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ABSTRACT
We present an efficient method to simulate two-dimensional (2D) electronic spectra of condensed-phase systems with an emphasis on treat-
ing quantum nuclear wave packet dynamics explicitly. To this end, we combine a quantum Langevin equation (QLE) approach for dissipation
and a perturbative scheme to calculate three-pulse photon-echo polarizations based on wave packet dynamics under the influence of external
fields. The proposed dynamical approach provides a consistent description of nuclear quantum dynamics, pulse-overlap effects, and vibra-
tional relaxation, enabling simulations of 2D electronic spectra with explicit and non-perturbative treatment of coupled electronic–nuclear
dynamics. We apply the method to simulate 2D electronic spectra of a displaced-oscillator model in the condensed phase and discuss the spec-
tral and temporal evolutions of 2D signals. Our results show that the proposed QLE approach is capable of describing vibrational relaxation,
decoherence, and vibrational coherence transfer, as well as their manifestations in spectroscopic signals. Furthermore, vibrational quantum
beats specific for excited-state vs ground-state nuclear wave packet dynamics can also be identified. We anticipate that this method will pro-
vide a useful tool to conduct theoretical studies of 2D spectroscopy for strong vibronically coupled systems and to elucidate intricate vibronic
couplings in complex molecular systems.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0042848., s

I. INTRODUCTION

Two-dimensional electronic spectroscopy (2DES) has become
an important experimental technique to study ultrafast electronic
and molecular dynamics in a broad range of molecular systems,1–10

such as molecular aggregates,11,12 semiconductors,13 photochemical
reactions,14 and photosynthetic light-harvesting complexes.4,15–17 As
a powerful tool for the elucidation of electronic couplings and solva-
tion dynamics in the condensed phase, experimental 2DES spectra
provide abundant information on molecular dynamics and interac-
tions between a molecular system and its surroundings.3,17,18 How-
ever, the congested spectroscopic signals and the complex spectral
and temporal dynamics often limit the quantitative interpretation
of experimental observations. Therefore, the development of theo-
retical simulations of 2DES spectra is necessary for the analysis of

experimental results and the elucidations of dynamical processes in
the condensed phase.

Recent advances in vibrationally resolved 2D spectroscopic
techniques have enabled direct probing of intricate couplings
between vibrational and electronic degrees of freedom, which
plays a crucial role in photophysical properties of molecular
systems.7,12,19–22 For example, the two-dimensional electronic-
vibrational (2DEV) spectroscopy developed by Oliver et al. has pro-
vided a new experimental approach to resolve the dynamics on
both electronic and vibrational degrees of freedom and to assess
the vibronic couplings of molecular systems.23 Nevertheless, the
inclusion of vibrational degrees of freedom complicates the theo-
retical descriptions of 2DES spectroscopy, and the relevant simu-
lations of 2D spectra with explicit treatment of vibrational dynam-
ics, such as vibrational coherences and vibrational relaxations, are
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underdeveloped.24–26 Hence, an efficient way to simulate the 2D
spectra in a condensed-phase environment with both electronic and
vibrational degrees of freedom treated explicitly has great impor-
tance in providing insight into the experimental manifestations of
intricate vibronic couplings and environmental effects.

The standard theoretical description of nonlinear spectroscopy
is based on the response function formalism.27 Specifically, four-
wave mixing experiments such as 2DES are described by the third-
order polarization. Under the impulsive limit, the third-order polar-
ization can be calculated by the impulsive response function analyt-
ically for simple model systems such as Brownian harmonic oscil-
lators. For complicated systems with nontrivial system–bath inter-
actions, additional approximations have to be invoked and numer-
ical evaluations of impulsive response functions can be carried out
by incorporating dynamical theories, i.e., the hierarchical equations
of motion (HEOM) method,28–30 to describe the time-evolution of
the system after field–matter interactions. To simulate 2DES spec-
tra, the response-function based methods have the advantage of
simple extraction of the signals at the phase-matching direction,
readily achieved by selective calculations of particular terms in the
response functions that satisfy the given phase-matching condi-
tion. However, when the dimensionality of the system is large, the
number of terms involved in the calculation grows dramatically. In
addition, the impulsive response functions are unable to describe
the pulse-overlap effects that have been shown experimentally31

and theoretically32 to exhibit nontrivial contributions to the fea-
tures of 2DES spectra. Although the convolution between the pulse
envelopes and the calculated response functions can be achieved
by numerical integrations, the computational cost may become an
issue.

The overlap of finite-width pulses can be naturally included
by the dynamical simulation of 2DES spectra that explicitly prop-
agate the system dynamics driven by three external fields, where
the system is usually described by a reduced density matrix. How-
ever, this non-perturbative approach results in the total polariza-
tion that contains signals at all possible phase-matching directions.
Hitherto, several schemes for the extraction of 2DES signals from
dynamical simulations have been proposed and utilized in the sim-
ulations of condensed-phase 2DES spectra by the combination with
dynamical theories.32–43 Although the density-matrix based meth-
ods for 2DES simulations have been further developed in the past
few decades, the method that emphasizes on the explicit treatment
of vibrational relaxation dynamics is still underdeveloped. Further-
more, the computational cost of the density-matrix based method
becomes formidable when applied to a multi-dimensional system,
especially so when multiple vibrational states have to be consid-
ered. Therefore, the development of wavefunction based methods
may provide an alternative approach to the simulations of 2DES
spectra for multi-dimensional systems. Recently, several wavefunc-
tion approaches have been proposed for 2DES spectra simulations,
including the methods based on propagating vibronic wavefunc-
tions44 or stochastic wavefunction approaches,45,46 yet, so far, meth-
ods that focus on nuclear wave packet dynamics and vibrational
relaxation are rather limited.

In this regard, we aim to develop a theoretical method
that incorporates the influences of external laser fields into the
explicit propagation of quantum dissipative wave packet dynamics,
which enables efficient 2DES simulations for a multi-dimensional

system with both pulse-overlap and environmental effects naturally
included in a consistent framework. To this end, we proposed a
non-perturbative method that combines multi-dimensional quan-
tum Langevin equation (QLE) approach into the propagation of
system dynamics with exact system–field interactions to perform
dynamical simulations of 2DES spectra in the condensed phase. The
QLE approach emphasizes the explicit treatment of vibrational exci-
tations and their relaxation dynamics, enabling detailed descriptions
of coupled electronic–nuclear dynamics. The structure of this paper
is organized as follows: In Sec. II, we present our QLE approach
by a generalization of the friction operator approach proposed by
Messina and co-workers.47,48 In addition, we outline a perturbative
procedure to calculate the third-order polarization at the three-pulse
photon-echo (3PPE) phase-matching direction by utilizing auxiliary
wavefunctions propagated by a set of non-Hermitian Schrödinger
equations and provide the computational details of numerical sim-
ulations. In Sec. III, we applied the QLE approach to a displaced-
oscillator model to demonstrate its capability to simulate the 2DES
spectra in a dissipative environment. The spectral and temporal
evolutions of spectroscopic signals in the simulated rephasing and
non-rephasing spectra under the influences of a dissipative environ-
ment are discussed, and the results indicate that the QLE approach
can describe the vibrational relaxation, coherence transfer, and
vibrational decoherence manifested by the dissipative wave packet
dynamics. In Sec. IV, we summarize the main results and discuss the
general applicability of our method.

II. METHODS
A. Quantum Langevin equation

To describe the wave packet dynamics in a dissipative
condensed-phase environment, we adopt a QLE to describe the
effects of a dissipative environment (bath) on wave packet dynam-
ics. Considering an open quantum system described by a general
system–bath model, the corresponding equations of motion in the
Heisenberg picture lead to the QLE that describes the effects of
the environment in a friction kernel and random force that arise
from thermalized bath motions.49,50 To implement QLE in quantum
dynamical simulations, one can incorporate the friction and random
force terms into a friction operator F(t) and simulate dissipative
wave packet dynamics by propagating a modified time-dependent
Schrödinger equation (TDSE),47

i̵h
∂

∂t
∣Ψ(r, t)⟩ = [H + F(t)]∣Ψ(r, t)⟩. (1)

This approach has been applied to describe systems with two elec-
tronic states and one vibrational mode.48 In this paper, we generalize
the approach in Ref. 48 to treat multi-dimensional systems, which
enable simulations of dissipative quantum dynamics in general
molecular systems.

We consider a system with N electronic states and M vibra-
tional modes. The total wavefunction Ψ can be written as

∣Ψ(r, t)⟩ =
N

∑

n=1
ψn(r, t)∣n⟩, (2)

where ∣n⟩ denotes the nth electronic state and ψn(r, t) is a M-
dimensional time-dependent nuclear wavefunction associated with
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∣n⟩. The total wavefunction satisfies the normalization condition,

⟨Ψ(r, t)∣Ψ(r, t) ⟩ = 1, (3)

which leads to

N

∑

n=1
∫ ∣ψn(r, t)∣2dr = 1. (4)

For the N-state M-mode system, the Hamiltonian can be
written as

H =∑
n
[−

̵h2

2

M

∑

i=1

1
mi

∂2

∂r2
i

+ Vn(r)]∣n⟩⟨n∣

+∑
n
∑

m≠n
Jnm(r)∣n⟩⟨m∣, (5)

where mi is the effective mass of the ith vibrational mode, Vn(r) is
the potential of the nth electronic state, and Jnm(r) is the interstate
coupling between ∣n⟩ and ∣m⟩. Note that we formulate the Hamil-
tonian in a quasi-diabatic basis of the electronic states such that the
interstate couplings are non-zero and the derivative coupling terms
can be effectively neglected. Furthermore, we substitute Eq. (2) into
TDSE and project onto ∣n⟩ to obtain

i̵h
∂

∂t
ψn(r, t) =[−

̵h2

2

M

∑

i=1

1
mi

∂2

∂r2
i

+ Vn(r)]ψn(r, t)

+ ∑
m≠n

Jnm(r)ψm(r, t). (6)

To derive a QLE, we consider the following time-dependent expec-
tation values:

