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ABSTRACT
The time-dependent density functional theory (TDDFT) has been broadly used to investigate the excited-state properties of
various molecular systems. However, the current TDDFT heavily relies on outcomes from the corresponding ground-state DFT cal-
culations, which may be prone to errors due to the lack of proper treatment in the non-dynamical correlation effects. Recently,
thermally assisted-occupation DFT (TAO-DFT) [J.-D. Chai, J. Chem. Phys. 136, 154104 (2012)], a DFT with fractional orbital
occupations, was proposed, explicitly incorporating the non-dynamical correlation effects in the ground-state calculations with low
computational complexity. In this work, we develop TDTAO-DFT, which is a TD, linear-response theory for excited states within the
framework of TAO-DFT. With tests on the excited states of H2, the first triplet excited state (13Σ+

u) was described well, with non-
imaginary excitation energies. TDTAO-DFT also yields zero singlet–triplet gap in the dissociation limit for the ground singlet (11Σ+

g )
and the first triplet state (13Σ+

u). In addition, as compared to traditional TDDFT, the overall excited-state potential energy surfaces
obtained from TDTAO-DFT are generally improved and better agree with results from the equation-of-motion coupled-cluster singles and
doubles.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5140243., s

I. INTRODUCTION

Over the past decades, Kohn–Sham density functional the-
ory (KS-DFT)1,2 has been extensively used in the prediction of
various ground-state (GS) properties of solids as well as finite-
sized molecules.3–5 Its time-dependent (TD) extension, known as
time-dependent density functional theory (TDDFT),6–8 has been a
popular approach for computing excited-state properties, includ-
ing the absorption and emission spectra,9 photochemical reac-
tions,10 dynamics,11 and energy and electron transfer,12 due to
its low computational cost and the availability of a plethora
of computer codes in this area. The one-to-one correspondence
between the TD density and the TD external potential was

rigorously demonstrated by Runge and Gross in 1984 in their the-
orem.6 The linear-response framework was further introduced,7,8

which brought forth a paradigm shift in the simulation of exci-
tations of quantum systems from a density-functional perspec-
tive13–15 and is the main reason behind the popularity of this
method.

However, conventional TDDFT is derived from ground-state
(GS) KS-DFT, which is a single-determinant-based method. As a
result, it can fail to describe the excited-state phenomena heav-
ily governed by non-dynamical (or static) correlation, such as
photochemistry processes involving photoinduced bond breaking,
and problems associated with conical intersection.7,9,16,17 A pro-
totypical example is the bond dissociation process of the H2
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molecule. It is known that the excitation energy of the low-
est triplet state of H2, computed using conventional TDDFT,9

would become imaginary beyond a H–H bond distance of 1.75 Å,
a phenomenon arising from a spin symmetry-breaking solution
in the ground state,18,19 a typical characteristic of nondynami-
cal correlation effects. In contrast, in wavefunction-based meth-
ods, the (nearly) degenerate determinants are considered on an
equal footing when performing a self-consistent field (SCF) calcu-
lation, and this is the basis of multi-configuration (MC) SCF or
complete active space (CAS) SCF-based methodologies. However,
these methods can be prohibitively expensive for large systems as
their computational cost scales factorially with the size of active
space.

KS-DFT with proper exchange energy functionals may rea-
sonably model systems with non-dynamical correlation, albeit at
the expense of enormous computation efforts. For example, the
works by Becke20,21 and the works by Kong and co-workers22–24

demonstrated parametric functionals that need to be solved self-
consistently within the single-determinant framework. Although
these works significantly improved the bond dissociation trends
of simple diatomic molecules, compared to the Hartree–Fock the-
ory, they still deviate appreciably at the bond dissociation limit
compared to a full configuration interaction (FCI) calculation.22,23

Moreover, the SCF associated with these functionals adds to the
computational effort that can scale dramatically with the size of
molecules.

On the other hand, various approaches have been developed
to cope with the non-dynamical correlation effects without the
high computational cost of an exact exchange functional. The CAS-
DFT model is one such method,25 wherein some amount of cor-
relation has been accounted for by a density functional calcula-
tion. As a result, the dynamical correlation associated with the
MC representation of the system might be “double counted.”26,27

To mitigate this issue, the multi-configuration pair-density func-
tional theory26,27 and multi-configuration range-separated DFT28,29

were developed. While the former utilizes the so-called on-top
pair-density functional, the latter separates the electron interac-
tion operator into short- and long-range parts, which are treated
with DFT and wavefunction theory, respectively. Although the
idea of using such a “hybrid” scheme seems to be an attrac-
tive prospect,26–29 they can be computationally demanding for
increasing system sizes because of the initial generation of MC
wavefunctions.

Another category of computational methods exists, which can
cope with non-dynamical correlation with the additional advan-
tage that they are low-cost methods. They include the spin–
flip, ionization-potential, and electron-affinity based approaches,
which are aimed to start with a high-spin, with 1-less or 1-
more electron single-determinant references such that the non-
dynamical correlation problem is minimal.30–32 These approaches
require a well-balanced treatment of the orbitals in the refer-
ence, and they can offer high-quality solutions in many cases.
However, the requirement of balanced treatment of orbitals in
the reference is not always feasible, and thus, applications are
limited.

