable to that to $B850^{4}$, $^{39-42}$. The S_y-mediated energy transfer is predominated by the S_y -B850 Q_x channel. The overall S_v-mediated energy transfer rate is one order of magnitude smaller than that of the S₂-mediated one. Thus, although the dark state participates in the energy transfer process, the Car-to-Chl energy transfer is still governed by the S₂ state (see Fig. 2c for the energy flow).

Discussion

Ever since the discovery of the intermediate dark state between the S_2 and S_1 states in Cars by Cerullo et al. in 2002, its role in photosynthesis becomes increasingly emphasized⁵. On the basis of the conventional theoretical model for the electronic structures of polyenes developed by Tavan and Schulten³⁶, the $1B_u^-$ state has long been regarded as the candidate for the dark state. The strongly dependence of the $S_2-1B_u^-$ energy gap on the conjugation length make this assignment questionable⁴, ⁹. The S_y state of the A_g^+ symmetry has a more moderate conjugation length dependence than the $1B_u^-$ state. More importantly, variation of the S_2 emission energy with respect to the conjugation length is parallel to the S_2 state, and their energy gap is kept at a small value (~ 0.1 eV) for Cars with N > 9. This is consistent with the experimental findings, such as those in 2DES, that the emission energy gap between the

dark state and the S₂ state is about 300 cm⁻¹ and independent of the conjugation length $\frac{4}{4}$, $\frac{6}{10}$, $\frac{10}{21}$. This small energy gap ensures the extremely fast (~10 fs) internal conversion from the S₂ state to the dark state as observed experimentally^{4, 5, 11}. The agreement between our theoretical 2D spectrum (Fig. 6) and the experimental data lends support to our model with a new A_g^+ state below S_2 at a large bond-length alternation. Interestingly, the experimental 2D study resolves the diagonal peak due to the dark state. Furthermore, based on ultrafast-transient absorption and transient-grating experiments, some groups have suggested that the dark-state is due to a doubleminima structure on the S2 potential energy surface, not a distinct electronic state^{43, 44}. This double-minima model hypothesizes that the lowest one of the S2 potential surface minima exists at the conformation where the carotenoid is twisted from the all-trans isomer by ~90° with respect to one C=C bond of the conjugated polyene backbone. This may be true for molecules with a short conjugated backbone such as the protonated Schiff bases⁴⁵, which is also demonstrated in our previous theoretical work⁴⁶. Nevertheless, this does not seem to be the case for molecules with a long conjugated backbone (Supplementary Fig. 10). The new state described in the present article, with strong energy shift along the bond length alternation coordinate that crossovers in energy with the S_2 state (Fig. 3), does exhibit a double-well like feature that may explain the spectral shifts observed in the recent experiments. Noticeably, the theoretical 2D spectrum based on our model correctly describes the S_2/S_v cross-peak above the diagonal in the experiment, whereas in the double-minima model one should expect to see extensive spectral diffusion and an elongated S₂ peak along the detection wavelength (below the diagonal), which is inconsistent with the 2D experimental data. In addition, the clear diagonal S_v peak is also not explained by the double-minima model. On the basis of the above analysis, a carotenoid photophysics four-state model is given in Fig. 1c, which involves the S₁, S_{ν} , and S_2 excited states.

One important motive to study the dark state in experiments is to solve the obvious distinction in the estimated Car-to-Chl energy transfer efficiency between previous theoretical calculations (20%) and experimental measurements (50-60%)^{6, 21, 24}. Above we have illustrated that the portion of energy transferred via the S_v state is minor based on the assumption $J_{DA}(S_2-Q_x) =$ $J_{DA}(S_y - \dot{Q}_x)$ proposed by Ostroumov et al.^{21, 27}. Even if $J_{DA}(S_y-Q_x) > J_{DA}(S_2-Q_x)$, considering the smaller energy gap between the S_v and Q_x states than that between the S_2 and Q_x states, the contribution of the S_y state cannot fill the gap between theoretical calculations and experiments. The electronic coupling strengths we calculate by many-body Green's function theory are 1.5 times stronger than those from previous theoretical calculations by the transition density-cube approach²⁴. We suggest that the disagreement in energy transfer efficiency between previous theoretical work and experiments may be due not only to the absence of the dark state in the theoretical model, but also to the underestimation of electronic coupling strengths in previous calculations.