⟨ri⟩n(t) =
∫ ψ

∗
n (r, t)riψn(r, t)dr

∫ ∣ψn(r, t)∣2dr
, (7)

⟨pi⟩n(t) =
∫ ψ

∗
n (r, t)piψn(r, t)dr

∫ ∣ψn(r, t)∣2dr
, (8)

where ri and pi are the position and momentum operators of the ith
vibrational mode, respectively. Here, we use the angle bracket ⟨⋅⟩n to
denote the average over the vibrational wave packet at the nth elec-
tronic state, and the vibrational wavefunction associated with each
electronic state is independently renormalized to obtain the expec-
tation values. From Eq. (6), one would expect that the equations of
motion for ⟨ri⟩n(t) and ⟨pi⟩n(t) should depend on the vibrational
wave packet at different electronic states,

∂

∂t
⟨ri⟩n(t) =

∂

∂t
(⟨ψn∣ri∣ψn⟩)/∫ ∣ψn(r, t)∣2dr

=
1
mi
⟨pi⟩n +

i
̵h ∑m≠n

[∫ ψ∗m(r, t)Jmn(r)riψn(r, t)dr

−∫ ψ∗n (r, t)Jnm(r)riψm(r, t)dr]/∫ ∣ψn(r, t)∣2dr,

(9)

∂

∂t
⟨pi⟩n(t) =

∂

∂t
(⟨ψn∣pi∣ψn⟩)/∫ ∣ψn(r, t)∣2dr

= −⟨
∂Vn

∂ri
⟩

n
+

i
̵h ∑m≠n

[∫ ψ∗m(r, t)Jmn(r)piψn(r, t)dr

−∫ ψ∗n (r, t)Jnm(r)piψm(r, t)dr]/∫ ∣ψn(r, t)∣2dr,

(10)

where dividing by ∫ ∣ψn(r, t)∣2dr represents the intermediated renor-
malization of the expectation values, and therefore, the time deriva-
tive of this term is not considered. In addition, integrals involving
interstate coupling Jnm(r) depend on the overlap between wave pack-
ets on different electronic potential energy surfaces (ψn and ψm). In
the limit of zero electronic coupling or when one of the wave pack-
ets is far away from the strong electronically coupled regime on the
nuclear coordinates, these interstate coupling terms can be safely
ignored. Generally speaking, in a condensed-phase environment, the
rapid dephasing between the wave packets at different states should
lead to small contributions from these interstate coupling terms such
that the time evolutions of vibrational wave packets on different elec-
tronic states are independent of each other. Therefore, we assume
that ψn and ψm are strongly dephased and their correlations are
negligible, and as a result, interstate coupling terms in Eqs. (9) and
(10) can be ignored. In addition, we expand the potential Vn(r) with
respect to ⟨r⟩n(t) up to second-order in the displacements,

Vn(r) ≈
M

∑

i=1
Vn(⟨ri⟩n(t)) +

M

∑

i=1
(
∂Vn

∂ri
)

ri=⟨ri⟩n(t)
(ri − ⟨ri⟩n(t))

+
1
2

M

∑

i=1

M

∑

j=1
(
∂2Vn

∂ri∂rj
)

ri=⟨ri⟩n(t),rj=⟨rj⟩n(t)
× (ri − ⟨ri⟩n(t))(rj − ⟨rj⟩n(t)). (11)

Therefore, the equations of motion for ⟨ri⟩n(t) and ⟨pi⟩n(t) can be
simplified to obtain

∂

∂t
⟨ri⟩n(t) =

1
mi
⟨pi⟩n(t), (12)

∂

∂t
⟨pi⟩n(t) = −(

∂Vn

∂ri
)

ri=⟨ri⟩n(t)
. (13)

Note that these equations of motion are consistent with the Ehren-
fest theorem for each individual potential energy surface, not the full
averaged potential. Provided that a system can be characterized by a
set of smooth potential energy surfaces, the second-order expansion
of potential with respect to the center of the wave packet yields good
approximations of the dynamics near the potential energy minima.51

To incorporate the effects of the environment, we modify
the equations of motion by recasting Eq. (13) into the form of
a QLE,49,50

∂

∂t
⟨pi⟩n(t) = − (

∂Vn

∂ri
)

ri=⟨ri⟩n(t)
−

2
mi
∫

t

0
ηn,i(t − t′)⟨pi⟩n(t

′
)dt′

− 2ηn,i(t)⟨ri⟩n(0) + fn,i(t), (14)

where ηn ,i(t) and fn ,i(t) are the friction kernel and random force of
the ith vibrational mode on the nth electronic state, respectively.
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Equation (14) allows us to relate time derivatives of ⟨pi⟩n(t) to
frictional interactions. Consequently, we follow Ref. 47 to con-
struct a friction operator that is consistent with the QLE. To this
end, we apply the Gaussian wave packet approximation (GWA) by
assuming that the vibrational wave packet associated with the nth
electronic state can be represented by a M-dimensional Gaussian
function,51,52

ψn(r, t) =C exp{
i
̵h

M

∑

i=1
[αn,ii(t)(ri − ⟨ri⟩n(t))2

+∑
j≠i
βn,ij(t)(ri − ⟨ri⟩n(t))(rj − ⟨rj⟩n(t))

+⟨pi⟩n(ri − ⟨ri⟩n(t)) + γn(t)]}, (15)

where C is an constant amplitude, ⟨r⟩n(t) corresponds to the center
of the wave packet on the nth electronic state, the time-dependent
parameters αn ,i(t), βn ,ij(t) are related to the spread of the wave
packet, and γn(t) is a time-dependent phase. Note that for a Gaus-
sian wave packet, the evolution of time-dependent parameters can
be determined by taking the time derivative of ψn(r, t) in Eq. (15)
and evaluating the derivatives according to the chain rule. By
comparing ∂

∂tψn(r, t) calculated from Eq. (15) with the modified
Schrödinger equation [Eq. (1)], one finds that additional terms
related to the environmental effects can be collected in a term linear
in (ri − ⟨ri⟩n(t)),47 which allows us to define the friction operator of
the nth electronic state Fn(t) as

Fn(t) =
M

∑

i=1
[

2
mi
∫

t

0
ηn,i(t − t′)⟨pi⟩n(t

′
)dt′ + miηn,i(t)⟨ri⟩n(0)

− fn,i(t)][ri − ⟨ri⟩n(t)]∣n⟩⟨n∣. (16)

Note that the friction operator is diagonal in the electronic basis,
which is a consequence of neglecting the off-diagonal terms in
Eqs. (9) and (10) and is consistent with diagonal system–bath inter-
acting models commonly adopted in describing open quantum sys-
tem dynamics. On the other hand, Fn(t) is linear in (ri − ⟨ri⟩n(t)),
which could induce transitions between vibrational states. There-
fore, vibrational relaxation dynamics could be reasonably described
by the QLE. Finally, for simplicity, we consider the Markovian limit
in this work and replace the friction kernel ηn ,i(t) by ηn ,iδ(t), where
ηn ,i becomes a constant friction coefficient. In this limit, the friction
operator [Eq. (16)] can be simplified as

Fn(t) =
M

∑

i=1
[
ηn,i

mi
⟨pi⟩n(t) − fn,i(t)][ri − ⟨ri⟩n(t)]∣n⟩⟨n∣. (17)

We further assume that the random forces satisfy the fluctuation–
dissipation relation,

⟨fn,i(t)fn,j(t′)⟩ = 2ηn.ikBTδ(t − t′)δi,j. (18)

According to the form of Fn(t), the friction operator can be inter-
preted as the negative work done by the net force exerted by the envi-
ronment. Moreover, Fn(t) is determined by the expectation value
of the position ⟨ri⟩n and the momentum ⟨pi⟩n of the vibrational
wave packet. Upon averaging, ⟨[ρeq, Fn(t)]⟩ = 0, where ρeq is the
equilibrium density matrix, and thus, the equilibrium should be

maintained. Therefore, the method proposed in this work should
maintain a thermal equilibrium distribution. However, whether or
not the QLE approach strictly satisfies the detailed balance is a non-
trivial problem that requires further investigation in the future. With
the friction operator for each electronic state, the dissipative wave
packet dynamics can be simulated by propagating TDSE with the
modified total Hamiltonian,

i̵h
∂

∂t
∣Ψ(r, t)⟩ = [H +

N

∑

n=1
Fn(t)]∣Ψ(r, t)⟩. (19)

Equations (17) and (19) can be used to propagate the total wave-
function Ψ(r, t) under the influence of a frictional bath given the
friction coefficient and the random force drawn from a temperature-
dependent Gaussian random variable in accordance with Eq. (18).
Equation (19) represents a Schrödinger–Langevin equation that
contains two forces describing the environmental effects on the sys-
tem dynamics: the frictional force [ ηn,i

mi
⟨pi⟩n(t)] and the random

force [fn ,i(t)].53,54 While the random force term describes thermal
fluctuations induced by bath equilibrium dynamics, the frictional
force term represents a mean dissipative field created by averaging
over the bath influences. The dynamical equation specifically sep-
arates dissipation from fluctuations and should be considered as a
feature of the Schrödinger–Langevin approach. Note that while ran-
dom fluctuation terms also emerge from a stochastic Schrödinger
equation (SSE) formulation of open quantum system dynamics, the
stochastic terms in the SSE approach do not distinguish dissipation
from fluctuation and therefore should not be directly compared to
the random force term in the QLE approach.55 Moreover, since we
formulate the Hamiltonian in a quasi-diabatic basis, the unmodified
Hamiltonian H could have scalar electronic couplings that lead to
electronic transitions, and the friction operator amounts to effects
due to diagonal random noise linear in the displacements. As a
result, both electronic transitions and vibrational relaxations are
described in this QLE approach.