In this regard, the thermally assisted-occupation density
functional theory (TAO-DFT)33 was developed by Chai in 2012 to
alleviate the formidable challenge of balancing the computational

cost and simultaneously incorporating the non-dynamical correla-
tion effects with reasonable accuracy. In contrast to traditional KS-
DFT, the underlying principle of TAO-DFT is in the usage of frac-
tional orbital occupations according to a given fictitious temperature
(θ) to effectively incorporate the different electronic configurations
of a system. This approach ensures that some “excitations” in the
form of fractional populations of electrons in the low-lying virtual
orbitals are considered along with the GS of the system, similar to a
multi-determinant expansion of the wavefunction. The inclusion of
fractional occupancies is a computationally cheaper alternative to a
multi-determinant expansion for accounting non-dynamical corre-
lation effects. As a result, TAO-DFT has a computational cost similar
to that of KS-DFT, which is O(N3–4

). In TAO-DFT, the entropy
contribution [e.g., see Eq. (26) of Ref. 33] can reasonably capture
the non-dynamical correlation energy of a system, which was dis-
cussed and numerically investigated in Ref. 33, even when the sim-
plest local density approximation (LDA) exchange-correlation (XC)
energy functional is used. The XC energy functionals at the higher
rungs of Jacob’s ladder, such as the generalized-gradient approxima-
tion (GGA),34 global hybrid,35 and range-separated hybrid35,36 XC
energy functionals, can also be employed in TAO-DFT. Moreover,
a self-consistent scheme that determines the fictitious temperature
in TAO-DFT has been recently proposed to improve the perfor-
mance of TAO-DFT for a wide range of applications.37 Since TAO-
DFT is similar to KS-DFT in computational efficiency, TAO-DFT
has been recently adopted for the study of the electronic proper-
ties of various nanosystems with pronounced radical nature.36,38–45

In particular, the electronic properties (e.g., singlet–triplet energy
gaps, vertical ionization potentials, vertical electron affinities, fun-
damental gaps, and active orbital occupation numbers) of linear
acenes and zigzag graphene nanoribbons (i.e., systems with polyrad-
ical character) obtained from TAO-DFT33–35,38 have been shown to
be in reasonably good agreement with those obtained from other
accurate electronic structure methods, such as the particle–particle
random-phase approximation (pp-RPA)46 XC energy functional
in KS-DFT, the density matrix renormalization group (DMRG)
algorithm,47,48 the variational two-electron reduced density matrix
(2-RDM) method,49,50 and other high-level methods.51–54

II. GROUND-STATE REFERENCE: TAO-DFT
In TAO-DFT,33 the electron density is represented by the ther-

mal equilibrium density of an auxiliary system of Ne non-interacting
electrons at a fictitious temperature θ (in energy units),

ρ(r) =∑
i

fi ϕ∗i (r)ϕi(r). (1)

Here, fi (a value between 0 and 1) is the fractional occupation num-
ber of the ith orbital ϕi and is given by the Fermi–Dirac distribution
function,

fi = {1 + exp[(εi − μ)/θ]}−1, (2)

where μ is the chemical potential for electrons and is determined by
∑ifi = Ne for a given θ, orbital energies {εi}, and total electron num-
ber Ne. This choice for the fractional occupation function and the
corresponding one-particle density matrix has been extensively used
in other methods such as finite-temperature DFT (FT-DFT)55 and
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floating occupation molecular orbital-complete active space config-
uration interaction (FOMO-CASCI).56 With this assisted occupa-
tion number and generalized density expression, the total ground-
state energy functional can be written as

EG[ρ] = TTAO[{ fi ,ϕi}] + Vext[ρ] + EKS
Hxc + Eθ[ρ], (3)

where TTAO is the kinetic free energy functional of non-interacting
electrons [equivalent to Aθ

s as defined in Eq. (24) of Ref. 33], Vext[ρ]
is the energy functional of the external potential (or nuclei potential),
EKS

Hxc is the sum of Hartree and XC energy functionals in KS-DFT,
and Eθ is the θ-dependent energy functional.33 Alternatively (to the
original derivation33), from Eq. (3), upon performing the functional
derivatives with respect to the orbitals (ϕi), we can also obtain the
SCF equations in TAO-DFT,

[−
1
2
∇

2
r + vext(r) + vKS

Hxc(r) + vθ(r)]ϕi(r) = εiϕi(r), (4)

where vext, vKS
Hxc, and vθ are the potentials (or functional derivatives)

of corresponding energy functionals (i.e., Vext[ρ], EKS
Hxc, and Eθ[ρ],

respectively) in Eq. (3), and {ϕi} and {εi} are the TAO orbitals and
orbital energies, respectively, which can be solved self-consistently
through SCF. The algorithm is similar to KS-DFT, with the only
differences being the vθ(r) term in the Hamiltonian and the determi-
nation of chemical potential μ, making this approach attractive and
easy in implementation. We have provided a variational perspective
of TAO-DFT in Appendix A, which complements the derivation in
Ref. 33.

III. EXCITED-STATE THEORY: TDTAO-DFT
A. Mathematical formalism

In the present work, we propose TDTAO-DFT, which is
a time-dependent linear-response theory for TAO-DFT, allowing
excitation energy calculation using Casida’s formulation,8 within
the framework of TAO-DFT. In TDTAO-DFT, the TD density is
given by

ρ(r, t) =∑
p

fp ϕ∗p (r, t)ϕp(r, t), (5)

where ϕp(r, t) are the TD orbitals (for the fictitious particles)
and fp are the corresponding fractional occupation numbers,
which are assumed to be time-independent, and their values are
taken from those obtained from the corresponding ground-state
TAO-DFT calculation [Eq. (1)]. In order to facilitate the map-
ping between the original interacting system of electrons mov-
ing under the influence of a TD external potential and the
auxiliary system of non-interacting particles, an action varia-
tional principle in TAO-DFT should be established. Following
the variational principle, the TD effective potential for the non-
interacting TAO system can be partitioned into the following
parts:

vTAO
eff (r, t) = vext(r, t) + vTAO

Hxcθ[ρ](r, t), (6)

where vTAO
Hxcθ is the functional derivative of the Hxcθ-action,

which contains the time-dependent Hartree potential, exchange-
correlation potential, and θ potentials for the fractional occupation.
Further details are included in Appendix B1 accompanying this
work.