In conclusion, our study provides evidence for a new state S_y of the A_g^+ symmetry in Cars, thus contributing to a better understanding of carotenoid excited states. Future experiments would be required to test the accuracy of our calculations.

Methods

Ground-state geometry. Density-functional theory (DFT) with the Coulombattenuating method variant of the Becke 3-parameter-Lee-Yang-Parr (CAM-B3LYP) exchange-correlation functional⁴⁷ is used to optimize geometries of Cars and Chls by the Gaussian 09 program⁴⁸. CAM-B3LYP has been shown to give more reasonable structures than other functionals^{14, 49}.

Excitation energy. Many-body Green's function theory, which includes the combination of GW method and Bethe–Salpeter equation (BSE)^{50, 51}, is applied

to compute the excitation energies with a Gaussian orbital based GW-BSE package^{52, 53}. Calculations are performed at the level of full BSE, i.e., considering the mixing between resonant and antiresonant transitions, as Tamm–Dancoff approximation can cause large errors for organic molecules^{54–56}. This scheme has been applied for electronic excitations in many organic systems^{54, 57–59}. The S₁ and 1B_u⁻ states bear doubly excited character, involving two coupled triplet excitations. Their excitation energies cannot be obtained from BSE directly as BSE can only deal with one electron–hole pair excitation. Here, we estimate their energies according to Tavan and Schulten's theory³⁶, i.e., $E(S_1) = 2E(T_1)$ and $E(1B_u^-) = E(T_1) + E(T_2)$, where T_1 and T_2 are the lowest two triplet states of Cars and are computed via GW-BSE. This approach possesses high accuracy as proved by Tavan and Schulten. In the Supplementary Note 1, Supplementary Fig. 1, and Supplementary Table 1, a detailed discussion on the accuracy of our strategy to predict the S_1 and $1B_u^-$ energies is presented.

Potential minimum at the excited state. Equilibrium structure of Cars in the S2 state, which originates from the HOMO \rightarrow LUMO transition (point R₂ in Fig. 3) is optimized by the constrained density-functional theory (CDFT) where occupations in HOMO and LUMO are fixed at 1 during structural relaxation⁶⁰. As the S_v state is composed predominantly by transitions HOMO-1 \rightarrow LUMO and HOMÓ \rightarrow LUMO+1 with equal weight, its potential minimum cannot be predicted by structural optimization on its own energy surface using CDFT. We locate the potential minimum of the S_v state (point R_v in Fig. 3) approximately by extrapolating along the $R_0 \rightarrow R_2$ reaction coordinate of the S₂ state. We validate the reasonability of the Sy potential minimum predicted by this scheme through relaxing Cars in the Sy state with excited-state forces from BSE. BSE forces are computed by the approach proposed by Ismail-Beigi and Louie with the exception that we use finite difference method to evaluate derivatives of single-particle energies and wave functions with respect to nuclear positions^{61, 62}. This technique to compute BSE forces has been well tested to give consistent results with those from Ismail-Beigi and Louie on the excited-state structures of CO and NH3 molecules⁶¹ (see Supplementary Note 3, Supplementary Table 5, and Supplementary Figs. 6 and 7 for details of the theory and test of the accuracy).

Theoretical 2D spectrum. We utilize a density matrix-based dynamical method to simulate 2D spectrum of Rps. acidophila. This method accounts for full density matrix dynamics and bath memory effects in the simulated 2D spectrum, and details of the theory are described in refs 63, 64. The model adopted for the Rps. acidophila system consists of five carotenoid states $(S_0, S_1, S_y, S_2, and S_n)$ and one chlorophyll state (Qx). The transition energies are set at 16,900, 17,810, 18,620, and 17,500 cm⁻¹ for Q_x , S_y , S_2 , and $S_1 \rightarrow S_n$, respectively. This model places the S_y energy at 0.1 eV below the S2 state to describe carotenoid electronic states at a geometry highly displaced along the bond length-alternation coordinate, in accordance with our calculations for RG. The dynamics are described by a Lindblad master equation including five population relaxation terms: $\tau_{S_2 \to S_2} = 0.3$ ps, $\tau_{S_2 \to S_2}$ Induction for the population for the population for the formation of the standard forms $t_{S_2 \to S_1} = 0.5$, $t_{S_1 \to S_2} = 3$. The fine broadenings are described by Gaussian static disorders with $\sigma = 450$ cm⁻¹, and couplings to a super-Ohmic bath with a spectral density $J(\omega) = \gamma_0 \frac{\omega_1^3}{\omega_c^2} e^{-\omega/\omega_c}$. The coupling strength γ_0 and cutoff ω_c are set at 0.6 and 850 cm⁻¹, respectively. Note that in this work, we aim to demonstrate that our model produces 2D spectrum that is consistent with experimental results, therefore we do not perform full fittings to the experimental spectra, and the bath and dynamical parameters used in our model are only set tentatively. Additional calculations that provide nonadiabatic couplings and explore the potential surfaces more completely are required to fully describe the experimental 2D data.