In summary, we derived the friction operator for a QLE
approach for dissipative wave packet dynamics in a multistate–
multimode system based on the following assumptions. We formu-
late the problem in a quasi-diabatic electronic basis to avoid the
derivative coupling terms and further assume that the correlations
between vibrational wave packets at different electronic states are
negligible, which is justified if the wave packets at different elec-
tronic states are strongly dephased such that the dynamics of each
wave packet is nearly independent and occurs on a single potential
energy surface. In addition, the GWA is applied so that we can use
a simple Gaussian Ansatz to derive the friction operator, which is
a good approximation for nuclear motions near the vicinity of the
potential energy minima. The derived friction operator provides an
explicit treatment of vibrational relaxation dynamics within an elec-
tronic state and could be connected to the influences induced by a
microscopic bath model.53,55,56 Nevertheless, the electronic decoher-
ence induced by a dissipative environment is not explicitly described
by the friction operator presented in this work. Various explicit
treatments of electronic decoherence in wave packet dynamics by
incorporating a stochastic bath derived from microscopic system–
bath interactions have been reported previously (see Refs. 57 and
58). These stochastic bath methods mostly focus on the electronic
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dynamics and do not properly treat vibrational relaxations. There-
fore, we emphasize the QLE approach for dissipative wave packet
dynamics in this work and do not intend to treat electronic deco-
herence. Nonetheless, the QLE approach presented here can be
implemented together with a stochastic bath method for electronic
decoherence in dynamical or spectroscopic simulations to comple-
ment the part of dissipative nuclear dynamics. Note that we have
only assumed that the potential of the system is a smooth func-
tion throughout the derivation, and thus, the presented approach for
implementing QLE is not restricted to harmonic systems. Moreover,
the functional form of the friction operator is simple and is readily
implemented numerically. Thus, our generalized multi-dimensional
QLE approach can provide a simple scheme for dissipative quantum
wave packet dynamics simulations of common molecular systems.

B. Photon-echo polarization
The theoretical description of 2DES is related to the third-order

polarization at a specific phase-matching direction. For the dynam-
ical simulation of signals in such a four-wave mixing experiment,
we directly simulate the system interaction with three external laser
pulses,

i̵h
∂

∂t
∣Ψ(t)⟩ = [H0 + Hint(t)]∣Ψ(t)⟩, (20)

where the system is described by a time-independent zeroth-
order Hamiltonian H0 and the field–matter interaction Hamiltonian
Hint(t) is represented by the molecular dipole Hamiltonian,

Hint(t) = −μ ⋅
3

∑

a=1
Ea(t),

= −μ
3

∑

a=1
Λa(t, τa)(eika ⋅r−iωa(t−τa) + c.c.). (21)

Here, the dipole operator is denoted as μ and the electric field of
the ath laser pulse Ea(t) is described by its envelope Λa(t, τa), wave
vector ka, central frequency ωa, and pulse central time τa. With the
interaction Hamiltonian, we can define the third-order polarization
through the time-dependent perturbation theory (TDPT). Accord-
ing to TDPT, we treat the field–matter interaction as a perturba-
tion to the system, and the corresponding nth-order wavefunction
is defined as

∣ϕ(n)(t)⟩ =(−
i
̵h
)

n

∫

t

0
dτn ∫

τn

0
dτn−1⋯∫

τ2

0
dτ1U0(t)

× Hint,I(τn)Hint,I(τn−1)⋯Hint,I(τ1)∣ϕ(0)⟩. (22)

Here, U0(t) denotes the time-evolution operator defined by H0, and
the subscript I represents the operator in the interaction picture,
Hint,I(t) = U†

0 (t)Hint(t)U0(t) . By definition, the total polarization
is defined as the expectation value of the dipole operator μ, and the
corresponding Nth-order polarization P(N )(t) can be calculated by

P(N)(t) =
N

∑

m=0
⟨ϕ(N−m)(t)∣μ∣ϕ(m)(t)⟩, (23)

where the sum of the order of ket and bra equals to N for each term
in P(N )(t). In particular, we consider the case of N = 3,

P(3)(t) =
3

∑

m=0
⟨ϕ(3−m)(t)∣μ∣ϕ(m)(t)⟩. (24)

Note that in Hint(t), each laser field contains both +k- and −k-
components, and as a result, the polarization calculated by Eq. (24)
includes signals at all possible phase-matching directions (i.e.,
ks = ±k1 ±k2 ±k3).

For density-matrix based dynamical simulations, both per-
turbative and non-perturbative approaches have been proposed
to calculate the photon-echo signals. To extract the third-order
polarization at a phase-matching direction corresponding to the
2DES experiment, it can be done non-perturbatively by the lin-
ear combination of the total polarizations calculated at differ-
ent phase angles.33–36 Although the idea of this phase-cycling
approach is straightforward, the computational cost is too high
to be useful in calculating the 2DES signals of a general multi-
dimensional system. Alternatively, the equation-of-motion phase-
matching-approach (EOM-PMA) proposed by Domcke and co-
workers37,38 has provided an efficient method to obtain the third-
order polarization at a given phase-matching direction through a
perturbative procedure. The EOM-PMA method has been incor-
porated into various dynamical theories and applied to simulate
the effects of a dissipative environment on 2DES spectra, such as
Redfield theory,37,38 time-nonlocal quantum master equation,39–41

and HEOM.32,42,43,59 However, the computational efficiency of the
density-matrix based method decreases with the increase in the
dimensionality of the molecular system. Numerically, for a system
described by N basis states, the computational cost of density-matrix
based methods scales as O(N2

), whereas the wavefunction based
methods scale as O(M×N) for M trajectories, which can be individ-
ually calculated by parallel computing. Therefore, the wavefunction
based method may provide a more efficient way for 2DES spec-
tra simulations of a general molecular system with the considera-
tion of both equally important electronic and vibrational degrees of
freedom.

To extract the third-order polarization at a particular phase-
matching direction through wavefunction based quantum dynami-
cal simulations, we first adjust the form of Hint(t) so that the phase-
matching condition can be achieved. We rewrite the dipole operator
into the corresponding excitation part X and de-excitation part X†,

μ =∑
n

∑

{n′ ∣ϵn′>ϵn}
μnn′ ∣n⟩⟨n′∣ + μn′n∣n′⟩⟨n∣

≡ X + X†, (25)

where μn ,n′ denotes the transition dipole moment between states n
and n′ with energy ϵn ≤ ϵn′ . Using the fact that the photo-induced
excitation and de-excitation (or emission) are associated with the
direction of the wave vector [that is, given small laser detuning, the
excitation (de-excitation) of ket (bra) is dominated by the contribu-
tion from the +k-component of the laser field, and vice versa], we
recast Hint(t) into the following form:

Hint(t) = −X
3

∑

a=1
Λa(t, τa)e−iωa(t−τa) + h.c.

≡ −

3

∑

a=1
(Va(t) + V†

a (t)). (26)

As the effect of eik⋅r(e−ik⋅r) is embedded in the operator X(X†
) , a

specific phase-matching condition can be realized by selective com-
binations of Va(t) and V†

a (t) in Hint(t). For the simulation of 2DES
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signals, we consider the 3PPE polarization with the phase-matching
direction ks = −k1 + k2 + k3, and the corresponding interaction
Hamiltonian becomes

Hint(t) = −V1(t) − V†
2 (t) − V

†
3 (t). (27)

Note that the 3PPE polarization corresponds to the system interac-
tion with each pulse in first order, that is, each of the Hint ,I(t) in
Eq. (22) corresponds to one of V1(t), V†

2 (t) , and V†
3 (t) . Given

that the initial state is the electronic ground state, which cannot be
annihilated (X∣g⟩ = ⟨g∣X†

= 0) and that the time-ordering of each
pulse can be interchanged, we obtain the 3PPE polarization, which
corresponds to the nonzero terms in Eq. (24),

P(3)PE (t) =⟨ϕ
(2)
101†(t)∣X∣ϕ

(1)
01†0(t)⟩ + ⟨ϕ(2)11†0(t)∣X∣ϕ

(1)
001†(t)⟩

+ ⟨ϕ(1)100(t)∣X∣ϕ
(2)
01†1†(t)⟩ + ⟨ϕ(0)000(t)∣X∣ϕ

(3)
11†1†(t)⟩. (28)

Here, ∣ϕ(n)a(†)b(†)c(†)(t)⟩, where a, b, and c are integers of either 0 or 1
and n = a + b + c denotes a nth-order contribution caused by inter-
acting with laser pulses 1, 2, and 3 by a number of a, b, and c times,
respectively. For instance, ∣ϕ(2)01†1†(t)⟩ represents the second-order
contribution due to the interaction with the second pulse and third
pulse once each and no interaction with the first pulse. The other
terms in Eq. (28) can be understood in a similar fashion. Terms in
Eq. (28) include the Liouville pathways of ground state bleaching
(GSB), stimulated emission (SE), and excited state absorption (ESA).
Note that the bras and kets in Eq. (28) do not represent physical
states; the Dirac notation used in Eq. (28) is merely a notation of
vectors for simplicity. Furthermore, these perturbative terms can-
not be obtained by solving the TDSE directly. If we propagate a
wavefunction by a specific combination of field–matter interactions
as

i̵h
∂

∂t
∣ψa(†)b(†)c(†)(t)⟩ =[H0 − aV(†)1 (t) − bV

(†)
2 (t) − cV

(†)
3 (t)]

× ∣ψa(†)b(†)c(†)(t)⟩, (29)

then the auxiliary wavefunction ∣ψa(†)b(†)c(†)(t)⟩ would contain all
orders of perturbative contributions due to combinations of the
three field–matter interactions because the wavefunction evolved
by Eq. (29) can interact with each pulse an arbitrary number of
times. Thus, ∣ϕ(n)a(†)b(†)c(†)(t)⟩ ≠ ∣ψa(†)b(†)c(†)(t)⟩. In order to extract

the ∣ϕ(n)a(†)b(†)c(†)(t)⟩ terms used in Eq. (28), we treat the wavefunc-
tion defined by Eq. (29) as an auxiliary wavefunction, which acts
as a mathematical tool to the desired perturbative contributions. In
the weak-field limit, we can derive the formula for the calculation
of 3PPE polarization by a perturbative scheme. The derivation is
presented in the Appendix, and the formulas that relate terms in
Eq. (28) to auxiliary wavefunctions defined by Eq. (29) are given by
Eqs. (A10)–(A16). The presented method for calculating third-order
polarization at a particular phase-matching direction is in the same
spirit as the EOM-PMA proposed by Krčmář et al.44 In addition, the
procedure described in this section can also be applied to the calcu-
lations of other four-wave mixing signals and be generalized to other
nonlinear responses.