Similar to conventional TDDFT, with the equality connecting
the effective potential and the functional derivative of TD action, an
equation of motion for TDTAO-DFT can be expressed as

i
∂

∂t
ϕp(r, t) = [−

1
2
∇

2
r + vext(r, t) + vTAO

Hxcθ[ρ](r, t)]ϕp(r, t)

= F̂(t)ϕp(r, t). (7)

We note that vTAO
Hxcθ[ρ](r, t) is also a TD generalization of the

potential associated with the Hartree, exchange, correlation, and θ-
functionals in GS TAO-DFT. The equation of motion is reformu-
lated in terms of the one-particle density matrix P(t),9

i
∂

∂t
P(t) = [F(t),P(t)], (8)

where F(t), the time-dependent “Fock matrix,” is the matrix rep-
resentation of the one-particle operator (F̂) in Eq. (7). The general
time-evolution of the state of a system is given by

P(t) = P○ + δP(t) (9)

and

F(t) = F○ + δVext(t) + δFHxcθ[P](t), (10)

where P○ and F○ denote the initial conditions for solving Eq. (8)
and δP(t), δVext(t), and FHxcθ[P](t) are the time-dependent changes
in the matrices of density, external field, and Hartree-exchange-
correlation potential in matrix representation interaction, respec-
tively, in the system. The initial state (at t = t0) is commonly con-
sidered to be the unperturbed GS of the system for convenience. In
terms of the GS TAO orbitals,

P○pq = δpq ⋅ fp, F○pq = δpq ⋅ εp. (11)

If the electronic eigenspectrum of a system is desired, the ampli-
tude of the change in the external field |δVext(t)| is assumed to be
infinitesimally small.6–9 It is therefore suitable to consider a linear-
response relation between δFHxcθ[P](t) and δP(t). Using the GS
TAO orbital basis, this can be obtained as

δFHxcθ
rs (t) =∑

pq
∫ dτ(

δFHxcθ
rs (t)

δPpq(τ)
) δPpq(τ). (12)

Employing the time-domain Fourier transformations

δPqr(ω) = ∫ dt e−iωt
[δPqr(t)], (13)

δVqr(ω) = ∫ dt e−iωt
[δVqr(t)], (14)

J. Chem. Phys. 153, 084120 (2020); doi: 10.1063/1.5140243 153, 084120-3

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

δFHxcθ
rs

δPpq
(ω) = ∫ dt e−iω(t−τ)

[
δFHxcθ

rs (t)
δPpq(τ)

], (15)

one could recast Eq. (8) into

∑
q

⎡
⎢
⎢
⎢
⎢
⎣

F○pq ⋅ δPqr(ω) − δPpq(ω) ⋅ F○qr

+
⎛

⎝
δVpq(ω) +∑

st

⎛

⎝

δFHxcθ
pq

δPst
(ω)
⎞

⎠
⋅ δPst(ω)

⎞

⎠
P○qr

− P○pq
⎛

⎝
δVqr(ω) +∑

st

⎛

⎝

δFHxcθ
qr

δPst
(ω)
⎞

⎠
⋅ δPst(ω)

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= ω ⋅ δPpr(ω) (16)

by neglecting all second-order (or higher) terms. Upon invok-
ing the GS definitions in Eq. (11) and assuming all δVpq(ω)
to be infinitesimally small, the corresponding working equation
becomes

(εp − εr)δPpr(ω) − ( fp − fr)

⎡
⎢
⎢
⎢
⎢
⎣

∑
st

⎛

⎝

δFHxcθ
pr

δPst
(ω)
⎞

⎠
δPst(ω)

⎤
⎥
⎥
⎥
⎥
⎦

= ω ⋅ δPpr(ω). (17)

A conventional linear-response relation [which is the inverse of
Eq. (12)]7,57 gives the TD density–density response function. The
details of this derivation are provided in Appendix B2.

Similar to conventional TDDFT, we apply the adiabatic
approximation to the xcθ-kernel (i.e., the xcθ-kernel is assumed to
be frequency-independent),8,9,58

δFHxcθ
pr

δPst
(ω) ≈

δFHxcθ
pr

δPst

RRRRRRRRRRRP○

≈ ∫ d3r d3r′ϕ∗r (r)ϕp(r)𝕗Hxcθ(r, r
′
)ϕt(r′)ϕ∗s (r

′
)

= (rp∣𝕗Hxcθ∣ts). (18)

The working equation would be reduced to an eigenvalue
equation,

∑
st
[(εp − εr) ⋅ δps,st − ( fp − fr)(rp∣𝕗Hxcθ∣ts)] ⋅Ω

R
k,st = ωk ⋅Ω

R
k,pr , (19)

where ΩR
pr = δPpr and k denotes the kth eigenvalue. This can be

represented in the matrix form as Casida’s equation,8

⎛

⎝

Â B̂
B̂∗ Â∗

⎞

⎠
(
X
Y
) = ωk(

Î 0̂
0̂ −Î

)(
Xk

Yk
), (20)

where Xk,pr = ΩR
k,p>r , Yk,rp = ΩR

k,p<r denotes upward and downward
transitions, respectively. The coupling matrices are defined as

Apr,st = (εp − εr)δpsδrt + Bpr,ts, (21)

Bpr,st = −( fp − fr)(rp∣𝕗Hxcθ∣st). (22)

These matrices are similar in form to those derived from con-
ventional Casida’s equation, which most TDDFT works are based
on.9,59 However, we consider the fractional occupation number dif-
ference (Δf ) pre-factor in Eq. (20), which is equivalent to the original
Casida’s equation in Ref. 8. It is to be noted that the occupation num-
bers are explicitly sourced from GS TAO. In Eq. (19), the superscript
R in ΩR implies that the eigenvectors obtained are the right eigenvec-
tors. Using the density–density response function (Appendix B2), an
eigenvalue-like equation that is complementary to that in Eq. (19)
can be derived. The details are included in Appendix B3.

B. Idempotency in TDTAO-DFT
In KS theory, an idempotent one-electron density matrix (PP

= P)9 is derived from the single-determinant ansatz of the wave-
function, so for any first-order changes in the one-electron density
matrix,

P○ ⋅ δP + δP ⋅ P○ − δP = 0, (23)

which when represented in terms of KS orbitals becomes

(np + nq − 1) ⋅ δPpq = 0, (24)

where {np} are the integer occupation numbers (either 0 or 1).
Within this particular condition, the conventional Casida’s scheme
allows transitions between only occupied (ni = 1) and virtual (na = 0)
orbitals. On the other hand, due to fractional occupation numbers,
the one-electron density matrix in TAO-DFT violates this idempo-
tency condition for nonvanishing θ. Therefore, a relaxed condition
in terms of TAO orbitals is proposed as

( fp + fq − 1) ⋅ δPpq ∝ θ, (25)

where the KS limit of TDTAO-DFT is recovered for θ → 0. This
condition implies that transitions with fp + fr tending to 1 would
be dominant. These transitions require one of the p and q orbitals
to be strongly occupied, 1/2 ≤ fr ≤ 1, with the other weakly occu-
pied, 0 ≤ fr < 1/2. More details on the relaxed idempotency condition
for TDTAO-DFT can be found in Appendix C accompanying this
work.