Energy transfer. The electronic energy transfer rate, k, is calculated via $k = (2\pi/\hbar)|V_{\rm DA}|^2 J_{\rm DA}$ according to the Förster–Dexter theory. The electronic coupling strength $V_{\rm DA}$ is computed within the framework of many-body Green's function theory via

$$V_{\rm DA} = X_{\rm D}^T \left(K_{\rm DA}^x + K_{\rm DA}^d \right) X_{\rm A} - \omega_0 X_{\rm D}^T S_{\rm DA} X_{\rm A} \tag{1}$$

where $X_{D/A}$ is the BSE exciton wave function for donor (D) and acceptor (A), ω_0 the energy transferred, S_{DA} the overlap matrix between donor and acceptor orbitals. K^x and K^d are the exchange and direct terms of the BSE electron–hole interaction kernel. Electronic coupling arising from these two terms resemble the Förster and Dexter coupling, respectively⁶⁵. V_{DA} computed by Eq. (1) consists excellently with that by the high-level quantum chemistry approach CASSCF⁶⁶.

Data availability. All data supporting the findings of this study are available from the corresponding author on request.

Received: 23 October 2016 Accepted: 1 June 2017 Published online: 10 July 2017

References

- Mortensen, A., Skibsted, L. H., Sampson, J., Rice-Evans, C. & Everett, S. A. Comparative mechanisms and rates of free radical scavenging by carotenoid antioxidants. *FEBS Lett* **418**, 91–97 (1997).
- Nolan, J., Meagher, K., Kashani, S. & Beatty, S. What is meso-zeaxanthin, and where does it come from? *Eye* 27, 899–905 (2013).
- Cogdell, R. J., Gall, A. & Köhler, J. The architecture and function of the lightharvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q. Rev. Biophys. 39, 227–324 (2006).
- Polívka, T. & Sundström, V. Ultrafast dynamics of carotenoid excited states –from solution to natural and artificial systems. *Chem. Rev.* 104, 2021–2072 (2004).
- Cerullo, G. et al. Photosynthetic light harvesting by carotenoids: detection of an intermediate excited state. *Science* 298, 2395–2398 (2002).
- Ostroumov, E. E., Mulvaney, R. M., Cogdell, R. J. & Scholes, G. D. Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria. *Science* 340, 52–56 (2013).
- Gradinaru, C. C. et al. An unusual pathway of excitation energy deactivation in carotenoids: singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna. *Proc. Natl Acad. Sci* 98, 2364–2369 (2001).
- Ostroumov, E., Müller, M. G., Marian, C. M., Kleinschmidt, M. & Holzwarth, A. R. Electronic coherence provides a direct proof for energy-level crossing in photoexcited lutein and β-carotene. *Phys. Rev. Lett.* **103**, 108302 (2009).
- 9. Polívka, T. & Sundström, V. Dark excited states of carotenoids: consensus and controversy. *Chem. Phys. Lett.* **477**, 1–11 (2009).
- Maiuri, M. et al. Ultra-broadband 2D electronic spectroscopy of carotenoidbacteriochlorophyll interactions in the LH1 complex of a purple bacterium. *J. Chem. Phys.* 142, 212433 (2015).
- 11. Polli, D. et al. Conjugation length dependence of internal conversion in carotenoids: role of the intermediate state. *Phys. Rev. Lett.* **93**, 163002 (2004).
- 12. Hashimoto, H. et al. The very early events following photoexcitation of carotenoids. *Arch. Biochem. Biophys.* **430**, 61–69 (2004).