C. Simulation of 2DES spectra
To simulate the 2DES signals in a condensed-phase environ-

ment, we incorporate the QLE approach (Sec. II A) with the sim-
ulation of quantum wave packet dynamics under the influences of
external fields. For a system with N electronic states described by
a time-independent Hamiltonian Hs, the 3PPE polarization can be
calculated by the auxiliary wavefunctions [Eqs. (28) and (A10)–
(A16)] propagated by the following auxiliary Schrödinger equations:

i̵h
∂

∂t
∣ψ11†1†(t)⟩

= [Hs + F(t) − V1(t) − V†
2 (t) − V

†
3 (t)]∣ψ11†1†(t)⟩, (30)

i̵h
∂

∂t
∣ψ11†0(t)⟩ = [Hs + F(t) − V1(t) − V†

2 (t)]∣ψ11†0(t)⟩, (31)

i̵h
∂

∂t
∣ψ1†10(t)⟩ = [H

†
s + F†

(t) − V†
1 (t) − V2(t)]∣ψ1†10(t)⟩, (32)

i̵h
∂

∂t
∣ψ101†(t)⟩ = [Hs + F(t) − V1(t) − V†

3 (t)]∣ψ101†(t)⟩, (33)

i̵h
∂

∂t
∣ψ1†01(t)⟩ = [H

†
s + F†

(t) − V†
1 (t) − V3(t)]∣ψ1†01(t)⟩, (34)

i̵h
∂

∂t
∣ψ01†1†(t)⟩ = [Hs + F(t) − V†

2 (t) − V
†
3 (t)]∣ψ01†1†(t)⟩, (35)

i̵h
∂

∂t
∣ψ1†00(t)⟩ = [H

†
s + F†

(t) − V†
1 (t)]∣ψ1†00(t)⟩. (36)

i̵h
∂

∂t
∣ψ01†0(t)⟩ = [Hs + F(t) − V†

2 (t)]∣ψ01†0(t)⟩, (37)

i̵h
∂

∂t
∣ψ001†(t)⟩ = [Hs + F(t) − V†

3 (t)]∣ψ001†(t)⟩, (38)

i̵h
∂

∂t
∣ψ000(t)⟩ = [Hs + F(t)]∣ψ000(t)⟩. (39)

Note that the total Hamiltonian is non-Hermitian due to the selec-
tive field–matter interactions such that the Schrödinger equation
for bra and ket states has to be propagated separately. By defini-
tion, ⟨ψabc(t)∣ ≡ ∣ψa†b†c†(t)⟩

†, and we can recast the Schrödinger
equations for a bra into an equivalent ket Schrödinger equation.

In 2DES, the interactions between the system and three laser
pulses are characterized by three delay times: coherence time τ, pop-
ulation time T, and detection time t. At a given population time,
the corresponding 2DES spectrum is obtained by the 2D Fourier
transform,

S(ωτ ,T,ωt) ∼ ∫

∞

−∞
dτ∫

∞

0
dt e−iωττeiωt t

× iP(3)PE (τ,T, t), (40)

SR(ωτ ,T,ωt) ∼ ∫

∞

0
dτ∫

∞

0
dt e−iωττeiωt t

× iP(3)PE (τ,T, t), (41)

SNR(ωτ ,T,ωt) ∼ ∫

0

−∞
dτ∫

∞

0
dt e−iωττeiωt t

× iP(3)PE (τ,T, t), (42)

where the subscripts R and NR denote rephasing and non-rephasing
spectra, respectively.
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D. Basis-set expansion
For efficient numerical simulations, a matrix representation of

operators can be obtained by choosing a set of basis functions. In
general, for different electronic states, different sets of orthonormal
functions can be used. In particular, considering a system with N
electronic states and M vibrational modes, we can choose a set of
basis functions for the nth electronic state that satisfies

∑

α
∣ϕnα⟩⟨ϕnα∣ = I, (43)

where the electronic state-specific basis functions ∣ϕnα⟩ form a set
of M-dimensional orthonormal functions. ∣ϕnα⟩ could be further
decomposed into a direct product ofM basis functions for individual
modes, but we chose to keep it general here. The total wavefunction
can be represented by the linear combination of the basis functions,

∣Ψ⟩ =
N

∑

n=1
∣ψn⟩⊗ ∣n⟩

=

N

∑

n=1
∑

α
cnα∣ϕnα⟩⊗ ∣n⟩, (44)

where cnα = ⟨ϕnα∣ψn⟩. The generic total Hamiltonian discussed in
this study can be written as

H(t) = Hs + F(t) + Hint(t)

=

N

∑

n=1
(ϵn + hn)∣n⟩⟨n∣ +

N

∑

n=1
∑

n′≠n
Jnn′ ∣n⟩⟨n′∣

+
N

∑

n=1
Fn(t) −

3

∑

a=1
V(†)a (t). (45)

Here, ϵn, hn, and Jnn′ denote the electronic state energy, vibrational
Hamiltonian, and the interstate coupling (in general, as a function of
nuclear degrees of freedom), respectively. The corresponding matrix
representation is

Hs =
N

∑

n=1
(ϵn + hn)∣n⟩⟨n∣ +

N

∑

n=1
∑

n′≠n
Jnn′ ∣n⟩⟨n′∣

=

N

∑

n=1
ϵn ⋅ I ⊗ ∣n⟩⟨n∣

+
N

∑

n=1
∑

α
∑

α′
hn,αα′ ∣ϕnα⟩⟨ϕnα′ ∣⊗ ∣n⟩⟨n∣

+
N

∑

n=1
∑

n′≠n
Jnn′ ,αα′ ∣ϕnα⟩⟨ϕn′α′ ∣⊗ ∣n⟩⟨n′∣, (46)

Fn(t) =
M

∑

i=1
[
ηn,i

mi
⟨pi⟩n(t) − fn,i(t)][ri − ⟨ri⟩n(t)]∣n⟩⟨n∣

≡

M

∑

i=1
(Γn,i(t)ri − Γ̃n,i(t))∣n⟩⟨n∣

=

M

∑

i=1
∑

α
∑

α′
Γn,i(t)ri,αα′ ∣ϕnα⟩⟨ϕnα′ ∣⊗ ∣n⟩⟨n∣

+
M

∑

i=1
Γ̃n,i(t) ⋅ I ⊗ ∣n⟩⟨n∣, (47)

Va(t) = XΛa(t, τa)e−iωa(t−τa)

= Λa(t, τa)e−iωa(t−τa)
N

∑

n=1
∑

{n′ ∣ϵn′>ϵn}
μnn′ ∣n⟩⟨n′∣

= Λa(t, τa)e−iωa(t−τa)
N

∑

n=1
∑

{n′ ∣ϵn′>ϵn}

×∑

α
∑

α′
μnn′ ,αα′ ∣ϕnα⟩⟨ϕn′α′ ∣⊗ ∣n⟩⟨n′∣, (48)

where Γn ,i(t), Γ̃n,i(t) , and the matrix elements are defined as

Γn,i(t) =
ηn,i

mi
⟨pi⟩n(t) − fn,i(t), (49)

Γ̃n,i(t) = Γn,i(t) ⋅ ⟨ri⟩n(t), (50)

hn,αα′ = ⟨ϕnα∣hn∣ϕnα′⟩, (51)

Jnn′ ,αα′ = ⟨ϕnα∣Jnn′ ∣ϕn′α′⟩, (52)

ri,αα′ = ⟨ϕnα∣ri∣ϕnα′⟩, (53)

μnn′ ,αα′ = ⟨ϕnα∣μnn′ ∣ϕn′α′⟩. (54)

Note that in general, the transition dipole moment μnn′ can be a
function of nuclear coordinates. Under the Condon approximation,
Eq. (54) becomes μnn′ ,αα′ = μnn′⟨ϕnα∣ϕn′α′⟩. Moreover, one can use
a single set of basis functions for all electronic states, and the cor-
responding matrix representation is obtained by simply replacing
∣ϕnα⟩ by ∣ϕα⟩.

In reality, since the spectroscopic signals correspond to the
transitions between the eigenstates of Hs, it is necessary to fur-
ther transform the Hamiltonian into the eigenbasis representation.
Assuming that Hs is Hermitian, we can define the unitary transfor-
mation matrix T, which consists of the eigenstates of Hs, and it can
be obtained by the diagonalization of Hs,

H̃s = T†HsT. (55)

With the transformation matrix T, we can transform the total wave-
function and the operators into the eigenbasis
representation by

∣Ψ̃⟩ = T†
∣Ψ⟩, (56)

H̃(t) = H̃s + F̃(t) −
3

∑

a=1
Ṽ(†)a (t), (57)

F̃(t) = T†F(t)T, (58)

Ṽa(t) = T†Va(t)T. (59)

The 3PPE polarization can be calculated by numerical propagations
of auxiliary Schrödinger equations in the eigenbasis representation.
In this study, an iterative Crank–Nicolson scheme is adopted for the
time propagations.
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III. RESULTS AND DISCUSSIONS
A. Model system

To demonstrate the applicability of the QLE approach in 2DES
simulations, we consider a model system described by two displaced
1D harmonic oscillators (in mass-weighted coordinates),

Hs = (ϵg + hg)∣g⟩⟨g∣ + (ϵe + he)∣e⟩⟨e∣, (60)

hg =
1
2
p2 +

1
2
ω2

0r
2, (61)

he =
1
2
p2 +

1
2
ω2

0(r − d)
2. (62)

Here, ϵg and ϵe are the electronic energies of ground and excited
states, respectively. For the vibrational Hamiltonians hg and he,
ω0 is the vibrational frequency and d corresponds to the differ-
ence between the equilibrium position of electronic ground and
excited states. The parameters used in simulations carried out in
this work are summarized in Table I. To describe the influences of
a condensed-phase environment, we consider the Markovian fric-
tion and assume that the friction coefficients for different electronic
states are the same. The corresponding friction operator is

F(t) = Fg(t)∣g⟩⟨g∣ + Fe(t)∣e⟩⟨e∣

= (Γg(t)r − Γ̃g(t))∣g⟩⟨g∣ + (Γe(t)r − Γ̃e(t))∣e⟩⟨e∣, (63)

Γn(t) = η⟨p⟩n(t) − fn(t), (n = e, g), (64)

Γ̃n(t) = Γn(t) ⋅ ⟨r⟩n(t). (65)

For the field–matter interactions, we consider the system interacting
with Gaussian pulses,

Va(t) = X ⋅ Iae
−4 ln 2 (t−τa)

2

τ2
p e−iωa(t−τa)

= Iae
−4 ln 2 (t−τa)

2

τ2
p e−iωa(t−τa)μge∣g⟩⟨e∣, (66)

where Ia is the intensity of the ath pulse and τp is the pulse width
[full width at half maximum (FWHM)]. We further consider the
Condon approximation such that μge is a constant. In this study, the
initial wave packet is set to be the vibrational ground state of ∣g⟩.
Without loss of generality, we do not take the static disorder into
account, which can be included by the ensemble-average of 2DES
signals simulated from different initial conditions (i.e., the electronic
energy gap) sampled from a Gaussian distribution.39

TABLE I. Parameters for the system Hamiltonian of the model two-level system.