IV. COMPUTATIONAL DETAILS
We implement this formalism in the development version of

Q-Chem 5.2.60 All numerical results are calculated with the cc-
pVDZ basis set, which was determined by performing a comprehen-
sive convergence test of different sets. The two-electron integrals are
evaluated with the standard quadrature Euler–Maclaurin–Lebedev
grid (50 194),61 consisting of 50 Euler–Maclaurin62 radial grid points
and 194 Lebedev63 angular grid points.

V. H2 BOND DISSOCIATION USING TDTAO-DFT
We demonstrate how some of the challenges plaguing TDDFT

are rectified with our method through the GS bond dissociation
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process of the H2 molecule. This system has been studied exten-
sively for many years using a plethora of methods. Successfully
capturing the mechanism of bond dissociation within the frame-
work of DFT has been elusive owing to the lack of incorporation
of non-dynamical correlation effects. Within TAO-DFT, however,
this challenge was resolved by choosing an appropriate θ of 40
mhartree.33,34 It was further shown that, at the bond dissociation
limit, the multi-reference character was more pronounced.33,34

In TDDFT, one encounters the challenge of imaginary frequen-
cies (i.e., excitation energies) for the triplet states that occurs in
most of the results obtained from adiabatic local density approx-
imation (ALDA) functionals (kernels).18,19,64 This issue is related
to the symmetry breaking where the difference in spin densities
(i.e., ρα − ρβ) is not equal to zero for a large interatomic distance.
In other words, the unrestricted (asymmetric) solution obtained
using KS-DFT becomes lower in total energy than the restricted
(symmetric) one, as demonstrated by Casida et al. using a two-
level model.19 TAO-DFT significantly rectifies this issue for a large
enough θ value.33

Figure 1 shows the potential energy surface (PES) of
the first triplet excited state (13Σ+

u) for H2 bond dissoci-
ation using TDTAO-DFT and TDDFT (θ = 0 mhartree).
The TDDFT results show imaginary frequencies beyond the
H–H bond distance of ∼1.5 Å. This is attributed to a poor ground-
state reference, as mentioned previously, due to the lack of incor-
poration of the non-dynamical correlation effects beyond this bond
distance. In addition, this phenomenon is observed in TDTAO-DFT
simulations for θ = 0 mhartree, 10 mhartree, 20 mhartree, and 30
mhartree. However, for θ ≥ 40 mhartree, the imaginary-frequency
issue is resolved.

We also note here that the requirement for a real-value 13Σ+
u

excitation energy mandates a higher threshold value for θ than

FIG. 1. Potential energy surface of the first triplet excited state (13Σ+
u ) computed

using TDDFT (θ = 0 mhartree) and TDTAO-DFT with the Perdew–Burke–Ernzerhof
(PBE) XC-functional, cc-pVDZ basis set, and gradient expansion approximation
(GEA) version of the Eθ functional34 for TAO calculations. The inset shows a
zoomed-in view for the large bond-distance regime.

that obtained through a self-consistent scheme,37 which is around
15.5 mhartree. While a lower θ value is needed to describe the
ground-state bond dissociation curves, our observation indicates
that a higher θ value is needed for excitation properties and an opti-
mal determination scheme for θ remains to be developed. One such
direction is to include the excited-state information in the post-SCF
variational scheme similar to that outlined in Eq. (9) of Ref. 56.

Another advantageous aspect of TDTAO-DFT is that the
energy of the first triplet excited (13Σ+

u) state in the dissociation
limit correctly approaches the GS singlet energy. Figure 2 shows the
singlet–triplet (11Σ+

g –13Σ+
u) vertical gap as a function of H–H bond

dissociation computed using ground-state TAO-DFT, coupled–
cluster singles and doubles (CCSD), and TDTAO-DFT. To compute
the 11Σ+

g –13Σ+
u gap at the ground-state level (in order to mitigate

the problem of imaginary frequencies in TDDFT), it was recom-
mended to use the unrestricted ground-state SCF formalism for
H2 and other small molecules.22,23,64 However, this does not guar-
antee the convergence of the energy of the 13Σ+

u state to that of
the 11Σ+

g state at the bond dissociation limit for H2 for TAO-DFT
(Fig. 2). This gap may violate the covalent nature of the 3Σ+

u state,
where the energies of covalent states 13Σ+

u and GS (11Σ+
g ) should

be the same at the bond dissociation limit.18 In other words, at
this limit, the electrons are located in the 1s orbitals of the corre-
sponding atoms and are, therefore, isolated enough with respect to
one another. This gap increases with θ due to the increase in the
energy of 13Σ+

u and a simultaneous decrease in the energy of 11Σ+
g

FIG. 2. The energy gap as a function of the H–H bond distance (in Å) between the
singlet ground state (11Σ+

g ) and the first excited triplet state (13Σ+
u ) calculated using

TDTAO-DFT and unrestricted TAO-DFT with the PBE XC-functional and GEA θ-
functional. The equation-of-motion–coupled cluster singles doubles (EOM-CCSD)
results are presented as a benchmark. The cc-pVDZ basis set was employed for
all calculations. The inset shows a zoomed-in view for the large bond-distance
regime.
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FIG. 3. Potential energies of (a) singlet and (b) triplet excited states, computed using TDTAO-DFT (with θ = 40 mhartree and GEA θ-functional), EOM-CCSD, and conventional
TDDFT. (c) shows only the 1Σ+

g states. (d) is a zoomed-in region showing the avoided crossing between two EOM-CCSD states that are not completely captured by either
TDTAO-DFT or conventional TDDFT. The orange shaded regions in (a), (c), and (d) indicate portions of the EOM-CCSD curves that have double excitation character. DE in
(a) signifies that the CCSD state is double excitation in nature. PBE is selected as the XC-functional for all DFT calculations, and cc-pVDZ is selected as the basis set for all
calculations.