- Koyama, Y., Rondonuwu, F. S., Fujii, R. & Watanabe, Y. Light-harvesting function of carotenoids in photo-synthesis: the roles of the newly found 1¹Bu⁻ state. *Biopolymers* 74, 2–18 (2004).
- Coccia, E., Varsano, D. & Guidoni, L. Ab initio geometry and bright excitation of carotenoids: quantum monte carlo and many body green's function theory calculations on peridinin. J. Chem. Theory Comput. 10, 501–506 (2014).
- Knecht, S., Marian, C. M., Kongsted, J. & Mennucci, B. On the photophysics of carotenoids: a multireference DFT study of peridinin. *J. Phys. Chem. B* 117, 13808–13815 (2013).
- 16. Sashima, T., Koyama, Y., Yamada, T. & Hashimoto, H. The 1B_u⁺, 1B_u⁻, and 2A_g⁻ energies of crystalline lycopene, β-carotene, and mini-9-β-carotene as determined by resonance-raman excitation profiles: dependence of the 1B_u⁻ state energy on the conjugation length. *J. Phys. Chem. B* **104**, 5011–5019 (2000).
- Furuichi, K., Sashima, T. & Koyama, Y. The first detection of the 3Ag⁻ state in carotenoids using resonance-Raman excitation profiles. *Chem. Phys. Lett.* 356, 547–555 (2002).
- Fujii, R. et al. Fluorescence spectroscopy of all-trans-anhydrorhodovibrin and spirilloxanthin: detection of the 1Bu⁻ fluorescence. J. Phys. Chem. A 105, 5348–5355 (2001).
- Onaka, K. et al. The state energy and the displacements of the potential minima of the 2Ag⁻ state in all-trans-β-carotene as determined by fluorescence spectroscopy. *Chem. Phys. Lett.* **315**, 75–81 (1999).
- Fujii, R., Inaba, T., Watanabe, Y., Koyama, Y. & Zhang, J.-P. Two different pathways of internal conversion in carotenoids depending on the length of the conjugated chain. *Chem. Phys. Lett.* 369, 165–172 (2003).
- Ostroumov, E. E., Mulvaney, R. M., Anna, J. M., Cogdell, R. J. & Scholes, G. D. Energy transfer pathways in light-harvesting complexes of purple bacteria as revealed by global kinetic analysis of two-dimensional transient spectra. J. Phys. Chem. B 117, 11349–11362 (2013).
- Maiuri, M. et al. Solvent-dependent activation of intermediate excited states in the energy relaxation pathways of spheroidene. *Phys. Chem. Chem. Phys.* 14, 6312–6319 (2012).
- Krueger, B. P., Scholes, G. D., Jimenez, R. & Fleming, G. R. Electronic excitation transfer from carotenoid to bacteriochlorophyll in the purple bacterium *Rhodopseudomonas acidophila. J. Phys. Chem. B* 102, 2284–2292 (1998).
- 24. Krueger, B. P., Scholes, G. D. & Fleming, G. R. Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J. Phys. Chem. B 102, 5378–5386 (1998).
- Wohlleben, W., Buckup, T., Herek, J. L., Cogdell, R. J. & Motzkus, M. Multichannel carotenoid deactivation in photosynthetic light harvesting as identified by an evolutionary target analysis. *Biophys. J.* 85, 442–450 (2003).
- Damjanović, A., Ritz, T. & Schulten, K. Energy transfer between carotenoids and bacteriochlorophylls in light-harvesting complex II of purple bacteria. *Phys. Rev. E* 59, 3293 (1999).
- 27. Dolan, P. M., Miller, D., Cogdell, R. J., Birge, R. R. & Frank, H. A. Linear dichroism and the transition dipole moment orientation of the carotenoid in

the LH2 antenna complex in membranes of *Rhodopseudomonas acidophila* strain 10050. J. Phys. Chem. B **105**, 12134–12142 (2001).