Parameters Value

ωeg
a 5000 cm−1

ω0 500 cm−1

Sb 0.8

aωeg = (ϵe − ϵg)/̵h.
bThe displacement with respect to the ground-state equilibrium position d is character-
ized by the Huang–Rhys factor S = ω0d2/2̵h.

Numerically, we adopt a finite basis representation (FBR) that
includes a truncated set of vibrational eigenstates on each elec-
tronic potential energy surface (Gauss–Hermite functions). Note
that although we adopt the GWA to derive the friction operator in
the QLE approach, the final equation of motion [Eq. (19)] is not lim-
ited to a certain nuclear basis. For the harmonic model system stud-
ied in this work, we adopt the FBR because it is straightforward for
the interpretation of simulated spectra. In general, one can choose
other basis representations or Ansätze, such as Gaussian functions
and multi-configuration time-dependent Hartree (MCTDH) meth-
ods,60 to implement the QLE approach. Denote the vibrational
eigenstates of electronic ground and excited states as ∣αg⟩ and ∣αe⟩,
respectively, and define a short-hand notation ∣n,α⟩ = ∣n⟩ ⊗ ∣αn⟩,
where n = g, e. The matrix representation of the total Hamiltonian
in the FBR can be obtained,

H(t) = Hs + F(t) + Hint(t)

= Hs + Fg(t) + Fe(t) −
3

∑

a=1
V(†)a (t), (67)

Hs =∑
α
[ϵg + ̵hω0(α +

1
2
)]∣g,α⟩⟨g,α∣

+∑
α
[ϵe + ̵hω0(α +

1
2
)]∣e,α⟩⟨e,α∣, (68)

Fg(t) =

√
̵h

2ω0
∑

α
∑

α′
[Γg(t)

√

α′ + 1δα,α′+1

+Γg(t)
√

α′δα,α′−1 − Γ̃g(t)δα,α′]∣g,α⟩⟨g,α′∣, (69)

Fe(t) =

√
̵h

2ω0
∑

α
∑

α′
[Γe(t)

√

α′ + 1δα,α′+1

+Γe(t)
√

α′δα,α′−1 − Γ̃e(t)δα,α′]∣e,α⟩⟨e,α′∣, (70)

Va(t) = Iae
−4 ln 2 (t−τa)

2

τ2
p e−iωa(t−τa)μge

×∑

α
∑

α′
Sα,α′ ∣g,α⟩⟨e,α′∣, (71)

Sα,α′ = e−
S
2

α
∑

i=0

α′

∑

j=0

(−1)jS
i+j
2

i!j!

×

√

α!α′!
(α − i)!(α′ − j)!

δα−i,α′−j. (72)

Here, Sα,α′ = ⟨α∣α′⟩ is the Franck–Condon overlap integral between
the αth vibrational eigenstate of ∣g⟩ and the α′th vibrational eigen-
state of ∣e⟩. Note that this representation is already the nuclear
eigenstate representation with respect to each electronic potential
energy surface, and therefore, the constructed Hamiltonian would
be block-diagonalized in each electronic state. The only transitions
possible are electronic transitions induced by the field–matter inter-
actions [Eq. (71)] and vibrational transitions induced by the friction
operator [Eqs. (69) and (70)].
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B. Dissipative wave packet dynamics

To demonstrate the ability of our method to describe the effects
of a dissipative environment, we simulated the wave packet dynam-
ics after the model system (Table I) undergoes an excitation by a
laser pulse with central frequencyω = ωeg+(S − 1/2)ω0 = 5150 cm−1

(vertical transition), and FWHM = 20 fs. Note that the initial wave
packet is prepared at |g, 0⟩. The time evolution of the expectation
value of the position for the excited-state wave packet at different
friction coefficients η is shown in Fig. 1. Note that in Fig. 1, the zero
time is set to be the pulse central time. After the excitation by an
external field, the excited-state wave packet is generated and evolves
on the excited-state potential energy surface. Due to the finite-width
pulse, the excitation of the ground-state wave packet and the evo-
lution of the excited-state wave packet occurred simultaneously and
continuously before the pulse central time (t = 0) is reached, and as
a result, the initial value of re/d deviates from the Franck–Condon

point (re/d = −1). The expectation value of the position corresponds
to the center of the wave packet and varies in time as a damped oscil-
lation. In addition, as the strength of friction increases, as shown
in Figs. 1(a)–1(d), the damping is more pronounced. The attenua-
tion of oscillation implies that the friction operator can describe the
dissipative dynamics induced by a condensed-phase environment.

Moreover, in Fig. 1, we also compared the dynamics with and
without the inclusion of random forces at an ambient tempera-
ture (300 K). The inclusion of random forces does not affect the
overall dynamics significantly because the relaxation of the excited-
state wave packet from vibrational excited states is dominant in the
photo-induced dynamics investigated here. We observe that even in
a highly dissipative environment, the magnitude of thermal fluc-
tuation at ambient temperature is much smaller than the energy
gaps between the low-lying excited states of the system such that
the contribution from thermally activated dynamics is negligible.
Although the random forces might contribute to the dephasing of

FIG. 1. The time-dependent expectation value of the position for the excited-state wave packet after excitation by a laser pulse. Dynamics simulated at four different friction
coefficients (η) are shown. In addition, the solid line corresponds to the results from the simulation without the inclusion of random forces, and the dashed line represents the
results obtained from the simulation with the inclusion of random forces and averaged over 500 trajectories.
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electronic coherence, in the specific model studied here, dissipation
dominates and vibrational coherence is nearly unaffected by the ran-
dom forces. Based on the above discussions, our results justified that
the effects of random forces are not significant in the simulations
of dissipative photo-induced dynamics under ambient temperature
for the model studied here. This should be valid for model sys-
tems in which the vibrational relaxation within a potential energy
surface involves vibrational quanta much larger than the thermal
energy, resulting in negligible thermally activated uphill vibrational
transitions. Therefore, in this study, the 2DES spectra reported
in the following were simulated without the inclusion of random
forces.

The importance of the random force term in a Schrödinger–
Langevin equation approach has been investigated previously,54 and
it was concluded that the QLE approach could still adequately
describe non-equilibrium dissipative dynamics without explicitly
including the random force term. Moreover, a previous study also
showed that a Schrödinger equation with friction can be derived
from a quantum trajectory perspective to describe the quantum dis-
sipative dynamics of various models. While details about the regimes
where the random force term could be safely neglected must be fur-
ther investigated, we are confident that the random force does not

play a significant role in the dynamics and 2DES spectra simulated
in this work.

C. Simulated 2DES spectra
To investigate the effects of a dissipative environment on 2DES

spectra, we have simulated 2DES spectra of the model system under
different values of the friction coefficient η from a typical solvent
environment with an energy relaxation timescale in picoseconds
(η = 2 × 10−3 fs−1) to a highly dissipative environment (η = 2
× 10−2 fs−1). For the spectra reported in this work, the initial wave
packet is set to be |g, 0⟩ to mimic the thermalized ground state.
To illustrate the environmental effects on spectral features, we con-
sider the representative case of η = 1 × 10−2 fs−1. Figures 2 and 3
show rephasing and non-rephasing spectra at different population
times, respectively. Peaks in these spectra exhibit a Lorentzian peak
shape, which arises from the rapid relaxation of the environment. It
is because the environmental effects are described by the Markovian
QLE, and the time evolution of the system is analogous to a particle
in harmonic potential undergoing Brownian motion.

In both rephasing and non-rephasing spectra, the diagonal
peaks show equally spaced peaks in the excitation frequencies and

FIG. 2. The real part of simulated rephasing spectra at different population times T (η = 1 × 10−2fs−1
) . The spectra are rescaled by setting the maximum of the rephasing

spectrum at T = 0 to be 1. The Lorentzian peak shape arises from the rapid relaxation of the environment. As the population time increases, the decrease in the diagonal
peak D2 amplitude describes the vibrational relaxation in the excited state, and the oscillation in peak amplitudes is due to the coherent wave packet dynamics.
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FIG. 3. The real part of non-rephasing spectra at different population times T (η = 1 × 10−2fs−1
) .

an amplitude distribution that is in agreement with the predic-
tion from the Huang–Rhys factor (S = 0.8), which resembles the
appearance of the vibrational progression corresponding to the lin-
ear absorption spectrum. The vertical cut along a specific ωτ pro-
vides information on emission (fluorescence) at a fixed excitation
frequency. Given a particular ωτ , the peaks with ωt < ωτ correspond
to the Stokes emissions. For example, the peak with ωτ = 5000 cm−1,
ωt = 4500 cm−1 mainly arises from the pathways that undergo an
excitation from ∣g, 0⟩ to ∣e, 0⟩ and emit through a ∣e, 0⟩ to ∣g, 1⟩
transition. Notice that the overall shape of the 2D spectra is non-
symmetric with respect to the horizontal cut along ωt = 5000 cm−1

since the peaks with ωt < 5000 cm−1 are contributed from the Stokes
emissions via transitions between the excited state and the high-lying
vibrational state in the ground state, which have small transition
dipole moments. Moreover, for the labeled diagonal peaks D1 and
D2, the decrease in the D2 amplitude accompanies the increase in
the D1 amplitude during the population time, and this correlated
change in amplitudes can be attributed to the vibrational relaxation
in the excited state. In addition, the oscillations in peak amplitudes
are indicative of the vibrational coherent dynamics during the pop-
ulation time. The evolution of peak amplitudes will be discussed
later.