(this θ-dependent decrease is also observed for the total energy of
13Σ+

u calculated with TDTAO-DFT in Fig. 1). On the other hand,
the trend obtained for TDTAO-DFT (Fig. 2) is in excellent agree-
ment with that obtained using the equation-of-motion coupled-
cluster singles and doubles (EOM-CCSD) method or observed in
experiments.65 EOM-CCSD is used here as a benchmark method
since it is equivalent to FCI for a two-electron system such
as H2.

For the sake of completeness, we also computed the PESs of
other excited states for H2. The lowest six singlet and triplet excited
states in TDTAO-DFT and TDDFT are demonstrated with low-
lying PESs from EOM-CCSD in Figs. 3(a) and 3(b). The overall
feature of singlet and triplet states from TDTAO-DFT is in excel-
lent agreement with the EOM-CCSD results, except for the charge-
transfer state (11Σ+

u) and the missing states with double excitation
character [purple curve with unfilled squares and curves highlighted
in orange with unfilled diamonds in Figs. 3(a) and 3(b)]. We specu-
late that the problem with the 11Σ+

u state could be due to the usage of

the simple adiabatic approximation to the xcθ-kernel6,19,66,67 as well
as the time-independent occupation numbers in our formalism.68–70

The missing CCSD double excited states also indicate the inability
of TDTAO-DFT to capture the avoided crossing between the first
two 1Σ+

g excited states [orange shaded regions as shown in Figs. 3(a),
3(c), and 3(d)]. A more detailed investigation is certainly required
for resolving these challenges.

VI. RELATIONSHIP BETWEEN θ AND IMAGINARY
FREQUENCIES: A QUALITATIVE DESCRIPTION

We perform a detailed analysis of the PESs with different θ
values to acquire more insight about the qualitative relationship
between θ and the imaginary roots. Two molecular systems were
chosen for this analysis, H2 and N2, and their S–T gaps are shown in
Fig. 4. The problem of imaginary frequencies is fixed with TDTAO-
DFT for a suitable choice of θ, irrespective of the system under con-
sideration, thereby indicating its versatility. However, we note that
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FIG. 4. S–T gap of (a) H2 and (b) N2 with the bond distance and different θ
(in mhartree) values, calculated using TDTAO-DFT with the PBE XC-functional,
cc-pVDZ basis set, and GEA version of the Eθ functional.34 The filled symbols
indicate potential energy surfaces without any imaginary frequencies.

θ is a system-dependent quantity and a robust algorithm is needed
to ascertain it. Based on the optimal choice of θ, we observe that the
S–T gap vanishes at the bond dissociation limit for N2 [Fig. 4(b)],
similar to that in H2 [Fig. 4(a)]. This is also in agreement with
experiments.71

VII. CONCLUDING REMARKS
In summary, a time-dependent linear-response theory for pre-

dicting excited-state properties based on the TAO-DFT framework,
TDTAO-DFT, is proposed. This theory takes advantage of TAO-
DFT, where the spin-symmetry-breaking problem of orbitals in
ground-state SCF is resolved. As a result, TDTAO-DFT provides a
correct description of low-lying triplet excited states, without imag-
inary energies, at the bond dissociation limit for a molecule. This
was demonstrated through the dissociation curve of the hydrogen
molecule, in which a reasonable lowest triplet state (13Σ+

u) is cap-
tured by TDTAO-DFT, but is not so, for TDDFT. Additionally,

TAO-DFT (with a large fictitious temperature θ) may produce an
erratic gap between the 13Σ+

u and ground states at the dissocia-
tion limit, which is resolved by TDTAO-DFT. The PESs for higher
excited states of stretched H2 are also improved significantly as
compared to TDDFT.

SUPPLEMENTARY MATERIAL

The supplementary material includes additional results and the
numerical data presented in this work.
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APPENDIX A: A VARIATIONAL PERSPECTIVE
OF TAO-DFT

In this the section, we briefly present the derivation of the TAO-
DFT KS-like equations based on an alternative, variational principle.
The same variational approach is also employed in the derivation of
the linear-response theory, which will be presented in Appendix B
of this work.

According to the partition of energy functional,33,34 the func-
tional derivative of the total energy functional can be expressed as

δE[ρ]
δϕi(r)

=
δTTAO

s

δϕi(r)
+

δVext

δϕi(r)
+
δEHxcθ[ρ]
δϕi(r)

, (A1)

where TTAO
s is the kinetic (free) energy functional, and Vext + EHxcθ

is the energy associated with the effective potential. The explicit
derivative of the kinetic (free) energy functional would be

δTTAO
s

δϕ∗j (r′)
=

δ
δϕ∗j (r′)

(∑
i

fi ∫ drϕ∗i (r) t̂ ϕi(r)

+θ{∑
i

fi ln fi + (1 − fi) ln(1 − fi)})

= fj ⋅ t̂ ϕj(r′) +∑
i

⎡
⎢
⎢
⎢
⎣

δfi

δϕ∗j (r′)
⋅ ∫ drϕ∗i (r) t̂ ϕi(r)

⎤
⎥
⎥
⎥
⎦

+ θ∑
i

⎡
⎢
⎢
⎢
⎣
{ln fi − ln(1 − fi)} ⋅

δfi

δϕ∗j (r′)

⎤
⎥
⎥
⎥
⎦

, (A2)
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where t̂ = −∇2
/2 and δϕj(r′)/δϕ∗j (r′) = 0. Similarly, the derivatives

of the energy term associated with external potential as well as the
Hxcθ energy term are, respectively,

δVext

δϕ∗j (r′)
= ∫ dr′′

δρ(r′′)
δϕ∗j (r′)

⋅
δ

δρ(r′′)
[∫ dr vext(r)ρ(r)]

= ∫ dr vext(r)
δρ(r)
δϕ∗j (r′)