- Ghosh, D., Hachmann, J., Yanai, T. & Chan, G. K.-L. Orbital optimization in the density matrix renormalization group, with applications to polyenes and βcarotene. J. Chem. Phys. 128, 144117 (2008).
- Kleinschmidt, M., Marian, C. M., Waletzke, M. & Grimme, S. Parallel multireference configuration interaction calculations on mini-β-carotenes and β-carotene. J. Chem. Phys. 130, 044708 (2009).
- Schmidt, M. & Tavan, P. Electronic excitations in long polyenes revisited. J. Chem. Phys. 136, 124309 (2012).
- Enriquez, M. M. et al. The intramolecular charge transfer state in carbonylcontaining polyenes and carotenoids. J. Phys. Chem. B 114, 12416–12426 (2010).
- Magdaong, N. M. et al. Excited state properties of a short π-electron conjugated peridinin analogue. *Chem. Phys. Lett.* 593, 132–139 (2014).
- Magdaong, N. M. et al. High efficiency light harvesting by carotenoids in the LH2 complex from photosynthetic bacteria: unique adaptation to growth under low-light conditions. J. Phys. Chem. B 118, 11172–11189 (2014).
- Andersson, P. O., Gillbro, T., Ferguson, L. & Cogdell, R. J. Absorption spectral shifts of carotenoids related to medium polarizability. *Photochem. Photobiol.* 54, 353–360 (1991).
- Macpherson, A. N. & Gillbro, T. Solvent dependence of the ultrafast S₂–S₁ internal conversion rate of β-carotene. J. Phys. Chem. A 102, 5049–5058 (1998).
- Tavan, P. & Schulten, K. Electronic excitations in finite and infinite polyenes. Phys. Rev. B 36, 4337–4358 (1987).
- Cheng, Y.-C. & Fleming, G. R. Dynamics of light harvesting in photosynthesis. Annu. Rev. Phys. Chem. 60, 241–262 (2009).
- Ginsberg, N. S., Cheng, Y.-C. & Fleming, G. R. Two-dimensional electronic spectroscopy of molecular aggregates. Acc. Chem. Res. 42, 1352–1363 (2009).
- Macpherson, A. N., Arellano, J. B., Fraser, N. J., Cogdell, R. J. & Gillbro, T. Efficient energy transfer from the carotenoid S₂ state in a photosynthetic lightharvesting complex. *Biophys. J.* 80, 923–930 (2001).
- 40. Okamoto, H., Ogura, M., Nakabayashi, T. & Tasumi, M. Sub-picosecond excited-state dynamics of a carotenoid (spirilloxanthin) in the light-harvesting systems of *Chromatium vinosum*: relaxation process from the optically allowed S₂ state. *Chem. Phys.* 236, 309–318 (1998).
- Hörvin Billsten, H. et al. Dynamics of energy transfer from lycopene to bacteriochlorophyll in genetically-modified LH2 complexes of rhodobacter sphaeroides. *Biochem* 41, 4127–4136 (2002).
- 42. Papagiannakis, E. et al. Light harvesting by carotenoids incorporated into the B850 light-harvesting complex from rhodobacter sphaeroides R-26.1: excitedstate relaxation, ultrafast triplet formation, and energy transfer to bacteriochlorophyll. J. Phys. Chem. B 107, 5642–5649 (2003).
- 43. Ghosh, S. et al. Femtosecond heterodyne transient-grating studies of nonradiative decay of the S₂ (1¹B_u⁺) state of β-carotene: contributions from dark intermediates and double-quantum coherences. *J. Phys. Chem. B* 119, 14905–14924 (2015).
- 44. De Weerd, F. L., Van Stokkum, I. H. & Van Grondelle, R. Subpicosecond dynamics in the excited state absorption of all-trans-β-carotene. *Chem. Phys. Lett.* 354, 38–43 (2002).
- 45. Liebel, M. et al. Direct observation of the coherent nuclear response after the absorption of a photon. *Phys. Rev. Lett.* **112**, 238301 (2014).
- Kaczmarski, M. S., Ma, Y. & Rohlfing, M. Diabatic states of a photoexcited retinal chromophore from ab initio many-body perturbation theory. *Phys. Rev.* B 81, 115433 (2010).
- Yanai, T., Tew, D. P. & Handy, N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). *Chem. Phys. Lett.* 393, 51–57 (2004).
- 48. Frisch, M. J. et al. *Gaussian 09, Revision B.01* (Gaussian, Inc: Wallingford, CT, 2010).
- 49. Jacquemin, D. & Adamo, C. Bond length alternation of conjugated oligomers: wave function and DFT benchmarks. *J. Chem. Theory Comput.* 7, 369–376 (2011).
- Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. *Phys. Rev. B* 34, 5390 (1986).
- Onida, G., Reining, L. & Rubio, A. Electronic excitations: density-functional versus many-body Green's-function approaches. *Rev. Mod. Phys.* 74, 601–659 (2002).
- Rohlfing, M., Krüger, P. & Pollmann, J. Efficient scheme for GW quasiparticle band-structure calculations with applications to bulk Si and to the Si(001)-(2×1) surface. *Phys. Rev. B* 52, 1905–1917 (1995).
- 53. Rohlfing, M. & Louie, S. G. Electron-hole excitations and optical spectra from first principles. *Phys. Rev. B* 62, 4927–4944 (2000).
- 54. Ma, Y., Rohlfing, M. & Molteni, C. Modeling the excited states of biological chromophores within many-body green's function theory. *J. Chem. Theory Comput.* **6**, 257–265 (2010).