Notice that at the long population time, the oscillations in
peak amplitudes in both rephasing and non-rephasing spectra are

attenuated, and in particular, the peak O1 and O2 have similar
amplitude and peak shape where the phase patterns are symmetric
with respect to the diagonal of the spectra. The similarity between
the features of peaks O1 and O2 suggests that these cross peaks
mainly reflect the contributions from the GSB pathways at a long
population time. The Liouville pathways that may contribute to
peaks O1 and O2 at a long population time are shown in Fig. 4. For
rephasing spectra, both the GSB pathways that contributed to O1
and O2 are possible. However, the vibrational transfer (VT) path-
ways have different contributions to O1 and O2. The corresponding
pathway for O1 involves the population transfer from ∣e, 0⟩ to ∣e, 1⟩
during the population time, which corresponds to the uphill VT and
is energetically unfavorable. In contrast, the corresponding pathway
for O2 involves the vibrational relaxation from ∣e, 1⟩ to ∣e, 0⟩, which
is a favorable downhill VT process. Therefore, the VT pathways will
have a negligible contribution to O1 such that the amplitude of O1
is solely contributed from the GSB pathways, whereas O2 is con-
tributed from both GSB and VT pathways. Generally speaking, the
GSB and VT pathways may have comparable contributions on the
cross peaks. In the present model, the contributions of GSB path-
ways dominate the spectra at a long population time as their overall
transition probability, which is related to the magnitude of transi-
tion dipole moment in each vibronic transition and the distribu-
tion of vibronic-state population, is larger than the overall transition
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FIG. 4. Double-sided Feynman diagrams for possible pathways contributed to the cross peaks O1 and O2 at a long population time. The similarity of the peak shape in O1
and O2 mainly results from the GSB pathways instead of the vibrational transfer (VT) pathways that the contributions are related to the excited state population and the
direction of VT.

probability of VT pathways. As a result, both peak O1 and O2 are
mainly contributed from the GSB pathways and have similar ampli-
tude and peak shape in the long population time. The discussions are
the same for the non-rephasing spectra. These observations suggest
that the existence of cross peaks may not be a distinctive signature
of VT when interpreting the 2DES spectra at a long population time.

D. Vibrational relaxation
To elucidate the effects of a dissipative environment on the

vibrational dynamics and the corresponding spectroscopic signals,
the evolution of the peak amplitude during the population time
is further analyzed. Figure 5 shows that the peak amplitudes of
the labeled peaks in rephasing spectra (Fig. 2) vary in population
time. Considering diagonal peaks D1 and D2, the amplitude of D1
increases as a function of population time, whereas the amplitude
of D2 decreases. Moreover, the decay rate of D2 increases with
the increase in the strength of friction. The results suggest that the
decrease in the D2 amplitude is due to the vibrational relaxation in
the excited state. The peak D2 corresponds to the excitation from
∣g, 0⟩ to ∣e, 1⟩, and therefore, the D2 amplitude is related to the pop-
ulation of ∣e, 1⟩. Under the dissipative environment, the vibrational
relaxation from ∣e, 1⟩ to ∣e, 0⟩ during the population time is allowed,
and the decrease in ∣e, 1⟩ population leads to the decrease in the D2
amplitude. Therefore, the decrease in the D2 amplitude provides a
signature of vibrational relaxation.

More interestingly, the increase in the D1 amplitude suggests
the existence of coherence to population transfer. As illustrated in
Fig. 6, the excited-state coherence transfer during the population
time leads to the increase in ∣e, 0⟩ population, which increases the
D1 amplitude. Moreover, the increase in the D1 amplitude is more
significant when the strength of friction is weaker, which implies that
for the slower decoherence rate, the coherence transfer in the excited
state is more likely to occur, consistent with our discussions. Similar
features of the evolution of diagonal peak amplitudes are observed
in the non-rephasing spectra. As shown in Fig. 7, the increase in
the D1 amplitude can be attributed to the coherence transfer on the
electronic excited state.

The decay in diagonal peak amplitudes implies that the QLE
approach successfully describes the vibration relaxation dynam-
ics in a condensed-phase environment. In addition, the coherence
transfer pathways, which are often neglected in Redfield-theory
based methods with secular approximation to preserve the posi-
tivity, are naturally involved in our wavefunction based method.
In addition, conventionally, the cross peaks, especially the one in
the lower diagonal (e.g., peak O2), are considered to be the sig-
nature of VT. However, following the discussions on Fig. 2 about
the peak shapes of cross peaks O1 and O2 in the long population
time, the cross peaks are mainly contributed from GSB instead of
VT. Hence, our computational results suggest that the spectral fea-
tures of VT are less obvious by solely observing the existence of cross
peaks.
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FIG. 5. The time evolution of the amplitude of the labeled peak in rephasing spectra (Fig. 2) under different strengths of friction. The vibrational relaxation, coherence transfer,
and decoherence induced by a dissipative environment manifest the decrease in the D2 amplitude, the increase in the D1 amplitude, and the attenuation of quantum beats,
respectively.

E. Vibrational quantum beating

As shown in Fig. 5, the evolution of peak amplitudes in the pop-
ulation time is associated with a quantum beating. The beating in
amplitude has the same frequency as the vibration frequency ω0 of
the system, which implies that the amplitude oscillation manifests
the vibrational coherence. Moreover, the beating amplitude attenu-
ates as the population time increases, and the decay in the amplitude
is faster as the strength of friction increases. The change in the beat-
ing amplitude corresponds to the decoherence of the system under a
dissipative environment. The results indicate that the QLE approach
can describe the transition between coherent and incoherent wave
packet dynamics.

The beating in peak amplitude consists of both ground-state
and excited-state vibrational coherences that arise from the wave
packet dynamics within an electronic state. In Fig. 5, an out-of-
phase oscillation between the amplitude of diagonal peaks with

respect to the cross peaks is observed. To elucidate the origin of
the observed vibrational quantum beatings, we further analyze the
coherence pathways that associated with each peak. The coherence
pathways contributing to the labeled peaks in rephasing spectra are
shown in Fig. 8. For each labeled peak, we list the major excited-
state coherence (ESC) and ground-state coherence (GSC) pathways
and their transition dipole strengths defined by the product of transi-
tion dipole moments of vibronic transitions, which can be regarded
as weightings of each pathway contribution. Under the Condon
approximation, the transition dipole moment is proportional to the
Franck–Condon factor. We first focus on the cross peaks O1 and O2.
For peak O1, the vibrational coherence in the ESC pathway is out-of-
phase relative to the one in GSC pathways such that the beating from
different pathways partially cancels out. Within the model system we
studied in this work, the Huang–Rhys factor S < 1 such that the tran-
sition dipole strength of ESC pathways is larger than the one of the
GSC pathways and the beating in peak O1 is the net contribution
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FIG. 6. The Liouville pathway accounts for the increase in the D1 amplitude. The
increase in the amplitude can be attributed to the excited-state coherence transfer
process.

from ESC. For peak O2, the vibrational coherences in both ESC and
GSC pathways are in-phase and the beating is the sum of them. Due
to the larger transition dipole strength of ESC, the observed beat-
ing in peak O2 is dominated by the ESC contribution. Therefore,
the ESC is dominant in the vibrational quantum beating in peaks
O1 and O2, which suggests that the cross peaks can provide the ESC
information.

Next, for both diagonal peaks D1 and D2, the vibrational coher-
ence between the ESC and GSC pathways is out-of-phase. However,
both coherence pathways have the same transition dipole strength
such that one cannot determine directly which pathway is domi-
nant. Note that normally, the decoherence of ESC, such as ∣e, 1⟩⟨e, 0∣
and ∣e, 2⟩⟨e, 1∣, would be faster than the GSC and is indeed found so
in our trace in Fig. 5. Based on the observation of the out-of-phase
oscillation between diagonal and cross-peak amplitudes and the pre-
vious discussion that the beating in peak O1 is dominated by ESC, we
suggest that the GSC is dominant in the beating in diagonal peaks.
Therefore, based on our model calculations, the diagonal peaks and
cross peaks can provide information of GSC and ESC, respectively.
The results suggest that 2DES could be an effective probe for dis-
tinguishing ESC and GSC, which is useful for probing different
potential energy surfaces in different electronic states. These general
principles provide a powerful basis for observing vibrational coher-
ences on different electronic potential energy surfaces via the 2DES

FIG. 7. Top row: the time evolution of
the amplitude of the labeled peak in
non-rephasing spectra (Fig. 3) under dif-
ferent strengths of friction. Bottom row:
the peak shape change in D2 in non-
rephasing spectra along the population
time (η = 2 × 10−3 fs−1). The phase-
flipping suggests that the amplitude of
D2 is dominated by coherence path-
ways.
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FIG. 8. Double-sided Feynman diagrams for the major coherence pathways contributing to the labeled peaks in rephasing spectra. The vibrational quantum beating in 2DES
signals contains information on both excited-state coherence (ESC) and ground-state coherence (GSC). For peaks D1, D2, and O1, the ESC and GSC are out-of-phase,
whereas the ESC and GSC are in-phase for peak O2. The transition dipole strength, defined as the product of transition dipole moments, is used to determine the relative
contribution of ESC and GSC pathways. In contrast to the beatings in cross peaks that are dominated by ESC, the transition dipole strengths alone cannot determine which
type of coherence is dominant in the diagonal peaks.

technique. However, we only investigated a simple displaced har-
monic oscillator model in this work. For more complex systems,
additional considerations might be needed in order to accurately
interpret vibronic quantum beating signals on 2DES spectra.