= fj ⋅ vext(r′)ϕj(r′)

+∑
i

⎛

⎝

δfi

δϕ∗j (r′)
⋅ ∫ dr vext(r)ϕ∗i (r)ϕi(r)

⎞

⎠
(A3)

and

δEHxcθ[ρ]
δϕ∗j (r′)

= ∫ dr
δρ(r)
δϕ∗j (r′)

⋅
δEHxcθ[ρ]
δρ(r)

= ∫ dr
δρ(r)
δϕ∗j (r′)

⋅ vHxcθ[ρ](r)

= fj ⋅ vHxcθ(r
′
)ϕj(r′)

+∑
i

⎡
⎢
⎢
⎢
⎣

δfi

δϕ∗j (r′)
∫ drvHxcθ[ρ](r)ϕ

∗

i (r)ϕi(r)
⎤
⎥
⎥
⎥
⎦

. (A4)

Combining the three terms above, an explicit expression of the total
energy functional is derived,

δE[ρ]
δϕ∗j (r′)

=
δTTAO

s

δϕ∗j (r′)
+

δVext

δϕ∗j (r′)
+
δEHxcθ[ρ]
δϕ∗j (r′)

= fj ⋅ t̂ ϕj(r′) +∑
i

⎡
⎢
⎢
⎢
⎣

δfi

δϕ∗j (r′)
⋅ ∫ drϕ∗i (r) t̂ ϕi(r)

⎤
⎥
⎥
⎥
⎦

+ θ∑
i

⎡
⎢
⎢
⎢
⎣
(ln fi − ln(1 − fi)) ⋅

δfi

δϕ∗j (r′)

⎤
⎥
⎥
⎥
⎦

+ fj ⋅ vext(r′)ϕj(r′)

+∑
i

⎡
⎢
⎢
⎢
⎣

δfi

δϕ∗j (r′)
⋅ ∫ dr vext(r)ϕ∗i (r)ϕi(r)

⎤
⎥
⎥
⎥
⎦

+ fj ⋅ vHxcθ(r
′
)ϕj(r′) +∑

i

⎡
⎢
⎢
⎢
⎣

δfi

δϕ∗j (r′)
⋅ ∫ dr vHxcθ[ρ](r)ϕ

∗

i (r)ϕi(r)
⎤
⎥
⎥
⎥
⎦

= fj ⋅ [t̂ + vext(r′) + vHxcθ[ρ](r
′
)]ϕj(r′) + ∑

i

δfi

δϕ∗j (r′)
⋅ {θ ln(

fi

1 − fi
) + ∫ drϕ∗i (r)[t̂ + vext(r) + vHxcθ[ρ](r)]ϕi(r)}. (A5)

Enforcing the normalization conditions for both density and orbital functions, a Lagrangian is introduced,

L[ρ] = E[ρ] −∑
ij
[λij ∫ dr ϕ∗i (r)ϕj(r) − δij] − μ[∫ dr ρTAO

(r) −Ne], (A6)

where {λij} and μ are Lagrange multipliers. Considering the functional derivative with respect to orbital functions

δL[ρ]
δϕ∗j (r′)

= fj ⋅ [t̂ + vext(r′) + vHxcθ[ρ](r
′
)]ϕj(r′) +∑

i

δfi

δϕ∗j (r′)
⋅ {θ ln(

fi

1 − fi
)

+ ∫ dr ϕ∗i (r)[t̂ + vext(r) + vHxcθ[ρ](r)]ϕi(r)} −∑
i
λji ⋅ ϕj(r′) − μ∑

i

δfi

δϕ∗j (r′)
− μfj ⋅ ϕj(r′)

= fj ⋅ [t̂ + vext(r′) + vHxcθ[ρ](r
′
)]ϕj(r′) +∑

i
{εi − θ[

1
θ
(εi − μ)]} ⋅

δfi

δϕ∗j (r′)
−∑

i
λji ⋅ ϕi(r′) − μ∑

i

δfi

δϕ∗j (r′)
− μfj ⋅ ϕj(r′)

= fj ⋅ [t̂ + vext(r′) + vHxcθ[ρ](r
′
)]ϕj(r′) + μ∑

i

δfi

δϕ∗j (r′)
−∑

i
λji ⋅ ϕi(r′) − μ∑

i

δfi

δϕ∗j (r′)
− μfj ⋅ ϕj(r′)

= fj ⋅ [t̂ + vext(r′) + vHxcθ[ρ](r
′
)]ϕj(r′) − (λjj + μfj) ⋅ ϕj(r′) +

i≠j

∑
i
λji ⋅ ϕi(r′). (A7)

and using the variational condition δL[ρ]/δϕ∗j (r′) = 0, one obtains

[t̂ + vext(r′) + vHxcθ[ρ](r
′
)]ϕj(r′) = ( f −1

j λjj + μ) ⋅ ϕj(r′) + f −1
j

i≠j

∑
i
λji ⋅ ϕi(r′). (A8)
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Note that the second term in Eq. (A7) indicates that it is necessary
to introduce the entropy term θ[∑ifi ln fi + (1 − fi)ln(1 − fi)] to the
kinetic functional in order to preserve the correct variational prop-
erty such that the derivative terms arising from vext and vHxcθ [last
terms in Eqs. (A3) and (A4)] are compensated.

With a canonical orbital assumption (because the orbitals are
orthonormal to one another), the equation can be recast into an
eigenvalue equation, similar to a KS-like equation,

ĥTAO
[ρ](r)ϕi(r) = εi ⋅ ϕi(r), (A9)

where ĥTAO
= t̂ + vext + vHxcθ and εi = f −1

i λii + μ.

APPENDIX B: DETAILED DERIVATION
OF LR-TDTAO-DFT

1. Variational principle for TAO action functional
and TD effective potential

Starting from the action variational principle72 and its modified
form,73 we have the general definitions of action functionals for a
physical system,

A[ρ] = ∫
τ

0
dt ⟨Ψ(t)∣(

∂

∂t
− Ĥ)∣Ψ(t)⟩, (B1)

B[ρ] = A[ρ] + ∫ dt∫ dr vext(r, t)ρ(r, t), (B2)

δB[ρ]
δρ(r, t)

= vext(r, t) + i⟨Ψ[ρ](τ)∣
δΨ[ρ; τ]
δρ(r, t)

⟩, (B3)

where Ψ[ρ; τ] represents the wavefunction at time t and τ denotes
the upper bound of the time integral.