- 55. Ma, Y., Rohlfing, M. & Molteni, C. Excited states of biological chromophores studied using many-body perturbation theory: effects of resonant-antiresonant coupling and dynamical screening. *Phys. Rev. B* **80**, 241405 (2009).
- Grüning, M., Marini, A. & Gonze, X. Exciton-plasmon states in nanoscale materials: breakdown of the Tamm–Dancoff approximation. *Nano Lett.* 9, 2820–2824 (2009).
- 57. Yin, H., Ma, Y., Mu, J., Liu, C. & Rohlfing, M. Charge-transfer excited states in aqueous DNA: insights from many-body Green's function theory. *Phys. Rev. Lett.* **112**, 228301 (2014).
- Blase, X., Attaccalite, C. & Olevano, V. First-principles GW calculations for fullerenes, porphyrins, phtalocyanine, and other molecules of interest for organic photovoltaic applications. *Phys. Rev. B* 83, 115103 (2011).
- Faber, C., Attaccalite, C., Olevano, V., Runge, E. & Blase, X. First-principles GW calculations for DNA and RNA nucleobases. *Phys. Rev. B* 83, 115123 (2011).
- 60. Artacho, E. et al. Structural relaxations in electronically excited poly(*para*-phenylene). *Phys. Rev. Lett.* **93**, 116401 (2004).
- Ismail-Beigi, S. & Louie, S. G. Excited-state forces within a first-principles Green's function formalism. *Phys. Rev. Lett.* **90**, 076401 (2003).
- Ismail-Beigi, S. & Louie, S. G. Self-trapped excitons in silicon dioxide: mechanism and properties. *Phys. Rev. Lett.* 95, 156401 (2005).
- Cheng, Y.-C., Engel, G. S. & Fleming, G. R. Elucidation of population and coherence dynamics using cross-peaks in two-dimensional electronic spectroscopy. *Chem. Phys.* 341, 285–295 (2007).
- 64. Cheng, Y.-C. & Fleming, G. R. Coherence quantum beats in two-dimensional electronic spectroscopy. J. Phys. Chem. A 112, 4254-4260 (2008).
- Hsu, C.-P., Fleming, G. R., Head-Gordon, M. & Head-Gordon, T. Excitation energy transfer in condensed media. J. Chem. Phys. 114, 3065–3072 (2001).
- 66. Muñoz-Losa, A., Curutchet, C., Galván, I. F. & Mennucci, B. Quantum mechanical methods applied to excitation energy transfer: a comparative analysis on excitation energies and electronic couplings. *J. Chem. Phys.* 129, 034104 (2008).

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants Nos. 21433006, 21573131, 21173130, and 21603056) and the Natural Science Foundation of Shandong Province (Grant No. JQ201603). Y.-C.C. thanks the Ministry of Science and Technology, Taiwan (Grant No. NSC 105-2113-M-002-012), National Taiwan University (Grant No. 103R891305), and Center for Quantum Science and Engineering (Subproject: 103R891401) for financial support. Computational resources have been provided by the National Supercomputing Centers in Jinan.

Author contributions

Y.M. designed the calculations and J.F. carried out most of the calculations. C.-W.T. and Y.-C.C. performed the calculation of 2D spectra. T.C., X.L., and H.Y. took part in the optimization of configurations. Y.M. and M.R. performed coding on the many-body Green's function theory and Förster–Dexter theory. Y.M., J.F., and Y.-C.C. wrote the manuscript.

Additional information

Supplementary Information accompanies this paper at doi:10.1038/s41467-017-00120-7.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/ reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.

© The Author(s) 2017