In addition to the signals in rephasing spectra, the oscilla-
tion in peak amplitudes is also observed in non-rephasing spectra
(Fig. 7), where the attenuation of the beating amplitude arises from
the decoherence induced by the environment. In contrast to rephas-
ing spectra, the signal contributed from the pathways that involve
vibrational coherence is shown to be more pronounced in the case
of non-rephasing spectra such that the increase in the D1 amplitude
is less significant. Comparing the evolution of the peak amplitude in
rephasing (Fig. 5) and non-rephasing spectra, the oscillations in sig-
nals of non-rephasing spectra have a phase shift of π with respect to
the signals in rephasing spectra. The phase shift is due to the reverse
order of interactions between the first two pulses in a non-rephasing
condition. Furthermore, the coherent dynamics of the system leads
to the change in the peak shape of D2 in non-rephasing spectra
(Fig. 7). Under the condition of weak friction strength, the peak
shape of D2 shows a periodic change during the population time
until the decoherence is completed. As shown in Fig. 7, the change
in the peak shape, which corresponds to flipping with respect to
the anti-diagonal line and the sign change in the amplitude at the
peak center, implies that the coherence pathways have dominant
contributions to the D2 amplitude. Overall, the simulated spectra
demonstrated that the QLE approach can reproduce the spectral

features that arise from vibrational relaxation and decoherence in
both rephasing and non-rephasing conditions.

F. Remarks on the QLE approach
Based on the simulated 2DES spectra, we suggest that it is suf-

ficient to simulate the spectroscopic signals in a dissipative envi-
ronment at ambient temperature by only considering the effects
of frictional forces on the wave packet dynamics. As mentioned in
Sec. III B, the random forces will not have significant effects on the
wave packet dynamics of a photo-induced process in the condensed
phase as the magnitude of thermal fluctuations is much smaller than
the energy scale of the vibronic excitations. The spectral and tem-
poral evolutions of the 2DES signals reported in this section show
that even the random forces are neglected in the simulations, the
dissipative wave packet dynamics and the corresponding manifes-
tations in spectra are well described by the QLE approach. There-
fore, a single-trajectory simulation of 2DES spectra using the QLE
approach is enough to describe the dynamical and spectroscopic
behavior of a molecular system in the condensed phase when the
static disorder is omitted. Even with the inclusion of static disor-
der, the number of trajectories needed for the ensemble average can
be reduced to a small value by using an efficient sampling scheme.
In this regard, the QLE approach has a relatively low computa-
tional cost compared with the density-matrix based methods such
that it provides an efficient tool for studying the dynamics and the
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nonlinear optical responses of molecular systems, especially the one
with strong vibronic couplings.

Finally, we note that although a displaced harmonic oscilla-
tor model is studied in this work, the QLE approach developed
here is not limited to harmonic systems. Models with more com-
plicated potential energy surfaces can be simulated efficiently using
available wave packet propagation methods.61 Moreover, the QLE
approach is not restricted to a particular choice of basis represen-
tation. The method presented in this work can be applied to a sys-
tem with the Hamiltonian parameterized by ab initio calculations
once a suitable basis is chosen (e.g., a discrete variable represen-
tation61). Therefore, the QLE approach is capable of fully explor-
ing coupled electronic-vibrational motions in complex molecular
systems.

IV. CONCLUSIONS
In this study, we have proposed a QLE based method for the

simulations of 2DES spectra in a condensed-phase environment.
For the numerical implementation of QLE, we generalized the fric-
tion operator based algorithm proposed by Messina and co-workers
for a multi-dimensional system. To demonstrate the applicability of
our method, we have simulated the rephasing and non-rephasing
spectra of a displaced-oscillator model in a dissipative environ-
ment. With the explicit treatment of vibrational relaxation in quan-
tum wave packet dynamics simulations, the QLE approach suc-
cessfully describes vibrational relaxation, coherence transfer, and
decoherence in dissipative wave packet dynamics, as well as their
corresponding spectral features.

We emphasize that in the simulated spectra, the capability of
the QLE approach in providing insight into the role of vibrational
relaxation and coherence transfer is demonstrated in the evolu-
tions of spectroscopic signals under the influence of an environ-
ment. Based on the wavefunction based simulations, the relation
between the observed beating in the peak amplitude and the coher-
ent wave packet dynamics in different electronic states can be elu-
cidated, from which we suggest that there may be a possibility
of separating ground-state and excited-state wave packet dynamics
from 2DES data. The decay in vibrational quantum beating due to
a condensed-phase environment is naturally described by the QLE
approach. With the correct description of vibrational decoherence,
it is possible to analyze the features of the 2DES spectra at a long-
population time, where we suggest that the cross peaks below the
diagonal of the spectra may not be an unambiguous signature of
vibrational relaxation as the contributions of both GSB and VT path-
ways are comparable. Overall, the computational results suggest that
the 2DES technique could be a sensitive probe for the vibrational
relaxation, coherence transfer, and decoherence in dissipative wave
packet dynamics. Note that such interpretations of vibrational quan-
tum beating on 2DES signals have drawn intense research activi-
ties.7,10,12,15,16,19–22 Nevertheless, our simulations provide clear elu-
cidations of spectral signatures and clear interpretations of GSC and
ESC in 2DES signals, which could be a valuable addition to the power
of 2DES.

Compared with the response-function based methods, the
QLE approach allows full dynamical simulation of 2DES spectra,
including the pulse-overlap effects, Liouville pathways arising from

dissipative dynamics, and interference between different Liouville
pathways. Moreover, molecular systems are often found with intri-
cate couplings between electronic and vibrational degrees of free-
dom, and it is necessary to consider all relevant degrees of freedom
to study the photo-induced dynamics and the corresponding spec-
troscopic signals. Numerically, the number of basis states inevitably
grows rapidly as the dimensionality of the system increases. Our
results justify that for the photo-induced process in the condensed
phase, the environmental effects can be well described once the fric-
tional force experienced by the system is properly treated. As the
random forces can be reasonably neglected, the number of trajecto-
ries can be significantly reduced such that the QLE approach, which
explicitly treats the nuclear wave packet dynamics, is more effi-
cient than the density-matrix based methods, especially for a multi-
dimensional system described by a large number of basis states.
Therefore, the QLE approach proposed in this work may provide
an efficient tool to simulate the 2DES spectra with both electronic
and vibrational degrees of freedom being resolved, especially for the
multi-dimensional system.

In addition, our method can provide an effective tool for
theoretical studies on vibrationally resolved 2D spectroscopy (e.g.,
2DEV) and the spectral signatures manifested by vibronic cou-
plings. Since full wave packet dynamics are evolved in our simu-
lations, the method presented in this work is not limited to sys-
tems with harmonic potentials. Anharmonic systems or potentials
obtained from ab initio calculations can be easily simulated within
the same framework, which significantly expands the scope of the
problems that can be studied. Note that in the QLE approach, the
effects of a dissipative environment are represented by a friction
operator, which has a simple functional form and is easy to imple-
ment numerically. Although we have limited our discussions to the
effects of Markovian friction, it can be readily extended to study the
non-Markovian dynamics by replacing the constant friction coef-
ficient into the friction kernel and the corresponding fluctuation–
dissipation relation for the random forces. Furthermore, the QLE
approach can be used to simulate linear and other nonlinear optical
responses by suitable modifications of the field–matter interaction
Hamiltonian.
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APPENDIX: DERIVATION OF PERTURBATIVE
CONTRIBUTIONS

Note that the wavefunction evolved by Eq. (29) contains contri-
butions from all perturbative orders of field–matter interactions. In
order to extract the third-order photon-echo signals, contributions
with desired order of interactions (i.e., first order in each pulse) in
Eq. (28) must be evaluated. To this end, we consider the wavefunc-
tion as a function of electric field strength of each laser pulse (λ1, λ2,
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λ3) and define the perturbative expansion37 with respect to (λ1, λ2,
λ3),

∣ψa(†)b(†)c(†)(t)⟩

=∑
∞
i,j,k=0[λ

i
1(†)]

a
[λj2(†)]

b
[λk3(†)]

c
∣ψ(i⋅a+j⋅b+k⋅c)

a(†)b(†)c(†)(t)⟩

≡∑
∞
i,j,k=0 λ

i⋅a
1(†)λ

j⋅b
2(†)λ

k⋅c
3(†) ∣(i ⋅ a)( j ⋅ b)(k ⋅ c)⟩. (A1)

Here, ∣(i ⋅ a)(j ⋅ b)(k ⋅ c)⟩ is a shorthand notation for the pertur-
bative ∣ϕ(i⋅a+j⋅b+k⋅c)

a(†)b(†)c(†)(t)⟩ term. Equation (A1) indicates that these

∣ϕ(i⋅a+j⋅b+k⋅c)
a(†)b(†)c(†)(t)⟩ terms can be related to ∣ψa(†)b(†)c(†)(t)⟩ terms. In

other words, we can utilize wavefunctions evolved by Eq. (29) as
auxiliary wavefunctions to generate contributions with a specific
order of interactions. Moreover, at the weak-field condition for the
common four-wave mixing experiments, the expansion can be trun-
cated at a low order of λ. We introduce the following auxiliary
wavefunctions and expand them according to Eq. (A1):

⟨ψ11†0(t)∣ =
∞
∑

i,j=0
λi1λ

j
2†⟨ij0∣

= ⟨000∣ + λ1⟨100∣ + λ2†⟨010∣ + λ2
1⟨200∣

+ λ2
2†⟨020∣ + λ1λ2†⟨110∣

+O(λi1λ
j
2† , i + j ≥ 3), (A2)

⟨ψ101†(t)∣ =
∞
∑

i,k=0
λi1λ

k
3†⟨i0k∣

= ⟨000∣ + λ1⟨100∣ + λ3†⟨001∣ + λ2
1⟨200∣

+λ2
3†⟨002∣ + λ1λ3†⟨101∣ + O(λi1λk3† , i + k ≥ 3), (A3)