For a TDTAO system, the definition of universal action func-
tionals can be written similarly, following that of the conventional
TDDFT scheme,73

δATAO[ρ]
δρ(r, t)

= i⟨ΨTAO[ρ](τ)∣
δΨTAO[ρ; τ]
δρ(r, t)

⟩, (B4)

BTAO[ρ] = ATAO[ρ] + ∫
τ

0
dtdr veff(r, t)ρ(r, t). (B5)

The TD effective potential for TAO can be expressed as

veff(r, t) =
δBTAO[ρ]
δρ(r, t)

+ i⟨ΨTAO[ρ](τ)∣
δΨTAO[ρ; τ]
δρ(r, t)

⟩. (B6)

One can define the difference between the two functionals as

AHxcθ[ρ] = BTAO[ρ] − B[ρ], (B7)

which is the TAO extension of Hartree-exchange-correlation func-
tionals. Summarizing the equations above, similar to TDDFT, one
can recast the effective potential in TAO as

vHxcθ(r, t) =
δAHxcθ[ρ]
δρ(r, t)

= veff(r, t) + i⟨ΨTAO[ρ](τ)∣
δΨTAO[ρ; τ]
δρ(r, t)

⟩

− vext(r, t) − i⟨Ψ[ρ](τ)∣
δΨ[ρ; τ]
δρ(r, t)

⟩. (B8)

2. Density–density response function
Here, we show that the linear-response equation can also be

constructed inversely,

δρ(r t) = ∫ dr′dt′ χTAO
s (r t, r′ t′) δvTAO

eff (r
′ t′), (B9)

where

χTAO
s (r t, r′ t′) ≡

δρTAO
(r, t)

δvTAO
eff (r′, t′)

(B10)

is the density–density response function for a non-interacting TAO
system. With the density expression in terms of TD orbitals, one
obtains

χTAO
s (r t, r′ t′) =

δρTAO
(r, t)

δvTAO
eff (r′, t′)

=
δ[∑p fp ϕ∗p (r, t)ϕp(r, t)]

δvTAO
eff (r′, t′)

=∑
p

fp
δ[ϕ∗p (r, t)ϕp(r, t)]

δvTAO
eff (r′, t′)

=∑
p

fp[
δϕ∗p (r, t)

δvTAO
eff (r′, t′)

ϕ○p(r, t)

+ϕ○∗p (r, t)
δϕp(r, t)

δvTAO
eff (r′, t′)

], (B11)

where ϕ○p(r, t) and its complex conjugate represent the evolution
of the TD orbitals in the absence of any TD perturbation (i.e., the
TD external field). Applying the first-order perturbation theory, the
TD orbital functions in a TD external field can be described by the
equation

ϕp(r, t) = [1 − i∫
t

0
dt′

r≠p

∑
rs
ϕ○r (r) e−iεr(t−t′)

× [∫ dr′ ϕ○∗r (r
′
)δvTAO

eff (r
′, t′)ϕ○s (r

′
)]e−iεst′

× ∫ drϕ○∗s (r)]ϕ
○

p(r)

=ϕ○p(r) − i e−iεr t
∫

t

0
dt′ ∑

r, r≠p
ϕ○r (r)

× [∫ dr′ ϕ○∗r (r
′
)δvTAO

eff (r
′, t′)ϕ○p(r

′
)]e−i(εp−εr)t′ ,

(B12)

and the corresponding orbital response functions are expressed
explicitly in terms of initial orbitals (ground-state TAO orbitals) and
orbital energies,
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δϕp(r, t)
δvTAO

eff (r′, t′)
= − iΘ(t − t′)e−iεr t

∑
r, r≠p

ϕ○r (r)ϕ
○∗

r (r
′
)ϕ○p(r

′
)e−i(εp−εr)t′ ,

δϕ∗p (r, t)
δvTAO

eff (r′, t′)
= iΘ(t − t′)eiεr t

∑
r, r≠p

ϕ○∗r (r)ϕ
○

r (r
′
)ϕ○∗p (r

′
)ei(εp−εr)t′ .

(B13)

Combining Eqs. (B11) and (B13), the time-domain non-interacting response function in TDTAO-DFT can be evaluated as follows:

χTAO
s (r t, r′ t′) =∑

p
fp

⎧⎪⎪
⎨
⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎣

iΘ(t − t′) eiεr t
∑

r, r≠p
ϕ○∗r (r)ϕ

○

r (r
′
)ϕ○∗p (r

′
)ei(εp−εr)t′

⎤
⎥
⎥
⎥
⎥
⎦

ϕ○p(r, t)

+ϕ○∗p (r, t)
⎡
⎢
⎢
⎢
⎢
⎣

−iΘ(t − t′) e−iεr t
∑

r, r≠p
ϕ○r (r)ϕ

○∗

r (r
′
)ϕ○p(r

′
)e−i(εp−εr)t′

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

= i
r≠p

∑
pr

fpΘ(t − t′){ϕ○p(r)ϕ
○∗

r (r)ϕ
○

r (r
′
)ϕ○∗p (r

′
)ei(εr−εp)(t−t′)

− ϕ○∗p (r)ϕ
○

r (r)ϕ
○∗

r (r
′
)ϕ○p(r

′
)e−i(εr−εp)(t−t′)

}. (B14)

Performing a Fourier transformation, the corresponding frequency-
domain expression becomes

χTAO
s (r, r′,ω) =

r≠p

∑
pr

fp{
ϕ○p(r)ϕ○∗r (r)ϕ○r (r′)ϕ○∗p (r′)

ω − (εr − εp) + iη

−
ϕ○∗p (r)ϕ○r (r)ϕ○∗r (r′)ϕ○p(r′)