⟨ψ100(t)∣ =
∞
∑

i=0
λi1⟨i00∣

= ⟨000∣ + λ1⟨100∣ + O(λi1, i ≥ 2), (A4)

⟨ψ000(t)∣ = ⟨000∣,

∣ψ11†1†(t)⟩ =
∞
∑

i,j,k=0
λi1λ

j
2†λ

k
3† ∣ijk⟩

= ∣000⟩ + λ1∣100⟩ + λ2† ∣010⟩ + λ3† ∣001⟩ + λ2
1∣200⟩

+ λ2
2† ∣020⟩ + λ2

3† ∣002⟩ + λ1λ2† ∣110⟩ + λ1λ3† ∣101⟩

+ λ2†λ3† ∣011⟩ + λ3
1∣300⟩ + λ3

2† ∣030⟩ + λ3
3† ∣003⟩

+ λ2
1λ2† ∣210⟩ + λ2

1λ3† ∣201⟩ + λ1λ2
2† ∣120⟩ + λ2

2†λ3† ∣021⟩

+λ1λ2
3† ∣102⟩ + λ2†λ

2
3† ∣012⟩ + λ1λ2†λ3† ∣111⟩

+O(λi1λ
j
2†λ

k
3† , i + j + k ≥ 4), (A5)

∣ψ11†0(t)⟩ =
∞
∑

i,j=0
λi1λ

j
2† ∣ij0⟩

= ∣000⟩ + λ1∣100⟩ + λ2† ∣010⟩ + λ2
1∣200⟩

+ λ2
2† ∣020⟩ + λ1λ2† ∣110⟩ + O(λi1λ

j
2† , i + j ≥ 3), (A6)

∣ψ101†(t)⟩ =
∞
∑

i,k=0
λi1λ

k
3† ∣i0k⟩

= ∣000⟩ + λ1∣100⟩ + λ3† ∣001⟩ + λ2
1∣200⟩

+ λ2
3† ∣002⟩ + λ1λ3† ∣101⟩ + O(λi1λk3† , i + k ≥ 3), (A7)

∣ψ01†1†(t)⟩ =
∞
∑

j,k=0
λj2†λ

k
3† ∣0jk⟩

= ∣000⟩ + λ2† ∣010⟩ + λ3† ∣001⟩ + λ2
2† ∣020⟩

+ λ2
3† ∣002⟩ + λ2†λ3† ∣011⟩ + O(λj2†λ

k
3† , j + k ≥ 3), (A8)

∣ψ01†0(t)⟩ =∑
∞
j=0 λ

j
2† ∣0j0⟩

= ∣000⟩ + λ2† ∣010⟩ + O(λj2† , j ≥ 2),

∣ψ001†(t)⟩ =∑
∞
k=0 λ

k
3† ∣00k⟩

= ∣000⟩ + λ3† ∣001⟩ + O(λk3† , k ≥ 2),

∣ψ000(t)⟩ = ∣000⟩.

(A9)

In addition, using the fact that the electronic ground state cannot be
annihilated, the bras and kets in Eq. (28) can then be obtained by the
following linear combinations:

⟨ϕ(1)100(t)∣ = λ1⟨100∣

= ⟨ψ100(t)∣ − ⟨ψ000(t)∣, (A10)

∣ϕ(1)01†0(t)⟩ = λ2† ∣010⟩

= ∣ψ01†0(t)⟩ − ∣ψ000(t)⟩, (A11)

∣ϕ(1)001†(t)⟩ = λ3† ∣001⟩

= ∣ψ001†(t)⟩ − ∣ψ000(t)⟩, (A12)

⟨ϕ(2)11†0(t)∣ = λ1λ2†⟨110∣

= ⟨ψ11†0(t)∣ − ⟨ψ100(t)∣, (A13)

⟨ϕ(2)101†(t)∣ = λ1λ3†⟨101∣

= ⟨ψ101†(t)∣ − ⟨ψ100(t)∣, (A14)

∣ϕ(2)01†1†(t)⟩ = λ2†λ3† ∣011⟩

= ∣ψ01†1†(t)⟩ − ∣ψ01†0(t)⟩ − ∣ψ001†(t)⟩ + ∣ψ000(t)⟩, (A15)
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∣ϕ(3)11†1†(t)⟩ = λ1λ2†λ3† ∣111⟩

= ∣ψ11†1†(t)⟩ − ∣ψ11†0(t)⟩ − ∣ψ101†(t)⟩ − ∣ψ01†1†(t)⟩
+ ∣ψ01†0(t)⟩ + ∣ψ001†(t)⟩. (A16)

Thus, terms required in the evaluation of 3PPE polarization
[Eq. (28)] can be calculated from auxiliary wavefunctions, as defined
in Eqs. (A10)–(A16).
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31D. Paleček, P. Edlund, E. Gustavsson, S. Westenhoff, and D. Zigmantas,
“Potential pitfalls of the early-time dynamics in two-dimensional electronic spec-
troscopy,” J. Chem. Phys. 151, 024201 (2019).
32X. Leng, S. Yue, Y.-X. Weng, K. Song, and Q. Shi, “Effects of finite laser pulse
width on two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 667, 79–86
(2017).
33L. Seidner, G. Stock, and W. Domcke, “Nonperturbative approach to femtosec-
ond spectroscopy: General theory and application to multidimensional nonadia-
batic photoisomerization processes,” J. Chem. Phys. 103, 3998–4011 (1995).
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44J. Krčmář, M. F. Gelin, and W. Domcke, “Calculation of third-order signals via
driven Schrödinger equations: General results and application to electronic 2D
photon echo spectroscopy,” Chem. Phys. 422, 53–62 (2013).
45J. Wehner, M. Falge, W. T. Strunz, and V. Engel, “Quantum diffusion wave-
function approach to two-dimensional vibronic spectroscopy,” J. Chem. Phys.
141, 134306 (2014).
46J. Albert, M. Falge, M. Keß, J. G. Wehner, P.-P. Zhang, A. Eisfeld, and V. Engel,
“Extended quantum jump description of vibronic two-dimensional spectroscopy,”
J. Chem. Phys. 142, 212440 (2015).
47J. M. Jackson, P. L. Brucia, and M. Messina, “An approach towards a simple
quantum Langevin equation,” Chem. Phys. Lett. 511, 471–481 (2011).
48P. A. Brown and M. Messina, “Including memory friction in single- and
two-state quantum dynamics simulations,” J. Phys. Chem. B 120, 1461–1475
(2016).
49N. G. Van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier,
1992), Vol. 1.
50H.-P. Breuer, F. Petruccione et al., The Theory of Open Quantum Systems
(Oxford University Press on Demand, 2002).

51E. J. Heller, “Time-dependent approach to semiclassical dynamics,” J. Chem.
Phys. 62, 1544–1555 (1975).
52E. J. Heller, “Classical S-matrix limit of wave packet dynamics,” J. Chem. Phys.
65, 4979–4989 (1976).
53G. W. Ford, J. T. Lewis, and R. F. O’Connell, “Quantum Langevin equation,”
Phys. Rev. A 37, 4419–4428 (1988).
54R. Katz and P. B. Gossiaux, “The Schrodinger–Langevin equation with and
without thermal fluctuations,” Ann. Phys. 368, 267–295 (2016).
55H. Peter and G.-L. Ingold, “Fundamental aspects of quantum Brownian
motion,” Chaos 15(2), 026105 (2005).
56G. W. Ford, J. T. Lewis, and R. F. O’Connell, “Independent oscillator model of
a heat bath: Exact diagonalization of the Hamiltonian,” J. Stat. Phys. 53, 439–455
(1988).
57J. M. Moix and J. Cao, “A hybrid stochastic hierarchy equations of motion
approach to treat the low temperature dynamics of non-Markovian open quantum
systems,” J. Chem. Phys. 139, 134106 (2013).
58X. Zhong, Y. Zhao, and J. Cao, “Coherent quantum transport in disordered
systems: II. Temperature dependence of carrier diffusion coefficients from the
time-dependent wavepacket diffusion method,” New J. Phys. 16, 045009 (2014).
59Y. Yan, Y. Liu, T. Xing, and Q. Shi, “Theoretical study of excitation energy
transfer and nonlinear spectroscopy of photosynthetic light-harvesting complexes
using the nonperturbative reduced dynamics method,” Wiley Interdiscip. Rev.:
Comput. Mol. Sci. 11, e1498 (2020).
60M. H. Beck, A. Jäckle, G. A. Worth, and H.-D. Meyer, “The multiconfigura-
tion time-dependent Hartree (MCTDH) method: A highly efficient algorithm for
propagating wavepackets,” Phys. Rep. 324, 1–105 (2000).
61J. C. Light and T. Carrington, Jr., “Discrete-variable representations and their
utilization,” Adv. Chem. Phys. 114, 263–310 (2000).

J. Chem. Phys. 154, 154107 (2021); doi: 10.1063/5.0042848 154, 154107-19

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1021/jp7107889
https://doi.org/10.1021/acs.jpcb.8b00674
https://doi.org/10.1002/asia.202000467
https://doi.org/10.1016/j.chemphys.2013.01.002
https://doi.org/10.1063/1.4896705
https://doi.org/10.1063/1.4919870
https://doi.org/10.1016/j.cplett.2011.06.075
https://doi.org/10.1021/acs.jpcb.5b05385
https://doi.org/10.1063/1.430620
https://doi.org/10.1063/1.430620
https://doi.org/10.1063/1.432974
https://doi.org/10.1103/physreva.37.4419
https://doi.org/10.1016/j.aop.2016.02.005
https://doi.org/10.1063/1.1853631
https://doi.org/10.1007/bf01011565
https://doi.org/10.1063/1.4822043
https://doi.org/10.1088/1367-2630/16/4/045009
https://doi.org/10.1002/wcms.1498
https://doi.org/10.1002/wcms.1498
https://doi.org/10.1016/s0370-1573(99)00047-2
https://doi.org/10.1002/9780470141731.ch4