ω + (εr − εp) + iη
}

=

r≠p

∑
pr
( fp − fr)

ϕ○∗p (r′)ϕ○r (r′)ϕ○∗r (r)ϕ○p(r)
ω − (εr − εp) + iη

,

whereη→ 0. (B15)

We note that there are no self-transition terms in both Eqs. (B15) and
(B12) since every TD orbital is considered as an orthonormalized
function at any given instant of time. As a result, an explicit response
function for a non-interacting reference system (TAO system) is
obtained, and the resulting expression is similar to the conventional
TDDFT.7

3. Alternative path to Casida’s equation
Recall the partition of effective potential57

δvTAO
eff (r,ω) = δvext(r,ω) + ∫ dr1 δρ(r1,ω) ⋅ 𝕗Hxcθ(r, r1,ω)

= δvext(r,ω) + δvHxcθ[ρ](r,ω), (B16)

where 𝕗Hxcθ is the Fock matrix defined in Eq. (17). Since an infinitesi-
mal external field change is considered [δvext(r1, ω)→ 0],8,9 Eq. (B9)
can be recast into

δρ(r,ω) = ∫ dr1 ∫ dr2 χTAO
s (r, r1,ω)δρ(r2,ω) ⋅ 𝕗Hxcθ(r1, r2,ω).

(B17)

If ∫dr 𝕗Hxcθ(r′, r,ω) is operated on both sides of the equation, one
obtains an iterative formula

δvHxcθ(r,ω) = ∫ dr1 ∫ dr2𝕗Hxcθ(r, r1,ω)

× χTAO
s (r1, r2,ω)δvHxcθ(r2,ω). (B18)

Recalling the explicit expression of the non-interacting response
function in Eq. (B15), Eq. (B18) can be reformulated into

δvHxcθ
rs (ω) =

q≠p

∑
pq
∫ dr∫ dr1 ϕ○∗r (r)ϕ

○

s (r)ϕ
○∗

q (r1)ϕ○p(r1)

× 𝕗Hxcθ(r, r1,ω)
⎡
⎢
⎢
⎢
⎢
⎣

( fp − fq) ⋅ δvHxcθ
pq (ω)

ω − (εq − εp) + iη

⎤
⎥
⎥
⎥
⎥
⎦

, (B19)

where δvHxcθ
rs (ω) = ∫drϕ○∗r (r)ϕ○s (r)δvHxcθ(r,ω) is the Hxcθ poten-

tial projected on the single-particle basis set. Similar to the deriva-
tion in the main manuscript, the two-electron integral is defined as
follows:

(rs∣𝕗Hxcθ(ω)∣pq) ≡ ∫ drϕ○∗r (r)ϕ
○

s (r)

× ∫ dr1 ϕ○∗q (r1)ϕ○p(r1)𝕗Hxcθ(r, r1,ω). (B20)

With a rescaling factor [ω − (εs − εr) + iη], an iterative equation in a
finite basis set is obtained,

[ω − (εs − εr)] ⋅ΩL
rs(ω) =

q≠p

∑
pq
[(rs∣𝕗Hxcθ(ω)∣pq)( fp − fq)] ⋅ΩL

pq(ω),

(B21)

where

ΩL
rs(ω) ≡

δvHxcθ
rs (ω)

ω − (εs − εr) + iη
. (B22)
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Within ALDA, the corresponding eigenvalue equation would be

∑
pq
[(εq − εp)δqsδpr − (rs∣𝕗Hxcθ∣pq)( fq − fp)]ΩL

k,pq = ωk ⋅Ω
L
k,rs, (B23)

where k denotes the kth eigenvalue. We note that this eigenvalue
equation is not exactly the same as Eq. (19) in the main text. How-
ever, because of the transpose relation between the two matrices,
they will generate the same eigenspectra.

APPENDIX C: RELAXED IDEMPOTENCY CONDITION
In conventional TDDFT, transitions between orbitals are pre-

selected by the idempotency condition,9 which is derived from a
single-determinant assumption, and can be formulated as

( fp + fq − 1)δPpq = 0, (C1)

where Ppq is a matrix element of transition density matrices. This
condition leads to the result that only transitions between occupied
and virtual orbitals would contribute to a physical (single) excita-
tion. On the other hand, since the single-determinant assumption
is removed from TAO-DFT, we consider an alternative invariant
assumption based on the recurrence relation of the derivative of
Fermi function

∂fp

∂εp
= −( fp − f 2

p )/θ (C2)

or in the matrix representation

∂P0

∂F0
= −(P0 − P2

0)/θ, (C3)

where P0 − P2
0 on the left-hand side implies a relaxed idempotency

feature of TAO one-particle density matrix. In other words, instead
of equating to zero, P0 − P2

0 is associated with another constant,
θ ⋅ ∂P0/∂F0. To employ the relaxed condition in the excited-state
TAO, we further assume that the simple partial derivative form
would be preserved in the TD extension of ∂P0/∂F0. Recall the total
functional derivative of the density matrix

δ(P − P2
) = δP − P0 ⋅ δP − δP ⋅ P0, (C4)

and combine it with Eq. (C2),

δPpq − fp ⋅ δPpq − δPpq ⋅ fq = −( fp + fq − 1)δPpq

= −θ ⋅ δ[
∂P
∂F
]

pq
, (C5)

where δ[∂P/∂F]pq is not an explicit derivative and is assumed as an
infinitesimal constant. Therefore, the relaxed condition is proposed
as follows:

( fp + fq − 1)δPpq ∝ θ. (C6)

Note that the original idempotency condition would be preserved
when the KS limit is considered (θ→ 0). Based on the relaxed condi-
tion, an excitation should be dominated by those p and q terms with

(fp + fq) tending to 1. Therefore, to reduce the interference from
spurious excitations,70 only transitions between strongly occupied
orbitals and strongly virtual orbitals, where (fp + fq − 1) is minimized,
are considered in the current version of TDTAO-DFT. The criteria
to classify orbitals are

fp∈occ. ≥
1
2

or εp∈occ. ≤ μ,

fq∈vir. ≤
1
2

or εq∈vir. ≥ μ.
(C7)
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